
JID:YJNTH AID:6429 /FLA [m1L; v1.261; Prn:25/11/2019; 17:20] P.1 (1-13)
Journal of Number Theory ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

General Section

The Hasse norm principle for An-extensions

André Macedo
Department of Mathematics and Statistics, University of Reading, Reading RG6 
6AX, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 November 2018
Received in revised form 30 May 
2019
Accepted 2 October 2019
Available online xxxx
Communicated by A. Pal

MSC:
primary 14G05
secondary 11E72, 11R37, 20D06

Keywords:
Local-global principles
Arithmetic of algebraic tori
Group cohomology
Computational methods
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of weak approximation for the associated norm one tori.
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1. Introduction

Let K/k be an extension of number fields with associated idèle groups A∗
K and A∗

k and 
let NK/k : A∗

K → A∗
k be the norm map on the idèles. Viewing K∗ (respectively, k∗) as 

sitting inside A∗
K (respectively, A∗

k) via the diagonal embedding, NK/k naturally extends 
the usual norm map of the extension K/k. We say that the Hasse norm principle (often 
abbreviated to HNP) holds for K/k if the knot group
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K(K/k) = (k∗ ∩NK/k(A∗
K))/NK/k(K∗)

is trivial, i.e. if every nonzero element of k which is a local norm everywhere is a global 
norm.

The first example of the validity of this principle was established in [16] by Hasse, 
who proved that the HNP holds if K/k is a cyclic extension (the Hasse norm theorem). 
This principle can however fail in general, with biquadratic extensions providing the 
simplest setting where failures are possible. For instance, 52 is not a global norm for the 
extension Q(

√
13, 

√
17)/Q, despite being the norm of an idèle. In general, the HNP fails 

for a biquadratic extension if and only if all its decomposition groups are cyclic.
In [26, p. 198], Tate presented an explicit description of the knot group of a Galois 

extension in terms of the group cohomology of its global and local Galois groups. Using 
this characterization, many results on the validity of the HNP were obtained in the Galois 
setting, with a particular emphasis on the abelian case, see e.g. the works of Gerth ([11], 
[12]), Gurak ([14], [15]) and Razar ([22]). More recently, a focus has also been placed on 
statistical studies of the HNP in families of extensions, see e.g. [4], [9] and [23].

Nevertheless, results for the non-abelian and non-Galois cases are still limited. For 
example, if N denotes the normal closure of K/k, it is known that the HNP holds for 
K/k when

(1) [K : k] is prime ([1, Lemma 4]);
(2) [K : k] = n and Gal(N/k) ∼= Dn, the dihedral group of order 2n ([2, Satz 1]);
(3) [K : k] = n and Gal(N/k) ∼= Sn, the symmetric group on n letters ([28]).

The main underlying theoretical tool used to derive these results is the toric inter-
pretation of the HNP: the knot group K(K/k) can be canonically identified with the 
Tate-Shafarevich group of the norm one torus R1

K/kGm := ker(NK/k : RK/kGm → Gm), 
where RK/kGm denotes the Weil restriction of Gm from K to k. This recognition of the 
knot group implies that the HNP holds for K/k if and only if the Hasse principle holds 
for every principal homogeneous space under R1

K/kGm. See Section 2.2 for more details 
and results concerning this interpretation.

In this paper, we add to the above list of results by studying the HNP for a degree 
n extension K/k with normal closure N such that Gal(N/k) is isomorphic to An, the 
alternating group on n letters. We also look at weak approximation – recall that this 
property is said to hold for a variety X/k if X(k) is dense (for the product topology) in ∏

v X(kv), where the product is taken over all places v of k and kv denotes the completion 
of k at v. In particular, we examine weak approximation for the norm one torus R1

K/kGm

associated to a degree n extension K/k of number fields with An-normal closure.
The first non-trivial case is n = 3. In this case, K = N is a cyclic extension of k and 

the Hasse norm theorem implies that the HNP holds for K/k. Moreover, using a result of 
Voskresenskĭı, one can show that weak approximation holds for the associated norm one 
torus. In [20], Kunyavskĭı solved the case n = 4 by showing that, for a quartic extension 
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K/k with A4-normal closure, K(K/k) is either 0 or Z/2 and both cases can occur. 
Additionally, he proved that the HNP holds for K/k if and only if weak approximation 
fails for R1

K/kGm. We complete the picture for this family of extensions by proving the 
following theorem.

Theorem 1.1 (Main Theorem). Let n ≥ 5 be an integer. Let K/k be a degree n extension 
of number fields and let N be its normal closure. If Gal(N/k) ∼= An, then the Hasse norm 
principle holds for K/k and weak approximation holds for the norm one torus R1

K/kGm.

Our strategy to establish this result is twofold. First, we combine the toric inter-
pretation of the HNP with several cohomological facts about An-modules to prove the 
aforementioned result for n ≥ 8. Next, we use a computational method developed by 
Hoshi and Yamasaki to solve the case n = 6. The remaining cases n = 5 and 7 follow 
from the remark below.

Remark 1.2. We note that when n = p is a prime number, Theorem 1.1 was already 
known. Indeed, in this case the HNP always holds by fact (1) above and a result of 
Colliot-Thélène and Sansuc on the rationality of the norm one torus of an extension 
with prime degree also shows the validity of weak approximation (see Proposition 9.1 
and Remark 9.3 of [7]).

The layout of this paper is as follows. In Section 2, we recall some basic group co-
homology constructions and results on the arithmetic of algebraic tori. In Section 3, we 
use various group-theoretic tools to establish the surjectivity of an important map on 
the cohomology of An. We then make use of this result to prove Theorem 1.1 for n ≥ 8. 
In Section 4, we exploit a computational method developed by Hoshi and Yamasaki to 
solve the case n = 6.

Notation
Throughout this paper, we fix the following notation.

k a number field
k an algebraic closure of k
Ωk the set of all places of k
kv the completion of k at v ∈ Ωk

A∗
k the idèle group of k

For a variety X defined over a field K, we use the notation

XL = X ×K L the base change of X to a field extension L/K

X = X ×K K the base change of X to an algebraic closure of K
PicX the Picard group of X

We define Gm,K = Spec(K[t, t−1]) to be the multiplicative group over a field K and, 
if K is apparent from the context, we omit it from the subscript and simply write Gm. 
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Given an algebraic K-torus T , we write T̂ for its character group Hom(T , Gm,K). If L/K
is a finite extension of fields and T is an L-torus, we denote the Weil restriction of T
from L to K by RL/KT . We use the notation R1

L/KGm for the norm one torus, defined 
as the kernel of the norm map NL/K : RL/KGm → Gm.

Let G be a finite group. The label ‘G-module’ shall always mean a free Z-module of 
finite rank equipped with a right action of G. For a G-module A and q ∈ Z, we denote 
the Tate cohomology groups by Ĥ

q
(G, A). Since Ĥ

q
(G, A) = Hq(G, A) for q ≥ 1, we will 

omit the hat in this case. We use the notation Z(G), [G, G] and M(G) for the center, the 

derived subgroup and the Schur multiplier Ĥ
−3

(G, Z) of G, respectively. If G is abelian, 
we denote its Pontryagin dual Hom(G, Q/Z) by G∼. Given elements g, h ∈ G, we use 
the conventions [g, h] = ghg−1h−1 and gh = hgh−1.

We often use ‘=’ to indicate a canonical isomorphism between two objects.

2. Preliminaries

2.1. Chevalley modules

Let G be a finite group and H a subgroup of G. Recall that we have the augmentation 
map ε : Z[G/H] → Z defined by mapping Hg �→ 1 for any Hg ∈ G/H. This map 
produces the exact sequence of G-modules

0 → IG/H → Z[G/H] ε−→ Z → 0, (2.1)

where IG/H = ker(ε) is the augmentation ideal. Dually, we have a norm map η : Z →
Z[G/H] defined by η : 1 �→ NG/H , where NG/H =

∑
Hg∈G/H Hg. This produces the 

exact sequence of G-modules

0 → Z
η−→ Z[G/H] → JG/H → 0, (2.2)

where JG/H = coker(η) (called the Chevalley module of G/H) is the dual module 
Hom(IG/H , Z) of IG/H .

For any g ∈ G, we can consider the restriction maps

Resg : H2(G, JG/H) → H2(〈g〉, JG/H)

and aggregate all of these functions together in order to get a homomorphism of 
G-modules

Res : H2(G, JG/H) →
∏
g∈G

H2(〈g〉, JG/H).

It turns out that the kernel of this map is of extreme importance in the arithmetic of 
norm one tori, as we will see later on.
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2.2. Arithmetic of algebraic tori

Let T be an algebraic k-torus. We introduce the defect of weak approximation for T

A(T ) = (
∏
v∈Ωk

T (kv))/T (k),

where T (k) denotes the closure (with respect to the product topology) of T (k) in ∏
v∈Ωk

T (kv). We say that weak approximation holds for T if and only if A(T ) = 0. We 

will also work with the Tate-Shafarevich group of T , defined as

X(T ) = ker(H1(k, T ) →
∏
v∈Ωk

H1(kv, Tkv
)).

The following result remarkably connects weak approximation for T with the Hasse 
principle for principal homogeneous spaces under T by combining the two groups A(T )
and X(T ) into an exact sequence.

Theorem 2.1 (Voskresenskĭı). Let T be a torus defined over a number field k and let X/k

be a smooth projective model of T . Then there exists an exact sequence

0 → A(T ) → H1(k,PicX)∼ → X(T ) → 0.

Proof. See Theorem 6 of [27]. �
Remark 2.2. In the framework of the well-known Brauer-Manin obstruction, the bira-
tional invariant H1(k, PicX) in the previous theorem can be identified with BrX/ Br k, 
where BrX = H2

ét(X, Gm) is the cohomological Brauer-Grothendieck group of X. Fur-
thermore, work of Sansuc [24] implies that this obstruction is the only one to the Hasse 
principle and weak approximation for principal homogeneous spaces of T .

Let us now specialize T to be the norm one torus R1
K/kGm of an extension K/k of 

number fields, defined via the exact sequence of algebraic groups

1 → T → RK/kGm

NK/k−−−−→ Gm → 1.

Taking the Gal(k/k)-cohomology of this exact sequence, we obtain

K∗ NK/k−−−−→ k∗ → H1(k, T ) → H1(k,RK/kGm).

By Shapiro’s lemma and Hilbert’s Theorem 90, we have H1(k, RK/kGm) = H1(K, Gm) =
1. It follows that H1(k, T ) ∼= k∗/NK/k(K∗). Analogously, for every v ∈ Ωk we have 
H1(kv, Tkv

) ∼= k∗v/ 
∏

w|v NKw/kv
(K∗

w), where the product runs over all places w of K
above v. Hence, we conclude that
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ker(H1(k, T ) →
∏
v∈Ωk

H1(kv, Tkv
)) ∼= (k∗ ∩NK/k(A∗

K))/NK/k(K∗),

i.e. the Tate-Shafarevich group X(T ) is isomorphic to the knot group K(K/k).
The group H1(k, PicX) in Theorem 2.1 is therefore pivotal in the study of the HNP 

for K/k and weak approximation for T . A very useful tool to deal with this cohomology 
group is flasque resolutions, as introduced in the work of Colliot-Thélène and Sansuc. 
We recall here the main definitions and refer the reader to [6] and [7] for more details 
on this topic.

Flasque resolutions
Let G be a finite group and let A be a G-module. The module A is said to be flasque

if Ĥ
−1

(G′, A) = 0 for every subgroup G′ of G and coflasque if H1(G′, A) = 0 for every 
subgroup G′ of G. We say that A is a permutation module if it admits a Z-basis permuted 
by G. A flasque resolution of A is an exact sequence of G-modules

0 → A → P → F → 0

where P is a permutation module and F is flasque. Dually, a coflasque resolution of A
is an exact sequence of G-modules

0 → C → Q → A → 0

where Q is a permutation module and C is coflasque. Two G-modules A1 and A2 are 
said to be similar if A1 ⊕ P1 ∼= A2 ⊕ P2 for some permutation G-modules P1, P2. We 
denote the similarity class of A by [A].

There is a very direct relation between the invariant H1(k, PicX) and flasque resolu-
tions of the G-module T̂ , as the following result shows.

Theorem 2.3 (Colliot-Thélène and Sansuc). Let T be a torus defined over a number field 
k and split by a finite Galois extension N/k with G = Gal(N/k). Let

0 → T̂ → P → F → 0

be a flasque resolution of the G-module T̂ and let X/k be a smooth projective model of 
T . Then the similarity class [F ] and the group H1(G, F ) are determined uniquely and

H1(k,PicX) = H1(G,PicXN ) = H1(G,F ).

Proof. See Lemme 5 and Proposition 6 of [6]. �
In [7], Colliot-Thélène and Sansuc further presented a very useful description of the 

group H1(G, F ) in the conclusion of the previous theorem.
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Proposition 2.4. H1(G, F ) = ker(H2(G, T̂ ) Res−−→
∏
g∈G

H2(〈g〉, T̂ )).

Proof. See Proposition 9.5(ii) of [7]. �
3. Group cohomology of An-modules

The goal of this section is to prove Theorem 1.1 for n ≥ 8. We start out by es-
tablishing several group-theoretic and cohomological facts about An-modules. We then 
exploit the consequences of these results in the arithmetic of norm one tori associated 
to An-extensions.

Recall that, for n ≥ 5, An is a non-abelian simple group and hence perfect. Moreover, 
its Schur multiplier M(An) = Ĥ

−3
(An, Z) is given as follows (see Theorem 2.11 of [17]):

M(An) =

⎧⎪⎪⎨
⎪⎪⎩

0 if n ≤ 3;
Z/2 if n ∈ {4, 5} or n ≥ 8;
Z/6 if n ∈ {6, 7}.

Given a copy H of An−1 inside G = An, we have a corestriction map on cohomology

CorHG : M(H) → M(G).

This map will play an important role in the proof of Theorem 1.1, so we begin by 
establishing the following result.

Lemma 3.1. Let n ≥ 8 and let H be a copy of An−1 inside G = An. Then the corestriction 
map CorHG is surjective.

In order to prove this lemma, we will use multiple results about covering groups of 
Sn and An together with the characterization of the image of CorHG given in Lemma 4 
of [8]. To put this plan into practice, we need the following concepts.

Definition 3.2. Let G be a finite group. A stem extension of G is a group G̃ containing 
a normal subgroup K such that G̃/K ∼= G and K ⊆ Z(G̃) ∩ [G̃, G̃]. A Schur covering 
group of G is a stem extension of G of maximal size.

It is a well-known fact that a stem extension of a finite group G always exists (see 
Theorem 2.1.4 of [19]). Additionally, the base normal subgroup K of a Schur covering 

group of G coincides with its Schur multiplier Ĥ
−3

(G, Z) (see Section 9.9 of [13]). In 
[25], Schur completely classified the Schur covering groups of Sn and An. He also gave 
an explicit presentation of a cover of Sn, as follows.

Proposition 3.3. Let n ≥ 4 and let U be the group with generators z, t1, . . . , tn−1 and 
relations
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(1) z2 = 1;
(2) zti = tiz, for 1 ≤ i ≤ n − 1;
(3) t2i = z, for 1 ≤ i ≤ n − 1;
(4) (titi+1)3 = z, for 1 ≤ i ≤ n − 2;
(5) titj = ztjti, for |i − j| ≥ 2 and 1 ≤ i, j ≤ n − 1.

Then U is a Schur covering group of Sn with base normal subgroup K = 〈z〉. Moreover, 
if ti denotes the transposition (i, i + 1) in Sn, then the map

π : U −→ Sn

z �−→ 1

ti �−→ ti

is surjective and has kernel K.

Proof. See Schur’s original paper [25] or Chapter 2 of [17] for a more modern exposi-
tion. �
Remark 3.4. An immediate consequence of this last proposition is that the Schur multi-
plier M(Sn) of Sn is isomorphic to Z/2 for n ≥ 4.

Using the Schur cover of Sn given in Proposition 3.3, one can also construct a Schur 
covering group of An for n ≥ 8.

Lemma 3.5. In the notation of Proposition 3.3, the group V := π−1(An) defines a Schur 
covering group of An for every n ≥ 8.

Proof. It is well-known that An is generated by the n − 2 permutations ei := t1.ti+1 =
(1, 2)(i + 1, i + 2) for 1 ≤ i ≤ n − 2. Hence, V = π−1(An) is generated by z, e1, . . . , en−2, 
where ei := t1ti+1 for 1 ≤ i ≤ n − 2. Clearly, we have K ⊆ Z(V ) and V/K ∼= An. As 
the Schur multiplier of An is also Z/2 for n ≥ 8, in order to show that V defines a Schur 
covering group of An it suffices to prove that K ⊆ [V, V ].

Claim: z = [e−1
1 e2e1, e2].

Proof of claim: This follows from a standard computation using the identities (e1e2)3 = z, 
e3
1 = z and e2

i = z for 2 ≤ i ≤ n − 2, which result directly from the relations satisfied 
by ti. From the claim, it follows that K = 〈z〉 is contained in [V, V ], as desired. �

Given a copy H of An−1 inside An, one can subsequently repeat the same procedure 
of this last lemma and further restrict π to W := π−1(H) to seek a Schur covering group 
of H. The same argument works, but with two small caveats.

First, it is necessary to assure that we still have z ∈ [W, W ]. This is indeed the case 
since, for n ≥ 7, any subgroup H ≤ An isomorphic to An−1 is conjugate to the point 
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stabilizer (An)n of the letter n in An (this is a consequence of Lemma 2.2 of [29]). 
Therefore, we have H = (An)nπ(x) for some x ∈ U and hence z = zx = [e−1

1 e2e1, e2]x =
[(e−1

1 e2e1)x, ex2 ] is in [W, W ], as clearly e1, e2 ∈ (An)n.
Second, note that we are making use of the fact that the Schur multipliers of An−1

and Sn coincide, which does not hold for n = 8 (recall that M(A7) = Z/6). However, 
it is still true that π−1(A7) gives a (non-maximal) stem extension of A7, by the same 
reasoning as above. We have thus established the following result.

Lemma 3.6. Let n ≥ 8 and let H be a copy of An−1 inside An. Then the restriction to 
W = π−1(H) of the Schur cover V of An given in Lemma 3.5 defines a stem extension 
of H.

We can now prove the surjectivity of CorHG for n ≥ 8.

Proof of Lemma 3.1. Let V be the Schur covering group of G constructed in Lemma 3.5. 
We then have a central extension

1 → M(G) → V
π−→ G → 1,

where we identified the base normal subgroup K of V with the Schur multiplier M(G)
of G. Since M(G) ⊂ [V, V ] by the definition of a Schur cover, V is a generalized rep-
resentation group of G, as defined on p. 310 of [8]. Therefore, by Lemma 4 of [8] we 
have an isomorphism CorHG (M(H)) ∼= M(G) ∩ [W, W ], where W = π−1(H). Hence, it 
is enough to show that M(G) ∩ [W, W ] = M(G). By Lemma 3.6, W defines a stem 
extension of H for n ≥ 8, so that we immediately get M(G) ⊂ [W, W ]. It follows that 
M(G) ∩ [W, W ] = M(G), as desired. �

Using this lemma we show the vanishing of H2(G, JG/H) and prove Theorem 1.1 for 
n ≥ 8.

Proposition 3.7. Let n ≥ 8 and H be a copy of An−1 inside G = An. Then H2(G, JG/H) =
0.

Proof. Taking the G-cohomology of the exact sequence (2.2) gives the exact sequence of 
abelian groups

H2(G,Z[G/H]) → H2(G, JG/H) → H3(G,Z) η−→ H3(G,Z[G/H]),

where η is the map induced on the degree 3 cohomology groups by the norm map η. 
Applying Shapiro’s lemma and using the fundamental duality theorem in the cohomol-
ogy of finite groups (see, for example, Section VI.7 of [3]), we have H2(G, Z[G/H]) ∼=
H2(H, Z) ∼= Ĥ

−2
(H, Z) ∼= H/[H, H] = 0, as H is perfect. Therefore, this last exact 

sequence becomes
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0 → H2(G, JG/H) → H3(G,Z) η−→ H3(G,Z[G/H]),

which shows that H2(G, JG/H) = 0 if η is injective. Since the composition of the map η
with the isomorphism of Shapiro’s lemma

H3(G,Z) η−→ H3(G,Z[G/H])
∼=−→ H3(H,Z)

gives the restriction map (see Example 1.27(b) of [21]), it suffices to prove that the 
restriction

ResGH : H3(G,Z) → H3(H,Z)

is injective. Again, by the duality in the cohomology of finite groups, this is the same as 
proving that the corestriction map (dual to ResGH)

CorHG : Ĥ
−3

(H,Z) → Ĥ
−3

(G,Z)

is surjective. But this is the content of Lemma 3.1 and so it follows that H2(G, JG/H) =
0. �
Proof of Theorem 1.1 for n ≥ 8. Set G = Gal(N/k) ∼= An, H = Gal(N/K) and observe 
that H is isomorphic to An−1, since it has index n in An. By Theorems 2.1 and 2.3
and Proposition 2.4, it is enough to establish that the group H2(G, T̂ ) is trivial, where 
T = R1

K/kGm is the norm one torus associated to the extension K/k. It is a well-known 

fact that T̂ ∼= JG/H as G-modules, so the result follows from Proposition 3.7. �
Remark 3.8. Note that in the proof of Proposition 3.7 we actually showed that

H2(G, JG/H) ∼= ker(ResGH : H3(G,Z) → H3(H,Z))

for every n ≥ 6. Using this fact and an approach similar to the one carried out in the 
proof of Lemma 3.1, one can show that H2(G, JG/H) = Z/3 when n = 6. Therefore the 
statement of Proposition 3.7 does not hold in this case and hence the proof of Theorem 1.1
for n = 6 requires a different strategy.

4. The case n = 6

In this section, we conclude the proof of Theorem 1.1 by using the computer algebra 
system GAP [10] to establish the remaining case n = 6. For this, we make use of the 
algorithms1 developed by Hoshi and Yamasaki in [18]. In this work, the authors study 

1 The code for these algorithms is available in the web page: https://www .math .kyoto -u .ac .jp /~yamasaki /
Algorithm /RatProbAlgTori/, accessed May, 2019.

https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/RatProbAlgTori/
https://www.math.kyoto-u.ac.jp/~yamasaki/Algorithm/RatProbAlgTori/
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the rationality of low-dimensional algebraic tori via the properties of the corresponding 
group modules, which they analyze using various computational methods. In particular, 
they create the following GAP algorithms:

• Norm1TorusJ(d,m) (Algorithm N1T in [18, Section 8]), computing the action of G
on JG/H , where G is the transitive subgroup of Sd with GAP index number m (cf. 
[5] and [10]) and H is the stabilizer of one of the letters in G;

• FlabbyResolution(G) (Algorithm F1 in [18, Section 5.1]), computing a flasque res-
olution of the G-lattice MG (see [18, Definition 1.26]);

• H1(G) (Algorithm F0 in [18, Section 5.0]), computing the cohomology group 
H1(G, MG) of the G-lattice MG.

Using these algorithms, we can easily prove the A6 case of Theorem 1.1 as follows:

Proof of the case n = 6 of Theorem 1.1. Set G = Gal(N/k) ∼= A6, H = Gal(N/K) ∼=
A5 and T = R1

K/kGm. By Theorems 2.1 and 2.3, it is enough to prove that H1(G, F ) = 0, 
where F is a flasque module in a flasque resolution of the G-module T̂ ∼= JG/H . Writing 
K = NH = k(α1) and N = k(α1, . . . , α6) for some αi ∈ k, we see that H is the 
stabilizer of α1 and so the above algorithm Norm1TorusJ to compute JG/H applies. 
Finally, observing that A6 is the transitive subgroup of S6 with GAP index number 15, 
one can conclude that the desired cohomology group is trivial by running the following 
code in GAP:

gap> Read(“FlabbyResolution.gap”);
gap> J:=Norm1TorusJ(6,15);
<matrix group with 2 generators>
gap> F:=FlabbyResolution(J).actionF;
<matrix group with 2 generators>
gap> Product(H1(F));
1 �
Remark 4.1. The computation used for the case n = 6 in the previous proof can be 
reproduced for other small values of n. We have checked that for n ≤ 11 the algorithm 
confirms our results, giving the trivial group for n �= 4 and producing the counterexample 
H1(A4, F ) = Z/2 for n = 4, as computed by Kunyavskĭı in [20].

Although the primary goal of this section was to establish the case n = 6 of The-
orem 1.1, the computer algorithms of Hoshi and Yamasaki employed here might be of 
independent interest. Indeed, this computational method can consistently be used to 
compute the birational invariant H1(G, F ) for low-degree field extensions and, in this 
way, deduce consequences about the validity of the Hasse norm principle and weak ap-
proximation for norm one tori.
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