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0. Introduction

The Sturm bound provides a sufficient condition for classical modular forms to be 
identically zero.

Theorem 0.1. (Sturm [17], see also [12, Cor. 2.3.4] and [16, Chap. 9]) Let k and N be 
positive integers. Given a modular form f of weight k for the congruence subgroup Γ0(N), 
consider its Fourier expansion f(z) =

∑∞
n=0 cn(f)e2πinz. Then f is identically zero if

cn(f) = 0 for all 0 ≤ n ≤ [SL2(Z) : Γ0(N)] · k

12 .

Moreover, if f is a cusp form, then f is identically zero if

cn(f) = 0 for all 0 ≤ n ≤ [SL2(Z) : Γ0(N)] ·
(

k

12 − 1
N

)
+ 1

N
.

Let m denote the dimension of the C-vector space Mk(Γ0(N)) of weight-k modular 
forms for Γ0(N). Comparing the former bound with m, the theorem says that a given 
modular form in Mk(Γ0(N)) is uniquely determined by only slightly more than its first m
Fourier coefficients. Such bounds have many theoretical and computational applications, 
in particular they are widely used in algorithms for computing with modular forms.

Let Tk(N) be the Hecke algebra acting on the space Sk(Γ0(N)) of weight-k cusp forms 
for Γ0(N). It is well-known that the first Fourier coefficient provides a perfect pairing 
between Tk(N) and Sk(Γ0(N)). As a consequence, one can derive from Theorem 0.1 an 
explicit bound for the number of Hecke operators generating Tk(N) (cf. [16]). Moreover, 
combined with the modularity theorem for elliptic curves over Q, the Sturm bound can be 
used to check efficiently whether two elliptic curves over Q are isogenous. Note also that 
the statement of Theorem 0.1 is the version at the “generic prime”: the bound actually 
holds as well at every “closed prime” for arithmetic modular forms and is essential in 
the study of their congruence relations.

Recently, Sturm-type bounds for Hilbert modular forms and Siegel modular forms 
have been the subject of several investigations. The aim of this paper is to give an 
attempt on studying the generic version of this question for modular forms over function 
fields, in both cases of mixed and equal characteristic.

0.1. Mixed characteristic setting

Let K := Fq(θ) be the rational function field with one variable θ over a finite field Fq

with q elements. Let K∞ be the completion of K with respect to the infinite place ∞. 
Put A := Fq[θ] and denote by A+ the set of monic polynomials in A.

A combinatorial analogue of the complex upper half plane in this setting is the Bruhat-
Tits tree T associated to PGL2(K∞). We are interested in harmonic cochains, also called 



JID:YJNTH AID:6580 /FLA [m1L; v1.291; Prn:18/08/2020; 19:10] P.3 (1-32)
C. Armana, F.-T. Wei / Journal of Number Theory ••• (••••) •••–••• 3
Drinfeld-type automorphic forms, which are functions on the set of the oriented edges 
of T satisfying the so-called harmonicity property. Harmonic cochains, which can be 
viewed as analogue to classical weight-2 modular forms, are objects of great interest in 
the study of function field arithmetic (for instance cf. [11], [15], [20], [21]). Moreover let 
Γ0(n) be the Hecke congruence subgroup of GL2(A) for a given n ∈ A+. The space of 
Γ0(n)-invariant C-valued harmonic cochains is denoted by H(n). Every f in H(n) admits 
a unique Fourier expansion with coefficients c0(f) and (cm(f))m∈A+ .

Classical Sturm bounds may be proved using the so-called valence formula for mod-
ular forms. Since no such formula is available for harmonic cochains, a more natural 
approach is to use a fundamental domain of the quotient graph Γ0(n)\T , as we describe 
in Theorem 2.4 for instance. Our first bound is stated in terms of the arithmetic quantity 
τ(n) introduced in Definition 4.6.

Theorem 0.2. Given n ∈ A+, let f ∈ H(n). Then f is identically zero if cm(f) = 0 for 
all m ∈ A+ with

degm ≤ deg n− 1 + 2τ(n).

One may observe that τ(n) ≤ deg n − 2 when deg n ≥ 2. If t(n) denotes the number 
of prime factors of n, we also have the following special values:

τ(n) =
{

0 if 0 ≤ t(n) ≤ q,
1 if q < t(n) ≤ 2q.

Remark 0.3. It seems difficult to tell the precise value of τ(n) when t(n) > 2q. However, 
from the numerical data in (4.1) and (4.2) which were computed using SageMath, we 
predict that

τ(n) ?≤
⌊
t(n) − 1

q

⌋
. (0.1)

Moreover, when q and deg n are small, data (4.4) shows that our Sturm-type bound is 
actually sharp in certain cases.

0.1.1. Cuspidal harmonic cochains
Let H0(n) denote the subspace of cuspidal Γ0(n)-invariant C-valued harmonic 

cochains, which consists of elements of H(n) which are finitely supported modulo n. The 
next bound is given in terms of the arithmetic quantity �(n) introduced in Definition 4.2.

Theorem 0.4. Given n ∈ A+, let f ∈ H0(n). Then f is identically zero if cm(f) = 0 for 
all m ∈ A+ with
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degm ≤ deg n− 2

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if n is a prime power,
0 if n is square-free and f is “new”,
0 if n = p2q for primes p, q ∈ A+ with deg q = 1 and f is “new”,
�(n) otherwise.

Remark 0.5. When deg n < 3, it is known that H0(n) = {0} by the genus formula for 
G(n) ([10, Th. 2.17]). Thus when deg n = 3, every f ∈ H0(n) is “new” and Theorem 0.4
says that f is identically zero if cm(f) = 0 for all m ∈ A+ with degm ≤ 1.

We point out that �(n) and τ(n) are defined in very different ways. From a com-
putational point of view, it is relatively harder to determine the value �(n) than τ(n). 
However, we can show that �(n) ≤ 2τ(n) + 1 for every n ∈ A+ (Corollary 4.7), which 
indicates that the bound in Theorem 0.4 is better than the one in Theorem 0.2.

0.1.2. Hecke algebra on harmonic cochains
Similarly to the classical case, the pairing between the Hecke algebra and the space of 

C-valued harmonic cochains coming from the first Fourier coefficient c1 is indeed perfect, 
cf. Lemma 5.1, and the action of the Hecke algebra can be seen actually from the Fourier 
expansion. Consequently, the previous bounds allow an explicit control on the number 
of Hecke operators which generate the Hecke algebra.

Corollary 0.6.

(1) Let T (n) be the Hecke algebra acting on H(n). Then T (n) is spanned as a C-vector 
space by Tm for all m ∈ A+ with

degm ≤ deg n− 1 + 2τ(n).

(2) Let T0(n) be the Hecke algebra acting on H0(n). Then T0(n) is spanned as a C-vector 
space by Tm for all m ∈ A+ with

degm ≤ deg n− 2 +
{

0 if n is a prime power,
�(n) otherwise.

(3) Let Tnew
0 (n) be the restriction of T0(n) acting on the “new” subspace of H0(n). If n

is either square-free or n = p2q for primes p, q ∈ A+ with deg q = 1, then Tnew
0 (n)

is spanned as a C-vector space by Tm for all m ∈ A+ with degm ≤ deg n − 2.

Remark 0.7. Using Theorem 2.4, we also get the coarse bounds 2 deg n − 4 for H0(n)
and T0(n), and max(2 deg n − 3, deg n − 1) for H(n) and T (n) (Proposition 4.1, Re-
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marks 4.13(2) and 5.4). The bounds of Theorems 0.2, 0.4 and Corollary 0.6 are ob-
tained by twisting the fundamental domain by the Atkin-Lehner involution Wn; com-
putational data, in particular (0.1), suggest that they are smaller than the coarse 
bounds.

0.1.3. Review of previous Sturm-type bounds for harmonic cochains
Tan and Rockmore [18] proved a Sturm bound for certain general automorphic cusp 

forms on GL2 over K: for harmonic cochains, one can derive bounds of the form 
5 deg n + 5 for normalized Hecke eigenforms ([18, Section 3, p. 128]), and deg n − 2
under the further assumption that n is squarefree ([18, Section 4, p. 131]) (note that 
their level N corresponds here to n ∞). It can be compared with the square-free case of 
Theorem 0.4 where we only assumed that the harmonic cochain is “new”.

When deg n = 3, it is known since Gekeler [4, 5.8 and 7.1] that any f ∈ H0(n) is 
identically zero when cm(f) = 0 for all m ∈ A+ with degm ≤ 1. The same bound can 
be derived for the corresponding cuspidal Hecke algebra ([14, Theorem 1.4 (iii)]). These 
results are recovered by Theorem 0.4 and Corollary 0.6 (see Remark 0.5).

In order to improve on existing bounds, our input is to carefully describe the quo-
tient graph Γ0(n)\T and to utilize the harmonicity property. We mention that although 
Gekeler and Nonnengardt [10] have worked on the structure of this graph, no Sturm 
bound seems to appear explicitly in their paper, although it is possible that some bound 
can be derived.

0.1.4. Isogeny between elliptic curves
Let E be an elliptic curve over K with split multiplicative reduction at the place ∞. 

Denote by n ∞ the conductor of E with n ∈ A+. From the work of Weil, Jacquet-
Langlands, Grothendieck, Deligne, Drinfeld and Zarhin, there exists a unique Γ0(n)-
invariant C-valued cuspidal “new” harmonic cochain fE corresponding to the K-isogeny 
class of E ([11]). Combined with Theorem 0.4 applied to fE , we get the following isogeny 
criterion.

Corollary 0.8. Let E1 and E2 be two elliptic curves over K with the same conductor n ∞
and split multiplicative reduction at ∞. Then E1 and E2 are isogenous over K if and 
only if ap(E1) = ap(E2) for every prime p ∈ A+ with

deg p ≤ deg n− 2 +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if n is a prime power,
0 if n is square-free,
0 if n = q2

1q2 for primes q1, q2 ∈ A+ with deg q2 = 1,
�(n) otherwise.

Here ap(E) is introduced in (5.2).
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0.2. Equal characteristic setting

Let C∞ be the completion of a chosen algebraic closure of K∞. Set Ω := C∞ −K∞, 
the Drinfeld half plane. Let k, m be non-negative integers with 0 ≤ m ≤ q − 2. Given 
n ∈ A+, recall that a Drinfeld modular form f of weight k and type m for the congruence 
subgroup Γ0(n) admits a so-called t-expansion:

f =
∞∑
j=0

bj(f)tm+(q−1)j ,

where t : Ω → C∞ is a chosen uniformizer at the cusp infinity. We obtain a Sturm-type 
bound for Drinfeld modular forms which generalizes Gekeler [6, Corollary 5.17] in the 
case n = 1.

Theorem 0.9. Given n ∈ A+, let f be an �-cuspidal Drinfeld modular form of weight k
and type m for Γ0(n) as defined in Section 6.1. Then f is identically zero if

bj(f) = 0 for all 0 ≤ j ≤ [GL2(A) : Γ0(n)] ·
(

k

q2 − 1 − �

(q − 1)qdeg n

)
+ �−mqdeg n

(q − 1)qdeg n
.

This bound is essentially similar to the classical Sturm bound (Theorem 0.1) and is 
proved likewise. However, given n ∈ A+, k, � ∈ Z≥0, and an integer m with 0 ≤ m ≤ q−2, 
the pairing between the space of �-cuspidal Drinfeld modular forms of weight k and 
type m for Γ0(n) and the associated Hecke algebra, given by the first coefficient b1, is 
not expected to be perfect (cf. Section 6.2). Besides it is not obvious to how read off 
the action of the Hecke algebra on Drinfeld modular forms via their t-expansions. Thus, 
differently from the cases of classical modular forms and harmonic cochains, the bound 
of Theorem 0.9 does not give directly a bound for generators of the Hecke algebra on 
Drinfeld modular forms.

0.3. Content

This paper is organized as follows. We set up basic notations in Section 1. In Sec-
tion 2, we review the structure of the quotient graph of T by congruence subgroups 
Γ0(n) and in Section 3 the needed properties of harmonic cochains. In Section 4, we 
first prove Theorem 0.4 for cuspidal harmonic cochains in Section 4.1; Theorem 0.2
for harmonic cochains is obtained in Section 4.2. Section 5 includes applications of our 
Sturm-type bounds for harmonic cochains to the Hecke algebra and to isogenies between 
elliptic curves: Corollary 0.6 is shown in Section 5.1 and Section 5.2, and Corollary 0.8
is derived in Section 5.3. Finally, we prove Theorem 0.9 for Drinfeld modular forms in 
Section 6.2.
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1. Preliminaries

1.1. Notations

Let Fq be a finite field with q elements and K := Fq(θ), the rational function field 
with one variable θ over Fq. Let A := Fq[θ] be the ring of integers of K and A+ be the set 
of monic polynomials in A. The degree valuation on K, i.e. the valuation corresponding 
to the infinite place ∞ of K, is defined by:

∀a, b ∈ A with b �= 0, ν∞(a/b) := deg b− deg a

and the corresponding absolute value is normalized to be:

∀α ∈ K, |α|∞ := q−ν∞(α).

Take π∞ := θ−1, a uniformizer at ∞. Let K∞ := Fq( (π∞) ) be the completion of K with 
respect to | · |∞, and set O∞ := Fq�π∞�, the ring of integers in K∞.

1.2. Bruhat-Tits tree

Let T be the Bruhat-Tits tree associated to PGL2(K∞). Its set of vertices is de-
noted by V (T ) := GL2(K∞)/K×

∞ GL2(O∞) and its set of oriented edges by E(T ) :=
GL2(K∞)/K×

∞I∞, where I∞ is the Iwahori subgroup

I∞ :=
{(

a b
c d

)
∈ GL2(O∞)

∣∣∣∣∣ c ≡ 0 mod π∞

}
.

For an edge e, we denote by o(e) is origin, t(e) its terminus, and ē the opposite edge. 
Given g ∈ GL2(K∞) let eg be the coset of g in E(T ), i.e. the oriented edge corresponding 
to g on T . More precisely we have

o(eg) := g ·K×
∞ GL2(O∞) ∈ V (T )

and

t(eg) := g

(
0 1
π∞ 0

)
·K×

∞ GL2(O∞) = g

(
θ 0
0 1

)
·K×

∞ GL2(O∞) ∈ V (T ).

In particular, the opposite edge ēg of eg is represented by g
(

0 1
π 0

)
∈ GL2(K∞).
∞
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2. Congruence subgroups Γ0(n) and quotient graphs

Let Γ := GL2(A) ⊂ GL2(K∞), which acts from the left on T . In this section, we 
shall recall the needed properties of the quotient graphs associated to the congruence 
subgroups Γ0(n) of Γ. Let

Γ∞ :=
{(

a b
c d

)
∈ Γ

∣∣∣∣ c = 0
}
.

Recall Weil’s decomposition of elements in GL2(K∞) as follows:

Theorem 2.1. (Cf. [22, 3 and 4])

(1) Given g ∈ GL2(K∞), there exists a unique r ∈ Z≥0 such that

g = γ ·
(
θr 0
0 1

)
· z · κ

for some γ ∈ Γ, z ∈ K×
∞, and κ ∈ GL2(O∞).

(2) For each r ∈ Z≥0, let vr (resp. er) be the vertex (resp. oriented edge) of T repre-

sented by 
(
θr 0
0 1

)
. Then the stabilizer of vr under Γ is

StabΓ(vr) =

⎧⎪⎨
⎪⎩

GL2(Fq) if r = 0,

Γ(r)
∞ :=

{(
a b
0 d

)
∈ Γ∞

∣∣∣∣ deg b ≤ r

}
if r > 0,

and the stabilizers of er and ēr under Γ are

∀r ≥ 0, StabΓ(er) = StabΓ(ēr) = Γ(r)
∞ .

Given two vertices v, v′ ∈ V (T ), we denote by d(v, v′) the distance between v and v′, 
i.e. the number of edges lying in the unique path connecting v and v′.

Lemma 2.2. Given γ =
(
a b
c d

)
∈ Γ, one has d(γv0, v0) = 2 max(deg a, deg b, deg c,

deg d).

Proof. By the Iwasawa decomposition, there exists κ ∈ GL2(O∞) such that

γ · κ =

⎧⎪⎪⎨
⎪⎪⎩

1
d

(
det γ bd

0 d2

)
if deg d ≥ deg c,

1
c

(
det γ ac

0 c2

)
otherwise.
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[v0] [v1] [v2] [v3]

Fig. 1. Graph of Γ\T .

Note that for a vertex v ∈ V (T ) represented by 
(
α u
0 β

)
∈ GL2(K∞), one can derive 

from [9, p. 185] that d(v, v0) = max
(
ν∞(α) −ν∞(u), 0

)
+
∣∣min

(
ν∞(α), ν∞(u)

)
−ν∞(β)

∣∣. 
The result then follows from a straightforward argument. �

Given n ∈ A+, put

Γ0(n) :=
{(

a b
c d

)
∈ Γ

∣∣∣∣ c ≡ 0 mod n

}
.

Let G(n) := Γ0(n)\T be the quotient graph of T by Γ0(n). Its set of vertices is 
V (G(n)) := Γ0(n)\V (T ) and its set of oriented edges is E(G(n)) := Γ0(n)\E(T ). If 
e is an edge of T , we denote by [e] the corresponding edge of G(n).

By Theorem 2.1, the quotient graph G(1) is a half line (cf. Fig. 1), and the vertices 
(resp. oriented edges) of G(1) are represented by vr ∈ V (T ) (resp. er and ēr in E(T )) 
for r ∈ Z≥0.

For general n, by Theorem 2.1 we know that the vertices and the oriented edges of 
G(n) can be respectively represented in T by elements in

{γ vr | r ∈ Z≥0 and γ ∈ Γ0(n)\Γ} and {γ er, γ ēr | r ∈ Z≥0 and γ ∈ Γ0(n)\Γ}.
(2.1)

Moreover, γ vr and γ′ vr′ (resp. γer and γ′er′) represent the same vertex (resp. edge) in 
G(n) if and only if r = r′ and

γ′ StabΓ(vr)γ−1 ∩ Γ0(n) �= ∅ (resp. γ′ StabΓ(er)γ−1 ∩ Γ0(n) �= ∅). (2.2)

Remark 2.3.

(1) For γ, γ′ ∈ Γ and distinct r, r′ ∈ Z≥0, the edge [γer] is always different from [γ′er′ ]
and [γ′ēr′ ] in E(G(n)).

(2) If [γ er] = [γ′ er] in E(G(n)) for some r ≥ 1 and γ, γ′ ∈ Γ, then [γ er+n] = [γ′ er+n]
for all n ∈ Z≥0.

For γ =
(
a b
c d

)
∈ Γ, we let

nγ := n

gcd(c2, n) ,

and call it the width of γ.
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Let P 1(A/n) be the projective line over the ring A/n consisting of elements denoted by 
(c : d) mod n. The group Γ acts from the right on P 1(A/n). We call C(n) := P 1(A/n)/Γ∞
the set of cusps of G(n). The Γ∞-orbit represented by (c : d) mod n is denoted by [c : d]. 
The quotient graph G(n) can be decomposed as follows:

Theorem 2.4. Given n ∈ A+, the quotient graph G(n) is the union of a finite graph G(n)o
and a set of ends Es indexed by the cusps s ∈ C(n). Here:

• The set of vertices of the finite subgraph G(n)o is the image of

{γ vr | 0 ≤ r ≤ deg nγ − 1 and γ ∈ Γ0(n)\Γ} ⊂ V (T ),

and the set of edges of G(n)o is the image of

{γ er, γ ēr | 0 ≤ r ≤ deg nγ − 2 and γ ∈ Γ0(n)\Γ} ⊂ E(T ).

• For each s = [c : d] ∈ C(n), we may assume that gcd(c, d, n) = 1 and choose a, b ∈ A

so that ad −bc = 1; let γs :=
(
a b
c d

)
∈ Γ and �s := max(0, deg nγs

−1). The vertices 

(resp. oriented edges) of the end Es are represented by

{γs vr | r ≥ �s} (resp. {γs er, γs ēr | r ≥ �s}).

Proof. See [10, Section 1.8] and [18, Section 3.1], except for the input of the width nγ
for γ ∈ Γ. We recall the argument here for the sake of completeness. We first identify 

Γ0(n)\Γ with P 1(A/n) by sending γ =
(
a b
c d

)
to (c : d) mod n. In particular, one may 

take the representatives γ =
(
a b
c d

)
for the right cosets of Γ0(n) in Γ satisfying c | n and 

deg d ≤ deg n −1. For two cosets of Γ0(n) represented by γ =
(
a b
c d

)
and γ′ =

(
a′ b′

c′ d′

)
respectively, with c, c′ | n and deg d, deg d′ ≤ deg n − 1, let r = max(0, deg nγ − 1) and 
r′ = max(0, deg nγ′ − 1). Using (2.2), Theorem 2.1 and Remark 2.3, it can be checked 
that the edges γ er and γ′ er′ of T represent the same edge in G(n) if and only if there 
exists β ∈ Γ∞ such that

(c′ : d′) ≡ (c : d) · β mod n ∈ P 1(A/n).

In this case, we have nγ = nγ′ , r = r′, and the edges γer+n and γ′er+n represent the 
same edge in G(n) for every n ∈ Z≥0. Therefore the result follows. �
Remark 2.5. Algorithmic procedures to compute the quotient graph Γ0(n)\T given n in 
A+ have been provided in [13], [10], [18] and [2].
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Let wn =
(

0 −1
n 0

)
∈ GL2(K). We end up this section by the following technical 

lemma:

Lemma 2.6. Suppose an element γ =
(
a b
c d

)
∈ Γ is given.

(1) Let � = max(deg c, deg d), and put ε = 1 if deg c ≥ deg d and 0 otherwise. There 
exists u ∈ K∞ such that the edge [γe0] ∈ E(G(n)) can be represented by

(
π2�+ε
∞ u
0 1

)(
0 1
π∞ 0

)ε

.

(2) Take x, y ∈ A with gcd(x, y) = 1 = gcd(n, cx + dy). Let δ = max(deg x, deg y), and 
put ε = 0 if deg x > deg y and 1 otherwise. There exists u ∈ K∞ such that the edge 
[γe0] ∈ E(G(n)) can be represented by

wn

(
πdeg n+2δ+ε
∞ u

0 1

)(
0 1
π∞ 0

)ε

.

Proof. We may assume det γ = 1 without loss of generality. Then (1) directly follows 
from the Iwasawa decomposition:

(
a b
c d

)
=

⎧⎪⎪⎨
⎪⎪⎩

(
d−2 b/d
0 1

)(
d 0
0 d

)(
1 0

d−1c 1

)
if deg c < deg d,(

c−2θ−1 a/c
0 1

)(
0 θ
1 0

)(
c 0
0 c

)(
1 c−1d
0 −1

)
if deg c ≥ deg d,

where 
(

1 0
d−1c 1

)
(resp. 

(
1 c−1d
0 −1

)
) belongs to I∞ in the first (resp. second) case. 

For (2), it is observed that gcd(ax + by, cx + dy) divides gcd(x, y), which is equal to 1. 
Therefore we have gcd(n(ax + by), cx + dy) = 1. Take α, β ∈ A so that αn(ax + by) +
β(cx + dy) = 1. Then

γ0 :=
(
−(cx + dy) ax + by

αn β

)
∈ Γ0(n),

and γ0γ is equal to
(

0 −1
n 0

)(
n−1 n−1(αbn + βd)
0 −x

)(
x−1 0
0 1

)(
1 0

−x−1y 1

)

where 
(

1 0
−x−1y 1

)
∈ I∞ if deg x > deg y, and

(
0 −1
n 0

)(
n−1 n−1(αan + βc)
0 y

)(
y−1θ−1 0

0 1

)(
0 θ
1 0

)(
1 −y−1x
0 1

)
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where 
(

1 −y−1x
0 1

)
∈ I∞ if deg x ≤ deg y. Take

u :=
{
−(xn)−1(αbn + βd) if deg x > deg y,
(yn)−1(αan + βc) otherwise.

Then the edge [γ0 γ e0] of G(n) can be represented by

wn

(
πdeg n+2δ+ε
∞ u

0 1

)(
0 1
π∞ 0

)ε

.

Thus the result holds. �
3. Harmonic cochains and Fourier expansion

We recall the definition and the needed properties of harmonic cochains on T .

3.1. Harmonic cochains

Definition 3.1. A C-valued function f on E(T ) is called a harmonic cochain if f satisfies 
the following harmonicity property:

∀e ∈ E(T ) ∀v ∈ V (T ), f(e) + f(ē) = 0 =
∑

ev∈E(T )
o(ev)=v

f(ev).

If G is a subgroup of Γ, we say that f is G-invariant if

∀γ ∈ G ∀e ∈ E(T ), f(γe) = f(e).

For n ∈ A+, let H(n) be the space of Γ0(n)-invariant C-valued harmonic cochains. 
An element of H(n) can be seen as a C-valued function on E(G(n)). We call f cuspidal
if f is finitely supported as a C-valued function on E(G(n)). The subspace of cuspidal 
harmonic cochains in H(n) is denoted by H0(n).

Remark 3.2. Given n ∈ A+, it is known that:

(1) Every f ∈ H0(n) is supported on the finite graph E(G(n)o) by harmonicity and 
Theorem 2.4.

(2) dimC H0(n) is equal to g(G(n)), the genus of the graph G(n) (cf. [11, 3.2.5], and [10, 
Th. 2.17] for a formula for this genus).

(3) For each cusp s ∈ C(n), choose γs ∈ Γ and �s ∈ Z≥0 as in Theorem 2.4. Then we 
have the following exact sequence (cf. [19, p. 277]):
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0 H0(n) H(n) c ∏
[0:1] �=s∈C(n)

C 0,

where c(f) :=
(
f(γse�s) | [0 : 1] �= s ∈ C(n)

)
. In particular,

dimC H(n) = g(G(n)) + #(C(n)) − 1.

The following result will be a key-lemma for proving our Sturm-type bounds.

Lemma 3.3. Every harmonic cochain in H(n) (resp. H0(n)) is uniquely determined by its 
values at the edges γe0 for all γ ∈ Γ0(n)\Γ (resp. with deg nγ ≥ 2).

Proof. For H(n), this can be derived from [10, 2.13] or similarly by combining (2.1), 
(2.2) and the harmonicity property. Moreover assume that deg nγ < 2. By Theorem 2.4, 
the edge [γe0] does not belong to E(G(n)o) hence it belongs to an end of G(n). Any 
cuspidal Γ0(n)-invariant harmonic cochain vanishes on it by Remark 3.2 (1). This proves 
the result for H0(n). See also [10, Prop. 3.2] for a related statement. �

For each divisor m of n, we recall the Atkin-Lehner involution Wm on f ∈ H(n) which 
is defined by

∀e ∈ E(T ), (f |Wm)(e) := f

((
sm t
un vm

)
e

)
,

where s, t, u, v ∈ A with svm2 − utn = m. Note that the operator Wm is independent of 
the chosen s, t, u, v. In the particular the involution Wn on H(n) is defined by

∀e ∈ E(T ), (f |Wn)(e) := f (wne) = f

((
0 −1
n 0

)
e

)
.

3.2. Fourier expansion

Let ψ : K∞ → C× be the additive character defined by

ψ

(∑
n

anπ
n
∞

)
:= exp

(
2π

√
−1

p
TraceFq/Fp

(a1)
)
,

where p denotes the characteristic of Fq. In particular, the ring A is self-dual with respect 
to ψ, i.e. A∨ := {x ∈ K∞ | ∀a ∈ A, ψ(ax) = 1} = A.

Let f be a Γ∞-invariant C-valued harmonic cochain. Viewing f as a C-valued function 
on GL2(K∞), the Fourier expansion of f is given by (cf. [23, Chapter III]):

∀r ∈ Z ∀u ∈ K∞, f

(
πr
∞ u
0 1

)
=

∑
f∗(r,m)ψ(mu)
m∈A
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where

f∗(r,m) :=
∫

A\K∞

f

(
πr
∞ u
0 1

)
ψ(−mu)du,

and the Haar measure du is chosen to be self-dual with respect to ψ, i.e. vol(A\K∞, du)=1.
Let

c0(f) := f∗(2, 0)

and

∀m ∈ A+, cm(f) := |m|∞ · f∗(degm + 2,m)

(this normalization differs from [7]). The harmonicity property implies the following 
properties on the Fourier coefficients (cf. [8, Section 2], [15, Section 2]):

Proposition 3.4. Let f be a Γ∞-invariant C-valued harmonic cochain. For m ∈ A we 
have

(1) f∗(r, m) = 0 unless r ≥ degm + 2.
(2) f∗(degm + 2 + �, εm) = q−�f∗(degm + 2, m) for all � ∈ Z≥0 and ε ∈ F×

q .
(3) f is identically zero if and only if c0(f) = 0 and for every m ∈ A+, cm(f) = 0.

In particular, given a Γ∞-invariant C-valued harmonic cochain f , the Fourier expan-
sion of f can be written as:

∀r ∈ Z, ∀u ∈ K∞, f

(
πr
∞ u
0 1

)
= q−r+2 ·

⎛
⎜⎜⎝c0(f) +

∑
m∈A+

degm+2≤r

cm(f)Ψ(mu)

⎞
⎟⎟⎠ , (3.1)

where Ψ(x) :=
∑

ε∈F×
q
ψ(εx) ∈ {−1, q − 1}.

Remark 3.5. Every f ∈ H0(n) satisfies c0(f) = 0. Indeed f is supported on E(G(n)o) by 
Remark 3.2 (1), [e0] /∈ E(G(n)o) by Theorem 2.4, and c0(f) = q−2f(e0) by (3.1).

4. Sturm-type bound for harmonic cochains

The aim of this section is to find a Sturm-type bound for harmonic cochains in H(n)
when a level n ∈ A+ is given.
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4.1. The cuspidal case

4.1.1. The general bound
By Lemma 3.3, any given f ∈ H0(n) is uniquely determined by its values at γe0 for all 

γ ∈ Γ0(n)\Γ with deg nγ ≥ 2. Without loss of generality, we may assume γ =
(
a b
c d

)
with c | n and deg d < deg n. By Lemma 2.6 (1), there exists u ∈ K∞ such that

f(γe0) =

⎧⎪⎪⎨
⎪⎪⎩
f

(
π2 deg d
∞ u
0 1

)
if deg c < deg d,

−f

(
π2 deg c+1
∞ u

0 1

)
if deg c ≥ deg d.

Since 2 ≤ deg nγ ≤ deg n −deg c and deg d < deg n, one has that f is uniquely determined 
by

{
f

(
πr
∞ u
0 1

)
| 2 ≤ r ≤ 2 deg n− 2 and u ∈ K∞

}
.

From Remark 3.5 and the Fourier expansion (3.1), we conclude:

Proposition 4.1. Let n ∈ A+. Then f ∈ H0(n) is identically zero if cm(f) = 0 for all 
m ∈ A+ with degm ≤ 2 deg n − 4.

However the bound 2 deg n −4 seems larger than logq (dimC H0(n)) as deg n increases. 
In the following, we shall derive a smaller bound using the Fourier expansion with respect 
to the cusp [1 : 0] ∈ C(n).

Definition 4.2. For c, d ∈ A with gcd(c, d) = 1, let

δn(c, d) := min{max(deg x,deg y) | gcd(cx + dy, n) = 1}.

Set εn(c, d) := 0 if there are x0, y0 ∈ A satisfying

deg y0 < deg x0 = δn(c, d) and gcd(cx0 + dy0, n) = 1,

and εn(c, d) := 1 otherwise. We define

�(n) := max
{
2δn(c, d) + εn(c, d)

∣∣ [c : d] ∈ C(n)
}
.

Lemma 4.3. Given γ =
(
a b
c d

)
∈ Γ, there exists u ∈ K∞ such that the edge [γe0] ∈

E(G(n)) is represented by

wn

(
π

deg n+2δn(c,d)+εn(c,d)
∞ u

)(
0 1
π 0

)εn(c,d)

.
0 1 ∞
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Proof. Take x0, y0 ∈ A with max(deg x0, deg y0) = δn(c, d) and gcd(cx0 + dy0, n) = 1. 
We must have gcd(x0, y0) = 1. Then the result follows directly from Lemma 2.6. �
Remark 4.4. Suppose deg n > 0. For γ =

(
a b
c d

)
∈ Γ, by Lemma 2.2 we can actually 

show that min
{
d(γ0γv0, wnv0) | γ0 ∈ Γ0(n)

}
= deg n + 2δn(c, d) − 1. In other words, 

the minimal distance between the vertices [γv0] and [wnv0] in the quotient graph G(n)
is deg n + 2δn(c, d) − 1.

We then have:

Proposition 4.5. Let n ∈ A+. Then f ∈ H0(n) is identically zero if cm(f) = 0 for all 
m ∈ A+ with degm ≤ deg n − 2 + �(n).

Proof. Given f ∈ H0(n) satisfying cm(f) = 0 for all m ∈ A+ with degm ≤ deg n −2 +�(n), 
let f ′ := f |Wn, which belongs to H0(n). From the Fourier expansion (3.1), we know that

∀u ∈ K∞ and r ≤ deg n + �(n), (f ′|Wn)
(
πr
∞ u
0 1

)
= f

(
πr
∞ u
0 1

)
= 0.

Since f ′ is uniquely determined by its values at γe0 for γ ∈ Γ0(n)\Γ by Lemma 3.3, 
Lemma 4.3 implies that f ′ = f |Wn is identically zero, and so is f . �

Next we shall connect the integer �(n) with the number of prime factors of n. Given 
m, n ∈ Z≥0, for each pair (c, d) with c, d ∈ A and gcd(c, d) = 1, we put

S(c, d;m) := {xc + yd | deg x,deg y ≤ m}.

Let

t(c, d;m) :=max{#(S ′) | S ′ ⊂S(c, d;m) with, for any distinct α, β ∈S ′, gcd(α, β) = 1}.

We define

t(m,n) :=min{t(c, d;m) | c, d∈A with gcd(c, d) = 1 and m+1<max(deg c,deg d)<n}

if n ≥ m +3, and t(m, n) := +∞ otherwise. Finally, given n ∈ A+ let t(n) be the number 
of prime factors of n.

Definition 4.6. For n ∈ A+, put

τ(n) := min{m ∈ Z≥0 | t(n) < t(m,deg n)}.

Then:
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Corollary 4.7. For each n ∈ A+, we have

�(n) ≤ 2τ(n) + 1.

Thus f ∈ H0(n) is identically zero if cm(f) = 0 for m ∈ A+ with degm ≤ deg n −1 +2τ(n).

Proof. Given γ =
(
a b
c d

)
∈ Γ, we may assume that c | n and deg c, deg d < deg n. 

By Proposition 4.5, it suffices to show that δn(c, d) ≤ τ(n). Let m := τ(n). If 
max(deg c, deg d) ≤ m + 1, then there exists x, y ∈ A with deg x, deg y ≤ m such that 
cx + dy = 1. Thus δn(c, d) ≤ m. Suppose m + 1 < max(deg c, deg d) < deg n. Take 
S ′ ⊂ S(c, d; m) with #(S ′) ≥ t(m, deg n) and gcd(α, β) = 1 for distinct α, β ∈ S ′. 
Then gcd(α, n) and gcd(β, n) must be relatively prime for distinct α, β ∈ S ′. Since we 
have t(n) < t(m, deg n) ≤ #(S ′), the pigeonhole principle ensures that there exists 
α0 ∈ S ′ such that gcd(α0, n) = 1. Writing α0 as x0c + y0d where x0, y0 ∈ A with 
deg x0, deg y0 ≤ m, we then have

δn(c, d) = min{max(deg x,deg y) | gcd(cx + dy, n) = 1}

≤ max(deg x0, deg y0)

≤ m. �
One may observe that t(n − 2, n) = +∞ for any n ≥ 2 hence τ(n) ≤ deg n − 2 when 

deg n ≥ 2. Moreover, it can be checked that t(0, n) = q + 1 for n ≥ 3. Thus τ(n) = 0 if 
t(n) < q + 1. We also have:

Lemma 4.8. We have t(1, n) ≥ 2q + 1 for n ≥ 4 hence

τ(n) = 1 when q < t(n) ≤ 2q.

Consequently when q < t(n) ≤ 2q, f ∈ H0(n) is identically zero if cm(f) = 0 for all 
m ∈ A+ with degm ≤ deg n + 1.

Proof. It suffices to find S ′ ⊂ S(c, d; 1) with #(S ′) ≥ 2q + 1 for every pair (c, d) ∈ A2

with gcd(c, d) = 1 and max(deg c, deg d) ≥ 3.
Given c, d ∈ A with deg c ≥ 3 and gcd(c, d) = 1, for ε ∈ P 1(Fq) put

cε =
{
c + εd if ε ∈ Fq,
d if ε = ∞.

There exists ε′ ∈ P 1(Fq) such that θ−ε � cε′ for every ε ∈ Fq. Without loss of generality, 
assume ε′ = ∞ and θ | c (i.e. c = c0 and d = c∞).
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Suppose θ − 1 | c (resp. θ − 1 � c). Then for (ε0, ε1) ∈ F×
q × Fq (resp. Fq × Fq), let

z(ε0, ε1) := (ε0θ + ε1)c +
{
d if θ − 1 | c,
(θ − 1)d if θ − 1 � c,

one has

gcd
(
z(ε0, ε1), c

)
= 1 = gcd

(
z(ε0, ε1), d

)
,

and for β ∈ F×
q :

gcd
(
z(ε0, ε1), cβ

)
=

⎧⎨
⎩

gcd
(
ε0θ + ε1 − β−1, cβ

)
if θ − 1 | c,

gcd
(
(ε0θ + ε1 − β−1(θ − 1)), cβ

)
if θ − 1 � c.

On the other hand, for each ε ∈ F×
q with θ − ε � c, there exists a unique βε ∈ F×

q such 
that θ − ε | cβε

. Thus for ε ∈ F×
q with θ − ε � c, one has

gcd
(
(ε0θ + ε1)c + d, cβ

)
= θ − ε if and only if β = βε and{

ε0ε + ε1 − β−1
ε = 0 if θ − 1 | c,

ε0ε + ε1 − β−1
ε (ε− 1) = 0 if θ − 1 � c.

In this case, ε1 is uniquely determined by the choices of ε0 and ε. Suppose θ−1 | c (resp. 
θ− 1 � c). There are at most q − 2 (resp. q − 1) choices of ε ∈ F×

q so that θ− ε � c. Thus 
we obtain that there are at least (q−1) ·2 (resp. q) choices of the pair (ε0, ε1) ∈ F×

q ×Fq

(resp. Fq × Fq) so that

∀β ∈ F×
q , gcd

(
z(ε(ε0, ε1), cβ

)
= 1.

Let

S ′
1 :=

{
z(ε0, ε1)

∣∣∣ ∀β ∈ P 1(Fq), gcd
(
z(ε0, ε1), cβ

)
= 1

}
.

Then given distinct z(ε0, ε1), z(ε′0, ε′1) ∈ S ′
1, one has

gcd
(
z(ε0, ε1), z(ε′0, ε′1)

)
= gcd

(
z(ε0, ε1), (ε′0 − ε0)θ + (ε′1 − ε1)

)
= 1.

Note that

#S ′
1 ≥

{
2(q − 1) if θ − 1 | c,
q if θ − 1 � c.
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Take

S ′
0 :=

{
cε

∣∣ ε ∈ P 1(Fq)
}

and S ′ := S ′
0 ∪ S ′

1.

Then S ′ ⊂ S(c, d; 1) and #(S ′) ≥ 2q + 1. Therefore t(1, n) ≥ 2q + 1 for n ≥ 4. �
4.1.2. The case of prime power level

Suppose n = pr where r is a positive integer and p ∈ A+ is a prime. In this case we 

are able to give a better bound than Proposition 4.5. Let γ =
(
a b
c d

)
∈ Γ. Suppose 

that p � c. Take α, β ∈ A such that αan + βc = 1. Then γ0 =
(
−c a
αn β

)
∈ Γ0(n) and

γ0 γ =
(

0 − det γ
1 αbn + βd

)
=
(

0 −1
n 0

)(
n−1 n−1(αbn + βd)
0 − det γ

)
.

Thus for f ∈ H0(n), one has

f(γe0) = (f |Wn)
(
πdeg n
∞ − det γ−1n−1(αbn + βd)
0 1

)
.

If p | c, then gcd(εc + d, n) = 1 for every ε ∈ Fq. Similarly, we take αε, βε ∈ A such that 

αε(εa + b)n + βε(εc + d) = 1. Then γ0,ε =
(
−(εc + d) εa + b

αεn βε

)
∈ Γ0(n) and we have

γ0,ε γ

(
ε 1
1 0

)
=
(

0 det γ
1 αεan + βεc

)
=
(

0 −1
n 0

)(
n−1 n−1(αεbn + βεc)
0 det γ

)
.

For f ∈ H0(n), the harmonicity property implies

f(γe0) = −
∑
ε∈Fq

f

(
γ0,εγ

(
ε 1
1 0

))
= −

∑
ε∈Fq

(f |Wn)
(
n−1 n−1(αεbn + βεc)
0 det γ

)
.

Following a similar argument as in Proposition 4.5, we get:

Corollary 4.9. Suppose n = pr where r is a positive integer and p ∈ A+ is a prime. Then 
f ∈ H0(n) is identically zero if cm(f) = 0 for all m ∈ A+ with degm ≤ deg n − 2.

4.1.3. Computational data
It seems difficult to give a precise formula for t(m, n) when m > 0 in general. However 

we are able to compute the actual value using SageMath in the following cases:
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Value of t(m,n) (q = 2)

m

n 4 5 6 7 8 9 10

1 5 5 5 5 5 5 5
2 ∞ 11 11 10 9 9 8
3 ∞ ∞ 33 30 27 23 23

(4.1)

Value of t(m,n) (q = 3)

m

n 4 5 6 7 8

1 12 10 10 10 10
2 ∞ 64 55 48 43

(4.2)

From these tables, we predict the following lower bound for t(m, n):

for every n ≥ m + 3, t(m,n) ?≥ (m + 1)q + 1.

If so, then we would get for any n ∈ A+:

deg n− 1 + 2τ(n) ?≤ deg n− 1 + 2
⌊
t(n) − 1

q

⌋
=: b′(n), (4.3)

which is much smaller than the bound 2 deg n − 4 in Proposition 4.1 when deg n is large. 
It is observed that t(n) ≤ 2q when deg n ≤ 10 (except for q = 2 and deg n = 10), therefore 
by Lemma 4.8 and the fact t(2, 10) = 8, the inequality (4.3) indeed holds at least for 
n ∈ A+ with deg n ≤ 10.

The quantity b′(n) is much easier to compute than τ(n). We now numerically compare 
it to the optimal Sturm bound for Γ0(n)-invariant cuspidal harmonic cochains, which 
is:

btrue(n) := min
{
b∈Z≥0

∣∣∣ f ∈H0(n) is identically zero if cm(f) = 0 for any degm≤ b
}
.

First let us explain how we compute btrue(n) through genera of finite subgraphs of G(n)o. 
Put H0(n)(�) := {f ∈ H0(n) | ∀m ∈ A+, degm ≤ �, cm(f) = 0}. Given � ∈ Z+ and 
u ∈ K∞, let

e(�, u) :=
(
π�+2 u

0 1

)
e0 ∈ E(T ).

The Fourier expansion (3.1) shows that, given n ∈ A+, f ∈ H0(n) and � ∈ Z+, one 
has:
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f ∈ H0(n)(�) if and only if ∀ 0 ≤ �′ ≤ �,∀u ∈ π∞O∞/π�′+2
∞ O∞, f(e(�′, u)) = 0.

Let G(n)o(�) be the subgraph of G(n)o obtained by removing the edges of the form [e(�′, u)]
and [ē(�′, u)] for each 0 ≤ �′ ≤ � and u ∈ π∞O∞/π�′+2

∞ O∞. From these observations we 
get:

Lemma 4.10.

(1) Let f ∈ H0(n). Then f ∈ H0(n)(�) if and only if f is supported on the edges of 
G(n)o(�).

(2) dimC H0(n)(�) is equal to the genus g(G(n)o(�)) of G(n)o(�).
(3) btrue(n) = min{� ∈ Z+ | g(G(n)o(�)) = 0}.

With the help of SageMath, we compute values of this genus. For n ∈ Z with n ≥ 3
we put

btrue(n) := max{btrue(n) | deg n = n}, b′(n) := max{b′(n) | deg n = n}.

Using this method we have obtained the following data which show that our predicted 
bound b′(n) actually reaches the sharp bound btrue(n) in certain cases.

q = 2
n btrue(n) b′(n)
3 1 2
4 3 5
5 5 6
6 6 7
7 8 8
8 9 9
9 10 10
10 11 13

q = 3
n btrue(n) b′(n)
3 1 2
4 3 3
5 4 6
6 6 7
7 8 8
8 9 9
9 10 10
10 11 11

(4.4)

4.2. The non-cuspidal case

Suppose n ∈ A+ is given. For f ∈ H(n), we first show that the constant coefficient 
c0(f) in the Fourier expansion (3.1) is uniquely determined by cm(f) for finitely many 
m ∈ A+:

Lemma 4.11. Suppose n ∈ A+ is given. For f ∈ H(n) with cm(f) = 0 for all 
degm < deg n, we must have c0(f) = 0.
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Proof. For f |Wn ∈ H(n), the harmonicity property gives:

0 = (f |Wn)
(

0 1
1 1

)
+ (f |Wn)

((
0 1
1 1

)(
0 θ
1 0

))

= f

(
1 1
0 n

)
+ f

((
1 0
n 1

)(
0 −1
n 0

)(
1 0
1 θ

))

= f

(
πdeg n
∞ −n−1

0 1

)
+ f

(
πdeg n+1
∞ n−1

0 1

)
. (4.5)

Suppose cm(f) = 0 for all m ∈ A+ with degm < deg n. Then the Fourier expansion of f
(3.1) implies

f

(
πdeg n
∞ −n−1

0 1

)
= q− deg n+2c0(f) and f

(
πdeg n+1
∞ n−1

0 1

)
= q− deg n+1c0(f).

From (4.5), we get c0(f) = 0. �
Therefore:

Proposition 4.12. Let n ∈ A+. Then f ∈ H(n) is identically zero if cm(f) = 0 for m ∈ A+

with degm ≤ deg n − 1 + 2τ(n).

Proof. Let f ∈ H(n) with cm(f) = 0 for all m ∈ A+ such that degm ≤ deg n −1 +2τ(n). 
By Lemma 4.11 we have c0(f) = 0, which shows by the Fourier expansion (3.1) that

∀r ≤ deg n + 1 + 2τ(n), ∀u ∈ K∞, f

(
πr
∞ u
0 1

)
= 0.

Let f ′ := f |Wn. Then Lemma 4.3 and Corollary 4.7 implies that f ′(γe0) = 0 for all 
γ ∈ Γ. Therefore f ′ is identically zero by Lemma 3.3, and so is f . �
Remark 4.13.

(1) As directly seen from the proof, the bound in Proposition 4.12 can be improved to 
max(deg n − 2 + �(n), deg n − 1).

(2) Similarly to Proposition 4.1, by combining Lemma 4.11 and Lemma 2.6(1), we may 
obtain for H(n) the coarse bound max(2 deg n − 3, deg n − 1) which does not involve 
τ(n) nor �(n).
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5. Applications

5.1. Generators of the Hecke algebra

Suppose n ∈ A+ is given. For m ∈ A+, the m-th Hecke operator Tm on H(n) is defined 
by:

∀e ∈ E(T ), (f |Tm)(e) :=
∑

f

((
a b
0 d

)
e

)
,

where the sum is over a, d ∈ A+, b ∈ A with ad = m, gcd(a, n) = 1, and deg b < deg d. 
It is known that Tm and Tm′ commute with each other if gcd(m, m′) = 1, and for any 
prime p ∈ A+ and r ∈ Z≥0, one has

Tpr+2 = Tpr+1Tp − μn(p) · |p|∞ · Tpr ,

where μn(p) := 1 if p � n and 0 otherwise. Moreover, for f ∈ H(n), it can be checked that

∀m ∈ A+, c1(f |Tm) = cm(f).

Let T (n) := C[Tm | m ∈ A+] ⊂ EndC
(
H(n)

)
, the Hecke algebra on H(n).

Lemma 5.1. We have the following perfect pairing:

〈·, ·〉 : H(n) × T (n) −→ C

( f , T ) �−→ c1(f |T )

which satisfies 〈f |T, T ′〉 = 〈f, TT ′〉 for all f ∈ H(n) and T, T ′ ∈ T (n).

Proof. Adapt Gekeler’s proof [7, Theorem 3.17] in the cuspidal case by using Lemma 4.11
and the Fourier expansion (3.1). �

From this perfect pairing, Proposition 4.12 provides a bound for the number of Hecke 
operators generating T (n):

Corollary 5.2. The Hecke algebra T (n) is spanned as a C-vector space by Tm for m ∈ A+
with degm ≤ deg n − 1 + 2τ(n).

Proof. Let T ′ be the C-subspace spanned by Tm for m ∈A+ with degm≤deg n−1+2τ(n). 
Then Proposition 4.12 shows that the pairing 〈·, ·〉 gives an embedding map from H(n)
to the dual space of T ′. This implies T ′ = T (n) from the perfectness of 〈·, ·〉. �

Note that H0(n) is invariant by T (n). Let T0(n) be the image of T (n) in EndC
(
H0(n)

)
under the restriction map. The pairing 〈·, ·〉 restricted to H0(n) × T0(n) is still perfect. 
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Similarly, by Proposition 4.5 and Corollary 4.9, we obtain the following result for the 
cuspidal Hecke algebra:

Corollary 5.3. The cuspidal Hecke algebra T0(n) is spanned as a C-vector space by Tm for 
m ∈ A+ with degm ≤ deg n − 2 + �(n), where �(n) is defined in Definition 4.2. Moreover, 
if n is a prime power, then T0(n) is spanned by Tm for m ∈ A+ with degm ≤ deg n − 2.

Remark 5.4. The coarse bounds of Proposition 4.1 and Remark 4.13(2) for H0(n) and 
H(n) translate directly into the same bounds for the Hecke algebras T0(n) and T (n), 
respectively.

5.2. The case of the “new” subspace

Given f1, f2 ∈ H0(n), recall the Petersson inner product:

〈f1, f2〉Pet :=
∑

[e]∈E(G(n))

f1(e)f2(e)
#StabΓ0(n)(e)

where · denotes here the complex conjugation. A cuspidal harmonic cochain is called old
if it is a C-linear combination of the following type of harmonic cochains:

∀e ∈ E(T ), fm′(e) := f

((
1 0
0 m′

)
e

)

where f ∈ H0(m) with m, m′ ∈ A+, (m ·m′) | n and m �= n. Let

Hnew
0 (n) :=

{
f ∈ H0(n)

∣∣for all old f ′ ∈ H0(n), 〈f, f ′〉Pet = 0
}
.

We then have:

Lemma 5.5. Given n ∈ A+, suppose n is square-free. Then f ∈ H0(n) is identically zero 
if, for every u ∈ K∞ and m ∈ A+ with m | n and degm ≤ deg n − 2,

(f |Wm)
(
πdeg n−degm
∞ u

0 1

)
= 0. (5.1)

Proof. Given a coset Γ0(n)γ ∈ Γ0(n)\Γ, we may assume that the representative γ is of 

the form 
(
a b
m d

)
with m | n. Let m′ := n/m. Since n is square-free, there exist α, β ∈ A

with αam′ + βm = 1. For f ∈ H0(n), one has

(f |Wm′)(γ) = f

((
αm′ β
−n am′

)(
a b
m d

))

= f

(
1 αbm′ + βd
0 m′ det γ

)
.
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Suppose f ∈ H0(n) satisfies (5.1). Let f ′ := f |Wn. For γ =
(
a b
m d

)
∈ Γ with m | n

and degm ≤ deg n − 2, we then have

f ′(γ) =
((

f |Wm

)
|Wm′

)
(γ) = (f |Wm)

(
πdegm

′
∞ (m′ det γ)−1(αbm′ + βd)
0 1

)
= 0.

Therefore f ′ is identically zero by Lemma 3.3, and so is f . �
Given n ∈ A+ and a prime factor p of n, suppose p2 � n. Let f ∈ Hnew

0 (n). It is known 
that f |(Tp + Wp) = 0. Thus for a square-free factor n0 of n which is coprime to n/n0, 
one has

f |Wn0 = (−1)t(n0) · f |Tn0 ,

where t(n0) is the number of prime factors of n0. Moreover, we have:

Lemma 5.6. Given n0, n ∈ A+ with n0 | n, put n′0 := n/n0. Suppose n0 is square-free and 
coprime to n′0. For each u ∈ K∞, the following identity holds:

(f |Wn0)
(
π

deg n
′
0∞ u

0 1

)
= (−1)t(n0)q− deg n

′
0+2

∑
m∈A+

degm+2≤deg n
′
0

cn0m(f)Ψ(mu).

Proof. The previous discussion tells us that

(f |Wn0)
(
π

deg n
′
0∞ u

0 1

)
= (−1)t(n0)(f |Tn0)

(
π

deg n
′
0∞ u

0 1

)

= (−1)t(n0)q− deg n
′
0+2

∑
m∈A+

degm+2≤deg n
′
0

cm(f |Tn0) Ψ(mu).

Note that as n0 | n, one has

∀m ∈ A+, Tn0Tm = Tn0m.

Thus for m ∈ A+ with degm + 2 ≤ deg n′0, we get

cm(f |Tn0) = c1(f |Tn0Tm) = c1(f |Tn0m) = cn0m(f).

Therefore the proof is complete. �
When n is square-free, the previous two lemmas give us a smaller bound for f ∈

Hnew
0 (n) than Proposition 4.5.
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Proposition 5.7. Given n ∈ A+, suppose n is square-free. Then f ∈ Hnew
0 (n) is identically 

zero if cm(f) = 0 for every m ∈ A+ with degm ≤ deg n − 2.

Proof. It suffices to assume that deg n ≥ 3 by Remark 0.5. Given n0 ∈ A+ with n0 | n
and deg n0 ≤ deg n − 2, let n′0 := n/n0. For u ∈ K∞, by Lemma 5.6 one has

(f |Wn0)
(
π

deg n
′
0∞ u

0 1

)
= (−1)t(n0)q− deg n

′
0+2

∑
m∈A+

degm+2≤deg n
′
0

cn0m(f) Ψ(mu) = 0.

The result then follows from Lemma 5.5. �
When n is not square-free, we may also go a bit further in the following case:

Lemma 5.8. Let n = p2q for two primes p, q ∈ A+ with deg q = 1. Given f ∈ Hnew
0 (n), 

we have that f is identically zero if cm(f) = 0 for every m ∈ A+ with degm ≤ deg n − 2.

Proof. From Corollary 4.9, we may assume that p and q are distinct. Let f ∈ Hnew
0 (n)

with cm(f) = 0 for every m ∈ A+ with degm ≤ deg n − 2. By Lemma 3.3, it suffices to 
show that (f |Wn)(γ) = 0 for γ ∈ Γ0(n)\Γ with deg nγ ≥ 2. We may take γ to be of the 
form

γ =
(

a b
n0 d

)
with n0 | n and deg nγ ≥ 2.

Then n0 = 1 or q. Put n′0 := n/n0. Then gcd(n0, n′0) = 1. Applying the argument in 
Lemma 5.5, one has

(f |Wn)(γ) = (f |Wn0)
(
π

deg n
′
0∞ u

0 1

)
for some u ∈ K∞.

Since cm(f) = 0 for every m ∈ A+ with degm ≤ deg n − 2, Lemma 5.6 implies

(f |Wm)
(
πdegm

′
∞ u
0 1

)
= 0.

Therefore the result holds. �
Note that the subspace Hnew

0 (n) is invariant by T0(n). Let Tnew
0 (n) be the image of 

T0(n) in EndC
(
Hnew

0 (n)
)

under the restriction map. Then the pairing 〈·, ·〉 restricted to 
Hnew

0 (n) × Tnew
0 (n) is still perfect. Consequently, we obtain:

Corollary 5.9. Given n ∈ A+, suppose n is either square-free or n = p2q for two primes 
p, q ∈ A+ with deg q = 1. The Hecke algebra Tnew

0 (n) is spanned as a C-vector space by 
Tm for m ∈ A+ with degm ≤ deg n − 2.
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5.3. Isogeny between elliptic curves

Let E be an elliptic curve over K which has split multiplicative reduction at the 
place ∞. For each prime p ∈ A+, let

ap(E) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|p|∞ + 1 − #E(Fp) if E has good reduction at p,
1 if E has split multiplicative reduction at p,
−1 if E has non-split multiplicative reduction at p,
0 if E has additive reduction at p.

(5.2)
Here Fp := A/p and E denotes the reduction of E at p. Let n ∞ be the conductor of 
E for some n ∈ A+. From the work of Weil, Jacquet-Langlands, Grothendieck, Deligne, 
Drinfeld and Zarhin, there exists a unique fE ∈ Hnew

0 (n) such that
⎧⎪⎪⎨
⎪⎪⎩
c1(fE) = 1;
fE |Tm = cm(fE) fE for every m ∈ A+;
cp(fE) = ap(E) for every prime p ∈ A+.

(5.3)

Moreover fE only depends on the K-isogeny class of E ([11]). Using our Sturm-type 
bound, we are able to determine effectively when two such given elliptic curves over K
are isogenous.

Proof of Corollary 0.8. We only have to prove the converse statement. Let fE1 , fE2

be the harmonic cochains in Hnew
0 (n) corresponding to E1, E2 respectively, and such 

that ap(E1) = ap(E2) for any prime p as in the statement of the corollary. Then (5.3)
shows that cm(fE1) = cm(fE2) for every m ∈ A+ with degm ≤ deg n − 2 if n is either 
a prime power or square-free or n = p2q for primes p, q ∈ A+ with deg q = 1, and 
degm ≤ deg n − 2 + �(n) otherwise. By Corollary 4.9, Proposition 5.7, Lemma 5.8 and 
Proposition 4.5 according to the several cases, we get fE1 = fE2 , therefore E1 and E2
are isogenous over K. �
6. Sturm-type bound for Drinfeld modular forms

In this section, we study an analogous problem for Drinfeld modular forms.

6.1. Drinfeld modular forms

Here we recall the definition of Drinfeld modular forms and the basic properties to be 
used. For further details we refer to [5, V.3] and [11, Section 2].

Let C∞ be the completion of a chosen algebraic closure of K∞. The Drinfeld half 
plane is Ω := C∞−K∞, which has a rigid analytic structure and is equipped with a left 
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action of GL2(K∞) via fractional linear transformations. Given non-negative integers k
and m with 0 ≤ m ≤ q − 2, for a rigid holomorphic function f : Ω → C∞ we set

∀γ =
(
a b
c d

)
∈ GL2(K∞), ∀z ∈ Ω, (f

∣∣
k,m

[γ])(z) := (det γ)m(cz + d)−kf

(
az + b

cz + d

)
.

Definition 6.1. Let n ∈ A+. A Drinfeld modular form of weight k and type m for Γ0(n)
is a rigid holomorphic function f : Ω → C∞ satisfying:

(1) for all γ ∈ Γ0(n), f
∣∣
k,m

[γ] = f ;
(2) f is holomorphic at all cusps of Γ0(n).

We denote by Mk,m(n) the C∞-vector space of Drinfeld modular forms of weight k and 
type m for Γ0(n).

To state condition (2) more precisely, we recall the t-expansions of Drinfeld modular 
forms at the cusps of Γ0(n) as follows. Let t be given by

∀z ∈ Ω, t(z) :=
∑
a∈A

1
z − a

,

which is a holomorphic function on Ω satisfying t(z + a) = t(z) for every a ∈ A. Then 
t(z) is a uniformizer at the cusp infinity. Given f ∈ Mk,m(n), condition (1) implies that 
f(z+ a) = f(z) for every a ∈ A. Thus f can be written for any z ∈ Ω with |t(z)|∞ small 
enough, as

f(z) =
∑
n∈Z

an(f) tn(z),

where {an(f) ∈ C∞ | n ∈ Z} is uniquely determined by f . To shorten notation, we will 
omit the condition that |t(z)|∞ is small enough in what follows. In general, for every 
γ ∈ Γ, one has

∀a ∈ A, (f |k,m[γ])(z + nγa) = (f |k,m[γ])(z),

where nγ is the width of γ, introduced after Remark 2.3. Thus we may write

∀z ∈ Ω, (f |k,m[γ])(z) =
∑
n∈Z

aγn(f) t

(
z

nγ

)
.

Condition 2 says that aγn(f) = 0 for every n < 0 and γ ∈ Γ.
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Remark 6.2. In fact, condition (1) for the matrix γ =
(
ε 0
0 ε

)
with ε ∈ F×

q tells that 

Mk,m(n) = 0 unless k ≡ 2m mod q − 1. Moreover, since t(εz) = ε−1t(z) for any ε ∈ F×
q , 

choosing γ =
(
ε 0
0 1

)
in (1) gives that

an(f) = 0 unless n = m + (q − 1)j with j ∈ Z≥0.

As a consequence, we put bj(f) := am+(q−1)j(f) for j ∈ Z≥0 so that the t-expansion of 
f is

f(z) =
∞∑
j=0

bj(f) tm+(q−1)j(z).

For � ≥ 0, we are interested in

M
(�)
k,m(n) :=

{
f ∈ Mk,m(n)

∣∣ ∀γ ∈ Γ,∀n < �, aγn(f) = 0
}
.

It is called the space of �-cuspidal Drinfeld modular forms of weight k and type m for 
Γ0(n).

6.2. Sturm-type bound for Drinfeld modular forms

The following is obtained by an argument similar to proofs of the Sturm bound for 
classical modular forms.

Theorem 6.3. Given n ∈ A+, let κ(n) := [Γ : Γ0(n)]. Then f ∈ M
(�)
k,m(Γ0(n)) is identically 

zero if

bj(f) = 0 for every 0 ≤ j ≤ κ(n) ·
(

k

q2 − 1 − �

(q − 1)|n|∞

)
+ �−m|n|∞

(q − 1)|n|∞
.

Remark 6.4. Using Proposition 4.3 of [3] for 0 ≤ m ≤ q − 2, we have:

dimMk,m(1) = 1 +
⌊

k

q2 − 1 − m

q − 1

⌋
.

Thus the bound of the theorem is sharp for n = 1.

Proof. Suppose that n = 1. For f ∈ Mk,m(1), let ordt(f) denote the order of vanishing 
of f with respect to the uniformizer t. Suppose that f ∈ M

(�)
k,m(1) with bj(f) = 0 for 

every j ≤ k
q2−1 − m

q−1 . Then we have

f(z) =
∑

j> k−(q+1)m

bj(f) tm+(q−1)j(z)
q2−1
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hence ordt(f) > k
q+1 . But according to Gekeler’s valence formula for Drinfeld modular 

forms for Γ ([6, (5.14)]), any nonzero g ∈ Mk,m(1) satisfies

ordt(g) ≤
k

q + 1
.

Consequently, f is identically zero.
Suppose that deg n > 1. Let κ = κ(n) and 

( 1 0
0 1

)
= γ1, γ2, ..., γκ be representatives of 

the right cosets of Γ0(n) in Γ. Given f ∈ M
(�)
k,m(n), put

f̃ :=
κ∏

i=1
f
∣∣
k,m

[γi].

Then f̃ is a Drinfeld modular form of weight κ ·k and type m̃ for Γ, where 0 ≤ m̃ ≤ q−2
is such that m̃ ≡ κ ·m mod (q−1). Considering the t-expansions of f̃ and (f|k,m[γi])2≤i≤κ

we have

f̃(z) =
∞∑
j=0

bj(f̃) tm̃+(q−1)j(z)

=

⎛
⎝ ∞∑

j=0
bj(f) tm+(q−1)j(z)

⎞
⎠ ·

κ∏
i=2

( ∞∑
n=0

aγi
n (f) tn

(
(n/nγi

)z
n

))
. (6.1)

Note that for 0 �= a ∈ A and z ∈ Ω with |t(z)|∞ small enough, one has

t(az) =
∞∑
i=0

ci t
|a|∞+i(z), where ci ∈ C∞ for i ≥ 0.

Since f is �-cuspidal, one has aγi
n (f) = 0 for n ≤ � and 2 ≤ i ≤ κ. Now suppose

bj(f) = 0 for j ≤ κ ·
(

k

q2 − 1 − �

(q − 1)|n|∞

)
+ �−m|n|∞

(q − 1)|n|∞
.

Let tn(z) := t(z/n) for z ∈ Ω. Expressing as tn-expansions on both sides of (6.1), we 
then obtain that bj(f̃) = 0 for j ≤ kκ/(q2 − 1) − m̃/(q− 1). From the case n = 1 proved 
previously, we get f̃ is identically zero. Since the ring of rigid analytic functions on Ω is 
an integral domain, f is identically zero. �
Remark 6.5. For each prime p ∈ A+, the Hecke operator Tp on Mk,m(n) is given by 
(following [1, Section 4.3]):

∀z ∈ Ω, (f |kTp)(z) := p−1
∑
u∈A

f

(
z + u

p

)
+ μn(p) · pk−1f(pz).
degu<deg p
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Here μn(p) = 1 if p � n and 0 otherwise. In general, for m ∈ A+ written as m = p
r1
1 · · · prtt

with distinct primes p1, . . . , pt, put

Tm :=
t∏

i=1
T ri
pi

∈ EndC∞

(
M

(�)
k,m(n)

)
.

Let T(�)
k,m(n) be the C∞-algebra generated by (Tm)m∈A+ . The first coefficient b1 provides 

the following pairing:

M
(�)
k,m(n) × T(�)

k,m(n) −→ C∞
( f , Tm ) �−→ b1(f |kTm).

However, unlike the classical case, this pairing is not expected to be perfect in general, 
cf. [1, Theorem 1.1 and Conjecture 6.9]. Besides, the action of Hecke operators on the 
t-expansion of f is not well-understood. Therefore our Sturm-type bound for Drinfeld 
modular forms does not directly provide a finite family of Hecke operators generating 
the C∞-algebra T(�)

k,m(n).
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