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Two themes associated with invariant measures on the 
matrix groups SLN (F), with F = R, C or H, and their 
corresponding lattices parametrised by SLN (F)/SLN (O), 
O being an appropriate Euclidean ring of integers, are 
considered. The first is the computation of the volume of the 
subset of SLN (F) with bounded 2-norm or Frobenius norm. 
Key here is the decomposition of measure in terms of the 
singular values. The form of the volume, for large values 
of the bound, is relevant to asymptotic counting problems 
in SLN (O). The second is the problem of lattice reduction 
in the case N = 2. A unified proof of the validity of the 
appropriate analogue of the Lagrange–Gauss algorithm for 
computing the shortest basis is given. A decomposition of 
measure corresponding to the QR decomposition is used 
to specify the invariant measure in the coordinates of the 
shortest basis vectors. With F = C this allows for the exact 
computation of the PDF of the first minimum (for O = Z[i]
and Z[(1 +

√
−3)/2]), and the PDF of the second minimum 

and that of the angle between the minimal basis vectors (for 
O = Z[i]). It also encodes the specification of fundamental 
domains of the corresponding quotient spaces. Integration 
over the latter gives rise to certain number theoretic constants, 
which are also present in the asymptotic forms of the PDFs 
of the lengths of the shortest basis vectors. Siegel’s mean 
value gives an alternative method to compute the arithmetic 
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constants, allowing in particular the computation of the 
leading form of the PDF of the first minimum for F = H

and O the Hurwitz integers, for which direct integration was 
not possible.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let B = {b0, b1, . . . , bd−1} be a basis of Rd, and require that the corresponding 
parallelotope have unit volume. Let

L = {m0b0 + · · · + md−1bd−1 |m0, . . . ,md−1 ∈ Z} (1.1)

denote the corresponding lattice. The Minkowski–Hlawka theorem tells us that for 
large d, there exists lattices such that the shortest vectors have length proportional 
to

√
d. By the Minkowski convex body theorem this is also the maximum possible order 

of magnitude of the shortest vectors; see e.g. [3]. Siegel [34] introduced the notion of a 
random lattice, and was able to show that for large dimension d, a random lattice will 
typically achieve the Minkowski–Hlawka bound.

The construction of Siegel of a random lattice requires first the specification of the 
unique invariant measure for the matrix group SLN (R); each such matrix is interpreted 
as having columns forming a basis B. One also requires the fact that the quotient space 
SLN (R)/SLN (Z) can be identified with the set of lattices, and that this quotient space 
has finite volume with respect to the invariant measure.

In a recent work [14] by one of the present authors, a viewpoint from random matrix 
theory was taken on the computation of volumes associated with SLN (R), and this led 
to a Monte Carlo procedure to generate random lattices in the sense of Siegel. In low 
dimensions d = 2, 3 and 4 there are fast exact lattice reduction algorithms to find 
the shortest lattice vectors [31,27] – the case d = 2 is classical being due to Lagrange 
and Gauss; see e.g. [2]. These were implemented in dimensions two and three to obtain 
histograms of the lengths and their mutual angles; in dimension two the exact functional 
forms were obtained by integration over the fundamental domain. For general d, it was 
shown how a mean value theorem derived by Siegel in [34] implies the exact functional 
form of the distribution Pshort(t) of the length of the shortest vector for general d,

Pshort(t) ∼
t→0

dvd
2ζ(d) t

d−1, (1.2)

where ζ(x) denotes the Riemann zeta function, and vd the volume of the unit ball in 
dimension d (actually only the case d = 3 was presented, but the derivation applies for 
general d to give (1.2)).
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In random matrix theory, matrix groups with entries from any of the three associative 
normed division algebras R, C or H are fundamental [9] (dropping the requirement of 
associativity permits the octonions O to be added to the list; see the recent work [13]
for spectral properties of various ensembles of 2 × 2 and 3 × 3 Hermitian matrices with 
entries in O). As such, attention is drawn to extending the considerations of [14] to the 
case of complex and quaternion vector spaces Cn and Hn. One remarks that lattices in 
these vector spaces, with scalars equal to the Gaussian integers and Eisenstein integers 
for C2, and Hurwitz integers for Hn, received earlier attention for their application to 
signal processing in wireless communication [41,17,40,36], and their consequences for 
lattice packing bounds [38] respectively. The study [26] extends the LLL lattice reduction 
algorithm to these settings.

Of particular interest from the viewpoint of [14] are the invariant measure for SLN (C)
and SLN (H), the associated volumes, and the corresponding lattice reduction problems. 
Following the work of Jack and Macbeath in the case of SLN (R), we begin in §2 by using 
the singular value factorisation to decompose the invariant measures. To obtain a finite 
volume, a certain truncation must be introduced, most naturally by restricting the norm 
‖M‖ to be bounded by a value R. We do this in the case of the 2-norm ‖M‖2 := μ1, where 

μ1 is the largest singular value of M , and the Frobenius norm ‖M‖F :=
(∑N

j=1 μ
2
j

)1/2
, 

where μj is the jth largest singular value. The large R form of the volume is of particular 
relevance due to counting formulas of the type [8]

#{γ : γ ∈ SLN (Z), ‖γ‖ � R} ∼
R→∞

1
vol Γ

∫
‖G‖�R

(dG). (1.3)

Here (dG) is the Haar measure on SLN (R), and vol Γ the volume of the corresponding 
fundamental domain. A generalisation of (1.3) applying to lattice subgroups of topolog-
ical groups, and in particular

#{γ : γ ∈ SLN (Z[i]), ‖γ‖ � R}, (1.4)

is given in [19, Th. 1.5], and has the same structure as (1.3). As an application of our 
evaluation of the volume of a ball in SLN (C) we are able to compute the leading large 
R form of (1.4), up to the value of vol Γ; in the case N = 2 this can be determined and 
we obtain the explicit asymptotic expression (4.35) below.

For lattices in C2 with scalars from particular rings of complex quadratic integers, 
there is a generalisation of the Lagrange–Gauss algorithm that allows for the determina-
tion of a reduced basis {α, β} with the shortest possible lengths. For the Gaussian and 
Eisenstein integers this has been noted previously [41,36], although our proofs given in 
§4.1 are different and apply to all cases at once. They are motivated by known theory 
in the real case, which we revise in §3. Another point covered in §3 is the observation 
in [5] that the original Lagrange–Gauss algorithm is equivalent to a simple mapping in 
the complex plane, related to the Gauss map for continued fractions. We show in §4.2
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that in the case of lattices in C2, the generalisation of the Lagrange–Gauss algorithm for 
lattice reduction can be written as a scalar mappings of quaternions.

In the Gaussian case, the PDF for the lengths of the reduced basis vectors and the 
scaled inner product |α · β/‖α‖‖β‖ | are computed analytically in Section 4.4. For values 
of s less than 1, it is found Pshort(s) = cs3 for a particular c, thus relating to (1.2) with 
d = 4. This latter result is found too in the case of the Eisenstein integers, for a different 
value of c, upon the exact calculation of the functional form of the PDF of the length of 
the shortest vector carried out in Section 4.5. Siegel’s mean value theorem [34] is used 
to give an independent computation of c in the two cases.

Analogous considerations are applied to lattices formed from vectors in H2 with scalars 
the integer Hurwitz quaternions in Section 5; now Pshort(s) ∼

s→0
ks7 for a particular k, 

thus relating to (1.2) with d = 8. Here the direct computation of k as done for the case 
of the Gaussian and Eisenstein integers appears not to be tractable, but the exact value 
can be found indirectly by use of Siegel’s mean value theorem.

2. Invariant measure and volumes for SLN(C) and SLN(H)

2.1. Invariant measure

By way of preliminaries, one recalls that the quaternions H are a non-commutative 
algebra with elements of the form

a0 + a1i + a2j + a3k, (2.1)

where a0, . . . , a3 ∈ R, i2 = j2 = k2 = −1, ijk = −1, and each distinct pair of {i, j, k}
anti-commutes. However, matrix groups with elements from H typically make use of the 
representation of quaternions as 2 × 2 complex matrices[

z w
−w z

]
, z = a0 + aii, w = a2 + a3i. (2.2)

Thus for example matrices from GLN (H) and SLN (H) are then N × N block matrices 
with each entry a 2 × 2 block of the form (2.2), and hence 2N × 2N complex matrices.

Let G ∈ GLN (F), where F = R, C or H. Label by β = 1, 2, 4 respectively according 
to the number of independent real parts in an element of F. The symbol (dG) denotes 
the product of differentials of all the real and imaginary parts of G. Since for fixed 
A ∈ GLN (F)

(dAG) = (dGA) = |detA|βN (dG)

(these follow from e.g. [12, Prop. 3.2.4]), one has that

(dG)
βN

(2.3)
|detG|
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is unchanged by both left and right group multiplication, and is thus the left and right 
invariant Haar measure for the group. In the case of GLN (R) and thus β = 1 (2.3)
was identified by Siegel [34]. Matrices in SLN (F) form the subgroup of GLN (F) with 
unit determinant. Using a delta function distribution to implement this constraint, (2.3)
becomes

δ(1 − detG) (dG). (2.4)

In preparation for computing volumes associated with (2.4), as done in the pioneering 
work of Jack and Macbeath [22] in the case F = R, we make use of a singular value 
decomposition

G = U (β)diag(σ1, . . . , σN )V (β), (2.5)

where U (β), V (β) ∈ UN (F) – the set of N × N unitary matrices with entries in F. In 
the case β = 4 each entry in diag(σ1, . . . , σN ) is a 2 × 2 block matrix, so viewed as a 
2N × 2N matrix each σi is repeated twice along the diagonal. For (2.5) to be one-to-one 
it is required that the singular values be ordered

σ1 � σ2 � · · · � σN � 0

and that the entries in the first row of V (β) be real and positive.
Changing variables according to (2.5) gives (see e.g. [7, Prop. 2])

(dG) =
(

2πβ/2

Γ(β/2)

)−N (
U (β)†dU (β)

) (
V (β)†dV (β)

)
×

N∏
l=1

σβ−1
l

∏
1�j<k�N

(σ2
j − σ2

k)β dσ1 · · ·dσN , (2.6)

where 
(
U (β)†dU (β)

)
and 

(
V (β)†dV (β)

)
are the invariant measure on UN (F). For F = R

and C this was first identified by Hurwitz [21]; the extension of Hurwitz’s ideas to the 

case of unitary matrices with quaternion entries is given in [6]. The factor 
(

2πβ/2

Γ(β/2)

)−N

comes about due to the restriction on the entries in the first row of V (β).
Let us now first restrict the matrices G ∈ GLN (F) to have positive determinant, 

then to have determinant unity by imposing the delta function constraint in (2.4). This 
requires that we multiply (2.6) by

(
2πβ/2

Γ(β/2)

)−1

δ

(
1 −

N∏
l=1

σl

)
, (2.7)

where the first factor corresponds to the reduction in volume due to the restriction to 
positive determinant. Consequently, with
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D
‖ · ‖2
R (SLN (F)) = {M ∈ SLN (F) : σ1 � R} (2.8)

it follows from this modification of (2.6) that

vol
(
D

‖ · ‖2
R (SLN (F))

)
=
(

2πβ/2

Γ(β/2)

)−(N+1)

(vol UN (F))2

×
∫

0<σN<···<σ1<R

δ(1 − σ1 · · ·σN )
N∏
l=1

σβ−1
l

∏
1�j<k�N

(σ2
j − σ2

k)β dσ1 · · ·dσN . (2.9)

The precise value of vol UN (F) depends on the convention used to relate the line el-
ement corresponding to the differential U (β)†dU (β) to the Euclidean line element; see 
[14, Remark 2.3]. This convention can be uniquely specified by integrating (2.6) against 
Gaussian weighted matrices G – see [14, Remark 2.3] – with the result [7, Eq. (1) with 
m = n]

vol UN (F) = 2N
N∏

k=1

πβk/2

Γ(βk/2) . (2.10)

In the case β = 1 the multiple integral in (2.9) was first evaluated by Jack and 
Macbeath [22]. In the recent work [14] a simplified derivation was given by making use 
of the Selberg integral [30,15,12]. This strategy can be extended to general β.

Proposition 1. Define

J
(β)
N (R) :=

∫
R>σ1>···>σN>0

δ

(
1 −

N∏
l=1

σl

)
N∏
l=1

σβ−1
l

∏
1�j<k�N

(σ2
j−σ2

k)β dσ1 · · ·dσN (2.11)

and set

A
(β)
N (R) = 2−N

N ! RN(β−1)+βN(N−1)
N−1∏
j=0

Γ(1 + jβ/2)Γ (1 + (j + 1)β/2)
Γ(1 + β/2) . (2.12)

For c > 0 we have

J
(β)
N (R) = A

(β)
N (R)
2πi

c+i∞∫
c−i∞

RNs
N−1∏
j=0

Γ ((s− 1 + (j + 1)β) /2)
Γ ((s + 1 + (N + j)β) /2) ds. (2.13)

Proof. Replace the delta function factor δ
(
1 −

∏N
j=1 σl

)
by δ

(
t−

∏N
l=1 σl

)
and denote 

(2.11) in this setting by J (β)
N (R; t). Making the change of variables σ2

l = xl and taking 
the Mellin transform of both sides shows
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∞∫
0

J
(β)
N (R; t)ts−1 dt = 2−N

N !

R2∫
0

dx1 · · ·
R2∫
0

dxN

N∏
l=1

x
(s+β)/2−3/2
l

∏
1�j<k�N

|xk − xj |β

= 2−N

N ! RN(s+β)RβN(N−1)−NSN ((s + β − 3)/2, 0, β/2) .

Here SN (a, b, c) is the Selberg integral in the notation of [12, Ch. 4]. Making use of the 
gamma function evaluation of the Selberg integral [30], [12, Eq. (4.3)], and the notation 
(2.12) reduces this to

A
(β)
N (R)RNs

N−1∏
j=0

Γ ((s− 1 + (j + 1)β) /2)
Γ ((s + 1 + (N + j)β) /2) .

As a function of s, this is analytic in the right half plane, and uniformly bounded. 
The standard formula for the inverse Mellin transform can therefore be applied, giv-
ing (2.13). �
Remark 2. For future reference we note from (2.13), as an application of the residue 
theorem, or alternatively by direct computation from (2.11), that for N = 2

J
(2)
N (R) = R4 − 1

R4 − 8 log R, (2.14)

J
(4)
N (R) = R8

8 −R4 + 1
R4 − 1

8R8 + 6 log R. (2.15)

Consideration of the direct computation of (2.11) shows that for general N and β = 1, 2
or 4, the function J (β)

N (R) is a finite series in power functions and logarithms of R, which 
vanishes when R = 1.

Remark 3. The delta function constraint in (2.11) implies that the factor 
∏N

l=1 σ
β−1
l can 

be replaced by 
∏N

l=1 σ
μ
l for any μ > −1. The independence of μ manifests itself in (2.13)

by c > 0 being arbitrary.

Corollary 4. As R → ∞, for (N, β) �= (2, 2),

J
(β)
N (R) = CN,βR

βN(N−1) + O
({

RβN(N−2), β = 1, 2
RβN(N−3/2), β = 4

)
(2.16)

where

CN,β = 2βN

22NΓ(Nβ/2)

N−1∏
j=0

Γ(1 + jβ/2)Γ2 ((j + 1)β/2)
Γ(1 + β/2)Γ (1 + (N + j − 1)β/2) (2.17)

and



8 P.J. Forrester, J. Zhang / Journal of Number Theory 190 (2018) 1–39
vol
(
D

‖ · ‖2
R (SLN (F))

)
= πβN2/2Γ(β/2)

Γ(Nβ/2)πβ/2

N−1∏
j=0

Γ(1 + jβ/2)
Γ (1 + (N + j − 1)β/2)R

βN(N−1)

+ O
({

RβN(N−2), β = 1, 2
RβN(N−3/2), β = 4

)
. (2.18)

In the case (N, β) = (2, 2), the bound on the correction term is O(logR).

Proof. Standard estimates of the gamma function imply that the integrand decays fast 
enough in the left half plane that the contour can be closed in the region without changing 
its value, by Cauchy’s theorem. This allows the integral to be computed in terms of a sum 
over its residues. The poles of the integrand occur at s = 1 − (j + 1)β (j = 0, . . . , N − 1)
in the cases β = 1, 2; for β = 4 there are a further set of poles at s = 1 − (j + 3/2)β
(j = 0, . . . , N − 1). The leading contribution to the large R expansion results from pole 
closest to the origin. This occurs at s = 1 − β. Evaluating the residue at this point gives 
(2.16) and (2.17). The residue of the pole second closest to the origin gives the next term 
in the large R expansion; the order of this term is also a bound since the number of 
residues is finite. Note that the case (N, β) = (2, 2)because the pole at s = 1 − β goes 
from being first to second order. �

Also of interest is the analogue of (2.8) for the Frobenius-norm

D
‖ · ‖F

R (SLN (F)) =

⎧⎨⎩M ∈ SLN (F) :
N∑
j=1

σ2
j � R2

⎫⎬⎭ ,

for which the analogue of (2.9) reads

vol
(
D

‖ · ‖F

R (SLN (F))
)

=
(

2πβ/2

Γ(β/2)

)−(N+1)

(vol UN (F))2 Î
(β)
N (R), (2.19)

where

Î
(β)
N (R) = 1

N !

∫
σl>0 :

∑N
j=1 σ2

j �R2

δ

(
1 −

N∏
l=1

σl

) ∏
1�j<k�N

|σ2
j − σ2

k|β dσ1 · · ·dσN . (2.20)

The integral Î(β)
N (R) was evaluated in [12, Prop. 2.9] for β = 1, according to a strategy 

that extends to general β.

Proposition 5. For c > 0 we have

Î
(β)
N (R) = RβN(N−1)

2NN !

N∏
j=1

Γ(1 + βj/2)
Γ(1 + β/2)

1
2πi

c+i∞∫
c−i∞

∏N
j=1 Γ (s/2 + β(N − j)/2)

Γ (sN/2 + βN(N − 1)/2 + 1)R
sN ds.

(2.21)
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Proof. First introduce

K
(β)
N (r, t) = 1

N !

∞∫
0

dσ1 · · ·
∞∫
0

dσN δ

(
r2 −

N∑
p=1

σ2
p

)
δ

(
t−

N∏
l=1

σl

) ∏
1�j<k�N

|σ2
j − σ2

k|β

so that

Î
(β)
N (R) = 2

R∫
0

K
(β)
N (r, t)

∣∣∣
t=1

r dr. (2.22)

Forming the Mellin transform with respect to t shows, after minor manipulation including 
the change of variables σ2

l = xl, that

∞∫
0

K
(β)
N (r, t)ts−1 dt

= rβN(N−1)+sN−2

2NN !

∫
RN

+

δ

(
1 −

N∑
p=1

xp

)
N∏
l=1

x
s/2−1
l

∏
1�j<k�N

|xk − xj |β dx1 · · ·dxN .

The multidimensional integral in this expression is closely related to the Selberg inte-
gral, and has the known evaluation in terms of gamma functions [43], [12, Eq. (4.154)]. 
Substituting this, then integrating both sides over r ∈ (0, R) shows

∞∫
0

⎛⎝2
R∫

0

K
(β)
N (r, t)r dr

⎞⎠ ts−1 dt

= RsN+βN(N−1)

2NN !Γ (sN/2 + βN(N − 1)/2 + 1)

N∏
j=1

Γ (s/2 + β(N − j)/2) Γ(1 + βj/2)
Γ(1 + β/2) .

The stated result (2.21) now follows by taking the inverse Mellin transform and setting 
t = 1. �
Corollary 6. As R → ∞

Î
(β)
N (R) = Ĉ

(β)
N RβN(N−1) + O

⎛⎜⎝
⎧⎪⎨⎪⎩

RN(N−2), β = 1
R2N(N−2) logR, β = 2
R4N(N−1)−2N , β = 4,

⎞⎟⎠ , (2.23)

where

Ĉ
(β)
N (R) = 2

2NΓ (βN(N − 1)/2 + 1)
1

Γ(βN/2)

N∏ Γ2(βj/2)
Γ(β/2) , (2.24)
j=1
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and

volD‖ · ‖F

R (SLN (F)) = πβ(N2−1)/2Γ(β/2)
Γ(βN/2)Γ (βN(N − 1)/2 + 1)R

βN(N−1)

+ O

⎛⎜⎝
⎧⎪⎨⎪⎩

RN(N−2), β = 1
R2N(N−2) logR, β = 2
R4N(N−1)−2N , β = 4.

⎞⎟⎠ . (2.25)

Proof. We proceed in an analogous way to the proof of Corollary 3, and begin by shifting 
the contour to the line parallel to the imaginary axis with c = −cβ− ε, ε > 0 with cβ = 1
for β = 1 and cβ = 2 for β = 2 and 4. According to the residue theorem, this changes 
the value of the integral by 2πi times the sum of the residue at s = 0 and s = −cβ . The 
residue at s = 0 gives the leading terms, and that at s = −cβ the leading correction. 
The large R form of the integrand along the shifted contour shows that the order of 
the leading correction is a bound on the error term. This establishes (2.23); (2.25) then 
follows from (2.19). �
Remark 7. The leading terms in (2.18) and (2.25) are equal for N = 2, giving in the case 
β = 2 for example

volD‖ · ‖
R (SL2(F)) = π3

2 R4 + O(logR), (2.26)

but for N > 2 (2.25) is smaller, in keeping with the truncation of the integration domain 
in going from (2.11) to (2.20).

As commented in the Introduction, one interest in the asymptotic volume formulas 
(2.18) and (2.23) lies in asymptotic counting formulas of the type (1.3). For example, as 
a natural extension of (1.3), one might expect1 that

#{γ : γ ∈ SLN (Z[i]), ‖γ‖ � R} ∼
R→∞

1
vol (SLN (C)/SLN (Z[i])

∫
G∈SLN (C):‖G‖�R

(dG),

(2.27)

where Z[i] denotes the Gaussian integers. In fact a general asymptotic counting theorem 
for lattice subgroups of topological groups, implying (2.27), can be found in [19, Th. 1.5], 
as cited in the recent work [10]. The leading asymptotics of the integral over G is given 
by (2.18) with β = 2 for ‖·‖ = ‖·‖Op and by (2.23) with β = 2 for ‖·‖ = ‖·‖F .

1 F. Calegari (private correspondence) remarks that in the context of [8], or also Eskin–McMullen, [11, 
Theorem 1.4], the basic point is that the Z[i] points of a semi-simple group G (like SLn) are the Z points of 
another group G′ = ResQ(i)/Q(G) (the Weil restriction of scalars), so one can apply these theorems to G′

to show that counting problem in G in the ring of integers of some (any) number field reduces to a volume 
calculation.
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It remains then to compute vol (SLN (C)/SLN (Z[i]) in the same normalisation as that 
used to compute 

∫
G∈SLN (C):‖G‖�R

(dG). In relation to (1.3) it was shown in [8] that

vol (SLN (R)/SLN (Z)) = ζ(2)ζ(3) · · · ζ(N), (2.28)

where ζ(s) denotes the Riemann zeta function (see also [18]). A result of Siegel [33]
gives that for a certain non-arithmetic constant A, depending on the normalisation of 
the measure,

vol (SLN (C)/SLN (Z[i]) = AζZ[i](2) ζZ[i](3) · · · ζZ[i](N). (2.29)

Here ζZ[i](s) denotes the Dedekind zeta function for the Gaussian integers,

ζZ[i](s) = 1
4

∑
(m,n) �=(0,0)

1
(m2 + n2)s = ζ(s)

∞∑
n=1

(−1)n−1

(2n− 1)s , (2.30)

where the second equality is a well known factorisation; see e.g. [1]. For future reference 
we note that for s = 2 this gives

ζZ[i](2) = ζ(2)
∞∑

n=1

(−1)n−1

(2n− 1)2 = π2

6 C, (2.31)

where

C =
∞∑

n=1

(−1)n−1

(2n− 1)2

denotes Catalan’s constant. In Remark 13 below, we will show that in the same normal-
isation as used to compute the integral over G ∈ SLN (C), for N = 2 (2.29) holds with 
A = 1.

3. The Lagrange–Gauss algorithm – the real case

Our study of lattice reduction in C2 and H2 draws heavily on the theory of lattice 
reduction in R2. For the logical development of our work we must revise some essential 
aspects of the latter, presenting in particular theory associated with the Lagrange–Gauss 
algorithm.

3.1. Vector recurrence and shortest reduced basis

Let B = {b1, b0} with ‖b1‖ � ‖b0‖ say, be a basis for R2, and let L = {n1b1 +
n0b0 | n1, n0 ∈ Z} be the corresponding lattice. The lattice reduction problem in R2 is 
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to find the shortest nonzero vector in L (call this α), and the shortest nonzero vector 
linearly independent from α (call this β) to obtain a new, reduced basis.

Let us suppose that a fundamental cell in L has unit volume. Then with α, β written 
as column vectors, the matrix B = [b1 b0] has unit modulus for its determinant, which 
we denote B ∈ SL±

2 (R). Similarly with V = [αβ] we have V ∈ SL±
2 (R). The matrices B

and V are related by

V = BM, M ∈ SL±
2 (Z). (3.1)

The Lagrange–Gauss algorithm finds a sequence of matrices Mi ∈ SL−
2 (Z) (i =

1, . . . , r∗) such that

M = M1M2 · · ·Mr∗ , Mi =
[
−mi 1

1 0

]
(mi ∈ Z) (3.2)

(in fact for B chosen with invariant measure, M samples from SL±
2 (Z), with a restriction 

on the size of the matrix norm, uniformly; see [28]). Defining

Bj+1 = Bj

[
−mj 1

1 0

]
, B1 = B = [b1 b0], (3.3)

the first column of Bj is the second column of Bj+1 so that we can now set

Bj = [bj bj−1]

for some 2 ×1 columns vectors bj , bj−1. Then (3.3) reduces to a single vector recurrence

bj+1 = bj−1 −mjbj . (3.4)

The integer mj in (3.4) is chosen to minimise ‖bj+1‖ and is given by

mj =
⌈
bj · bj−1

‖bj‖2

⌋
, (3.5)

where 	 · 
 denotes the closest integer function (boundary case 	1
2
 = 0), and so

bj+1 = bj−1 −
⌈
bj · bj−1

‖bj‖2

⌋
bj . (3.6)

Geometrically, the RHS of (3.6) is recognised as the formula for the component of bj−1
near orthogonal to bj . The qualification “near” is required because mj is constrained to 
be an integer so that bj+1 ∈ L.

A basic property of (3.4) is that successive vectors are smaller in magnitude whenever 
mj+1 �= 0; see e.g. [2].
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Lemma 8. Suppose mj+1 �= 0. We have

‖bj+1‖ < ‖bj‖. (3.7)

Proof. Generally

	x
 = x + ε, −1
2 � ε < 1

2 ,

and so

	x− 	x

 = 0. (3.8)

Now, taking the dot product of both sides of (3.6) with the vector bj and dividing both 
sides by ‖bj‖2, use of (3.8) with x = bj · bj−1/‖bj‖2 implies⌈

bj · bj+1

‖bj‖2

⌋
= 0. (3.9)

Comparing the LHS of (3.9) with the definition of mj+1 as implied by (3.5) upon writing⌈
bj · bj+1

‖bj‖2

⌋
=
⌈
‖bj+1‖2

‖bj‖2
bj · bj+1

‖bj+1‖2

⌋
, (3.10)

we conclude that if mj+1 �= 0 then (3.7) holds, as required. �
Since the vectors in L with length less than some value R form a finite set, Lemma 8

implies that for some j = r we must have mr = 0. Then (3.4) gives br+1 = br−1. If at 
this stage ‖br‖ � ‖br−1‖, the algorithm stops with r∗ = r − 1 in (3.2), and outputs

α = br−1, β = br (3.11)

as the reduced basis. If instead ‖br‖ < ‖br−1‖(= ‖br+1‖) the algorithm stops with 
r∗ = r in (3.2) and outputs

α = br, β = br+1 (3.12)

as the reduced basis. Equivalently, the recurrence (3.2) is iterated until for some j = r∗, 
‖br∗+1‖ ≥ ‖br∗‖, and the output is the shortest basis α = br∗ and β = br∗+1.

For both (3.11) and (3.12) it follows from (3.9) with j = r, r− 1 respectively, and the 
relative length of br+1, br that

‖α‖ � ‖β‖,
⌈
α · β
‖α‖2

⌋
= 0

or equivalently
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‖α‖ � ‖β‖,
∣∣∣∣α · β
‖α‖2

∣∣∣∣ � 1
2 . (3.13)

One observes that the final inequality is equivalent to requiring that

‖β + nα‖ � ‖β‖, ∀n ∈ Z. (3.14)

An alternative way to see (3.14) is to recall that the integer value mj which minimises 
(3.4) is given by (3.5), and to apply this with bj−1 = β, bj = α, for which mj = 0. Basis 
vectors which satisfy (3.14), together with the first inequality in (3.13), are said to be 
greedy reduced in two dimensions [27]. Of fundamental importance is the classical fact 
that a greedy reduced basis in two dimensions is a shortest reduced basis (the converse 
is immediate).

Proposition 9. Let {α, β} be a greedy reduced basis. Then {α, β} is a shortest reduced 
basis.

Proof. We follow the proof given in [16], which begins with the greedy reduced basis 
inequalities

‖β + mα‖ � ‖β‖ � ‖α‖, ∀m ∈ Z. (3.15)

Let v = n1α+n2β be any nonzero element of L. In the case n2 = 0 we have that v and 
α are linearly dependent and it is immediate that ‖v‖ � ‖α‖. In the case n2 �= 0, write 
n1 = qn2 + r with q, r ∈ Z such that

0 � r < |n2|. (3.16)

Then

v = rα + n2(β + qα)

and thus by the triangle inequality

‖v‖ � |n2|‖β + qα‖ − r‖α‖

= (|n2| − r)‖β + qα‖ + r(‖β + qα‖ − ‖α‖). (3.17)

Now by (3.15), ‖β + qα‖ − ‖α‖ � 0 and so

‖v‖ � (|n2| − r) ‖β + qα‖ � ‖β + qα‖, (3.18)

where the second inequality follows from (3.16). Finally, applying (3.15) gives ‖v‖ �
‖β‖ � ‖α‖ as required. �
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3.2. Complex scalar recurrence

The vector equation (3.6) can also be written in scalar form, albeit involving complex 
numbers [5]. Thus, set bj = (xj , yj) and write bj = xj + iyj . The fact that

bj−1

bj
= bj · bj−1

‖bj‖2 + idetB
‖bj‖2 , B = [bj bj−1] (3.19)

then allows (3.6) to be written

bj+1 = bj−1 −
⌈
Re bj−1

bj

⌋
bj ,

or equivalently, with zj = bj/bj−1 (bj−1 �= 0)

zj+1 = 1
zj

−
⌈
Re 1

zj

⌋
. (3.20)

With α and β the complex numbers corresponding to the vectors α and β, setting 
z = β/α the conditions (3.13) for a reduced basis read

|z| � 1, |Re z| � 1
2 . (3.21)

The inequalities (3.21) are recognised as specifying the fundamental domain in the upper 
half plane model of hyperbolic geometry, up to details on the boundary; see e.g. [37]. 
Starting with r1 = b1/b0, |r1| < 1, the recurrence (3.20) is to be iterated until |rj+1| � 1.

As already noted in [14], the Haar measure for SLN (R) with N = 2 can be 
parametrised in terms of variables which allow for a seemingly different simplification 
of the inequalities (3.13), which can in fact be identified with (3.21). The variables of 
interest come about by writing V ∈ SL2(R) in the form V = QR, where Q is a real or-
thogonal matrix with determinant +1 and R is an upper triangular matrix with positive 
diagonal entries,

R =
[
r11 r12
0 r22

]
, r22 = 1/r11. (3.22)

With V = [αβ], the matrix Q can be used to rotate the lattice so that α lies along 
the positive x-axis. Thus (3.22) gives α = (r11, 0), β = (r12, 1/r11) and the inequalities 
(3.13) read

r2
12 + r2

22 � r2
11, 2|r12| � r11. (3.23)

Further, [14, Eq. (4.13)] tells us that the invariant measure, restricted to the fundamental 
domain of the shortest basis vectors, in the coordinates r11 and r12 is equal to
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2πχr11/2�|r12|�Ar11 (r2
11−1/r2

11)1/2 dr11dr12, (3.24)

where Ar = 1 for r � 1, Ar = 0 otherwise. In relation to (3.20) and (3.21), we should 
introduce the scaled vector 1

|α|β = (r12/r11, 1/r2
11) and thus identify z = r12/r11 +i/r2

11. 
The inequalities (3.23) then reduce to (3.21), while changing variables in the invariant 
measure (3.24) gives

πχx2+y2>1χ|x|<1/2χy>0
dxdy
y2 . (3.25)

The factor dxdy/y2, in keeping with the remark below (3.21), is familiar as the invariant 
measure in the upper half plane model of hyperbolic geometry [37].

Distributions for the lengths of ||α|| and ||β|| can be computed by appropriate inte-
grations over (3.24) and (3.25) [14]. In the present context, the first calculation of this 
type appears to have been carried out by Shlosman and Tsfasman [32], who computed 
the distribution of the random variable π/(4y) = πr2

11/4 – this has the interpretation as 
the sphere (disk) packing density. Integrations with respect to (3.24) are also a feature of 
exact calculations for the distribution of certain scaled diameters for random 2k-regular 
circulant graphs with k = 2 [24]; of the study of kinetic transport in the two-dimensional 
periodic Lorenz gas [23]; and of calculations relating to the asymptotics of certain random 
linear congruences mod p, as p → ∞ [35], amongst other recent examples.

4. Lattice reduction in C2

4.1. The complex Lagrange–Gauss algorithm

We seek a generalisation of the Lagrange–Gauss lattice reduction algorithm to the 
case of lattices in C2. As a first task, an appropriate generalisation of the integers in the 
complex plane must be identified. As well as closure under addition and multiplication, 
inspection of the proof of Proposition 9 tells us that these complex integers should 
permit a Euclidean algorithm with the absolute value function as norm. This requirement 
permits the choices

Z[
√
D] = {n1 + n2

√
D : n1, n2 ∈ Z}, D = −1,−2 (4.1)

Z

[
1
2(1 +

√
D)

]
=
{
n1 + n2

2 (1 +
√
D) : n1, n2 ∈ Z

}
, D = −3,−7,−11, (4.2)

these being the complex quadratic integers with the desired property [20]. They have 
been identified in the context of lattice reduction in the earlier work [26]. The case 
D = −1 gives the Gaussian integers, and D = −3 the Eisenstein integers. These two cases 
have been discussed in the context of complex generalisations of the Lagrange–Gauss 
algorithm in [41,36]. With the complex integers chosen as in (4.1) or (4.2), and B =
{b0, b1} a basis in C2 such that | det[b0, b1]| = 1 – this requirement restricting the 
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fundamental unit cell to have unit generalised area, analogous to (1.1) the corresponding 
lattice is defined as

L = {m0b0 + m1b1 |m0,m1 ∈ Z[w]}. (4.3)

The set Z[w] with w as in (4.1) and (4.2) forms a lattice in C. Around each lattice point 
l ∈ C is its Voronoi region, consisting of all points in C closer to l than to the other 
lattice points. A lattice quantiser DZ[w] maps a given point z ∈ C to a closest lattice 
point (the latter is unique provided z is not on the boundary of the Voronoi region)

DZ[w](z) = argmin
λ∈Z[w]

‖λ− z‖. (4.4)

The lattice corresponding to (4.1) is square for D = −1 and rectangular for D = −2. 
The Voronoi region is correspondingly square and rectangular. Because of this

DZ[i](z) = 	Re z
 + i	Im z
 (4.5)

and

D
Z[
√

2i](z) = 	Re z
 + i
√

2
⌈
Im z/

√
2
⌋
. (4.6)

The lattices corresponding to (4.2) consist of the disjoint union of two rectangular lattices

Z

[
1
2(1 +

√
D)

]
= {n1 + n2

√
D : n1, n2 ∈ Z}

∪ {(n1 + 1/2) + (n2 + 1/2)
√
D : n1, n2 ∈ Z}.

Denoting these L1, L2 respectively we have

DL1(z) = 	Re z
 +
√
D	Im z/

√
−D


DL2(z) = 	Re(z − 1/2)
 +
√
D

⌈
Im

(
z −

√
D

2

)
/
√
−D

⌋
+ 1 +

√
D

2

and so

D
Z

[
1
2 (1+

√
D)

](z) = argmin
β∈{DL1 (z),DL2 (z)}

|β − z|. (4.7)

In the case D = −3 – the Eisenstein integers – the formula (4.7) can be found in [36].
The complex Lagrange–Gauss algorithm proceeds by generalising the working of the 

real case as presented in Section 3. The equation (3.1) holds with M ∈ SL±
2(Z[w]) and 

the matrices Mi in (3.2) are now elements of SL−
2 (Z[w]) with mi ∈ Z[w]. To minimise 

‖bj+1‖ in (3.4) requires
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mj = DZ[w]

(
bj · bj−1

‖bj‖2

)
(4.8)

and so the analogue of (3.6) reads

bj+1 = bj−1 −DZ[w]

(
bj · bj−1

‖bj‖2

)
bj . (4.9)

Next, we would like to establish the analogue of Lemma 8.

Lemma 10. Define bj+1 by (4.9), and with mj defined by (4.8), suppose mj+1 �= 0. Then 
we have the inequality (3.7), ‖bj+1‖ < ‖bj‖.

Proof. Generally

DZ[w](ζ) = ζ + r,

where r is an element of the Voronoi region of the origin in Z[w], telling us that

DZ[w]
(
ζ −DZ[w](ζ)

)
= 0

(cf.(3.8)). Choosing ζ = bj · bj−1/‖bj‖2, after taking the dot product of both sides of 
(4.9) with respect to bj it follows that

DZ[w]

(
bj · bj+1

‖bj‖2

)
= 0, or equivalently DZ[w]

(
bj · bj+1

‖bj‖2

)
= 0 (4.10)

(cf.(3.9)). But from (4.8)

mj+1 = DZ[w]

(
bj+1 · bj

‖bj+1‖2

)
= DZ[w]

(
‖bj‖2

‖bj+1‖2
bj+1 · bj

‖bj‖2

)
(4.11)

(cf. (3.10)). Comparing (4.11) and (4.10) we see that if mj+1 �= 0, then we must have 
the stated inequality. �

The complex Lagrange–Gauss algorithm terminates with outputs (3.8) or (3.9) de-
pending on the validity of ‖br+1‖ � ‖br‖ as in the real case, and the vectors α, β
satisfying

‖α‖ � ‖β‖, DZ[w]

(
α · β
‖α‖2

)
= 0. (4.12)

From the complex analogue of the text below (3.14) we see that the second equation is 
equivalent to

‖β + nα‖ � ‖β‖, ∀n ∈ Z[w], (4.13)

telling us that {α, β} is a greedy reduced basis, as in the real case.



P.J. Forrester, J. Zhang / Journal of Number Theory 190 (2018) 1–39 19
The assumption that Z[w] is a Euclidean domain with the absolute value as norm 
allows to deduce the complex analogue of Proposition 9.

Proposition 11. Let {α, β} be a complex greedy reduced basis, and let Z[w] be one of 
(4.1), (4.2). Then {α, β} is a shortest reduced basis.

Proof. We follow the proof of Proposition 9, now setting v = n1α+ n2β, n1, n2 ∈ Z[w]. 
In the case n2 �= 0, the assumption that Z[w] is a Euclidean domain with the absolute 
value as norm allows us to write

n1 = qn2 + r, q, r ∈ Z[w]

with

0 � |r| < |n2|.

Equations (3.17) and (3.18) again hold, with r replaced by |r|, implying ‖v‖ � ‖β‖ � ‖α‖
as required. �
4.2. Quaternion scalar recurrence

We saw how the real vector equation (3.4) could also be written in the complex scalar 
form (3.12). Here we will show how the complex vector equation (4.9) can be written in 
a quaternion scalar form; for the latter recall the definitions at the beginning of §2.1.

Writing a pair of complex basis vectors bl = (wl, zl), wl, zl ∈ C, define

ql = wl + jzl, |ql|2 = |wl|2 + |zl|2, (4.14)

where the unit i in wl, zl is to be regarded as part of the quarternion algebra (note that 
we have chosen to have the unit j to the left). With V the 2 × 2 matrix with complex 
vectors bl−1 and bl as its columns, analogous to (3.12) one can check

ql
−1ql−1 = bl · bl−1

‖bl‖2 + jdetV
‖bl‖2 (4.15)

(cf.(3.20)). Another viewpoint on (4.15) is in terms of the so-called Cayley–Dickson 
doubling formula. Thus for a, b, c, d ∈ C define

(a, b) = (a,−b), (a, b)(c, d) = (ac− db, ad + cb). (4.16)

Identify (a, b) = a + jb. Then these rules together with q−1
l ql−1 = |ql|−2qlql−1 and 

ql = (a, −b), ql−1 = (c, d) together with the fact that complex numbers commute imply 
(4.15).
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Consequently, the complex vector recurrence (4.9), rearranged so that order of mul-
tiplication in the last term is reversed (this is in keeping with the unit j in (4.14) being 
to the left, and thus purely complex multiplication taking place to the right), can be 
rewritten as the quaternion scalar recurrence

q−1
j qj+1 = q−1

j qj−1 −DZ[w]
(
(Re+i Imi)q−1

j qj−1
)

(4.17)

where Imi denotes the (real) coefficient of i. Now writing Q−1
j = q−1

j qj−1 gives the 
analogue of (3.20),

Qj+1 = 1
Qj

+ DZ[w]

(
(Re+i Imi)

1
Qj

)
. (4.18)

4.3. The Gram–Schmidt basis for the Gaussian integers

In the real case the inequalities (3.13) specifying a shortest reduced basis can also be 
obtained by transforming the basis vectors to a Gram–Schmidt basis. In the complex 
case this can be achieved by writing V = UT , where U ∈ SU(2) and

T =
[
t11 t

(r)
12 + it(i)12

0 t22

]
, t11 > 0, t22 = 1/t11. (4.19)

Recalling the text above (2.7), and making use of the known change of variables from 
the elements of V to {U, T} (see e.g. [12, Prop. 3.2.5]) the invariant measure (2.4) for 
N = 2 can be written(

1
2π

)
δ(1 − t11t22)t311t22dt11dt22dt

(r)
12 dt(i)12 (U†dU). (4.20)

Also, with α = (t11, 0), β = (t(r)12 +it(i)12 , 1/t11) the inequalities implied by (4.12) for w = i
read

t211 � (t(r)12 )2 + (t(i)12 )2 + (1/t11)2, 2|t(r)12 | � t11, 2|t(i)12 | � t11. (4.21)

Integrating over U using (2.10), and integrating over t22 shows that as a function of the 
variables {t11, t(r)12 , t

(i)
12 } the invariant measure restricted to the domain of the shortest 

reduced basis is equal to

(2π2)t11χt211�(t(r)12 )2+(t(i)12 )2+(1/t11)2
χ2|t(r)12 |�t11

χ2|t(i)12 |�t11
dt11dt(r)12 dt(i)12 . (4.22)

Now introduce the scaled vector

1
β =

(
(t(r)12 + it(i)12 )/t11, 1/t211

)

|α|
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and set q = (t(r)12 + it(i)12 )/t11 + j/t211. Write

x1 = t
(r)
12 /t11, x2 = t

(i)
12 /t11, x3 = 1/t211.

In these variables the invariant measure (4.22) reads

π2χx2
1+x2

2+x2
3>1χ|x1|� 1

2
χ|x2|� 1

2
χx3>0

dx1dx2dx3

x3
3

. (4.23)

The factor dx1dx2dx3/x
3
3 is recognised as the invariant measure for hyperbolic 3-space.

4.4. Statistics of the shortest reduced basis for the Gaussian integers

In the case of the Gaussian integers, the statistics of the corresponding shortest basis 
vectors are determined by appropriate integration over (4.22) – t11 is the length of 

the shortest vector, 
(
(t(r)12 )2 + (t(i)12 )2 + (1/t11)2

)1/2
is the length of the second shortest 

vector, while for the complex analogue of the cosine of the angle between α and β we 
have

α · β
‖α‖‖β‖ = t

(r)
12 + it(i)12√

(t(r)12 )2 + (t(i)12 )2 + (1/t11)2
(4.24)

so these variables should be held fixed when computing the corresponding PDF. Integrat-
ing (4.22) over all variables gives the volume of the invariant measure (4.20) restricted 
to the domain (4.21) which occurs in the computation of the PDFs as the normalisation. 
Our first task is to compute this volume.

Proposition 12. Let the volume associated with (4.22) be denoted vol Γ̂. We have

vol Γ̂ = 2π2

3 C, (4.25)

where C denotes Catalan’s constant as defined above (2.31).

Proof. For notational convenience in (4.22) we write t11 = t, t(r)12 = y1, t
(i)
12 = y2. Inte-

grating over y1 and y2 gives

(2π2)tdt
∫

χ‖y‖2�t2−1/t2χ|y1|�t/2χ|y2|�t/2dy1dy2, (4.26)

where y = (y1, y2). Geometrically, the integral here corresponds to the area overlap 
between the outside of a disk of radius 

√
t2 − 1/t2 (t � 1) centred at the origin, and a 

square of side length t centred at the origin. For t < 1 the first inequality is always true, 
and the integral is equal to the area of the square, t2.
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It follows that with V2(a, b) denoting the area of overlap between a disk of radius a, 
and square of side length 2b, both centred at the origin, (4.26) can be written

(2π2)
(
t3χ0<t<1 + χt>1t

(
t2 − V2

(
(t2 − 1/t2)1/2, t/2

)))
dt

= (2π2)
(
t3χ0<t<1 + χt>1t

(
t2 − (t2 − 1/t2)V2

(
1, t

2(t2 − 1/t2)1/2

)))
dt. (4.27)

An elementary exact calculation gives

V2(1, a) =

⎧⎪⎪⎨⎪⎪⎩
4a2, 0 < a < 1/

√
2

4a
√

1 − a2 + 4 arcsin a− π, 1/
√

2 < a < 1
π, 1 < a

(4.28)

(see [29] for an n-dimensional generalisation of this result) thus reducing (4.27) to

(2π2)
(
χ0<t<1t

3 + χ1<t<(4/3)1/4t(t2 − π(t2 − 1/t2))

+ χ(4/3)1/4<t<21/4t

(
t2 − (t2 − 1/t2)(4a

√
1 − a2 + 4 arcsin a− π)|a= t

2(t2−1/t2)1/2

))
dt.

(4.29)

Elementary integration and/or use of computer algebra (we used Mathematica) gives for 
the integral over t∫

χ0<t<1t
3dt = 1

4 (4.30)∫
χ1<t<(4/3)1/4t(t2 − π(t2 − 1/t2))dt = 1

12 (1 + π(−1 + log(64/27))) (4.31)∫
χ(4/3)1/4<t<21/4t

(
t2 − (t2 − 1/t2)(4a

√
1 − a2 − π)|a= t

2(t2−1/t2)1/2

)
dt

= 1
12

(
−4 + 2π − 3π log(3/2) − 2

√
3 log(2 −

√
3)
)

(4.32)∫
χ(4/3)1/4<t<21/4t34 arcsin t

2(t2 − 1/t2)1/2
dt = 1

12

(
−π +

√
3 log(7 − 4

√
3)
)
. (4.33)

However the remaining integral∫
χ(4/3)1/4<t<21/4

4
t

arcsin t

2(t2 − 1/t2)1/2
dt

does not yield immediately to such an approach. For this integral, to be denoted J , we 
begin with some simple manipulation and the change of variables 1/t2 = s to obtain
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J =
3/4∫

1/2

1
s

arcsin 1
2(1 − s)1/2

ds.

Computer algebra now gives

J = C

3 + π

4 log 9
8 , (4.34)

where C denotes Catalan’s constant. Adding (4.30)–(4.34) gives C/3. Multiplying by 2π2

as required by (4.26) then gives (4.25). �
Remark 13. In [14] it was shown that the analogue of vol Γ̂ for lattice reduction in 
R

2 equals π2/3, which is twice the value of vol SL2(R)/SL2(Z) as given by (2.28) with 
N = 2. This can be understood since the space of reduced vectors contains the in-
volution {α, β} �→ {−α, −β}, and so maps two-to-one to the fundamental domain 
of SL2(R)/SL2(Z). For the present lattice reduction problem, the mapping from the 
space of reduced lattice vectors to SL2(C)/SL2(Z[i]) is four-to-one due to the involu-
tions {α, β} �→ {−α, −β}, {iα, −iβ}, {−iα, iβ}. Hence vol SL2(C)/SL2(Z[i]) = π2

6 C =
ζZ[i](2), where the final equality uses (2.31). It thus follows from (2.26) and (2.27) that

#{γ : γ ∈ SL2(Z[i]), ||γ|| ≤ R} ∼
R→∞

3
πC

R4. (4.35)

In the proof of Proposition 12 the expression (4.29) corresponds to integrating (4.22)
over t(r)12 and t(i)12 , and thus after normalisation by dividing by (4.25) and removal of dt
corresponds to the PDF of the length of the shortest basis vector.

Proposition 14. For random complex lattices in C2, with the defining basis vectors chosen 
with invariant measure and spanned using the Gaussian integers, the probability density 
function for the length of the shortest basis vector is equal to

3
C

{
χ0<t<1t

3 + χ1<t<(4/3)1/4t(t2 − π(t2 − 1/t2))

+ χ(4/3)1/4<t<21/4

(
t3 − t3

√
3 − 4/t4 + π(t3 − 1/t)

− 4(t3 − 1/t) arcsin t

2(t2 − 1/t2)1/2

)}
. (4.36)

As noted in the opening paragraph of this section, the length of the second shortest 
basis vector is given by r = (y2

1 + y2
2 + 1/t2)1/2, with y1, y2, t as specified above (4.26). 

Changing variables from t to r and imposing the ordering and sign restriction t/2 > y2 >

y1 > 0 the functional form in (4.22) transform to
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Fig. 4.1. This is a plot in the positive y1y2-plane of the regions implied by the inequalities in (4.37) for fixed 
values of r in the ranges < r < (4/3)1/4, (4/3)1/4 < r < 21/4 and r > 21/4 respectively. The common 
intersection of the inequalities corresponds to the labelled regions in each case.

(16π2) r

(r2 − y2
1 − y2

2)2χy2
1+y2

2<r2−1/r2χr2<y2
1+y2

2+1/4y2
1
χ0<y1<y2 drdy1dy2. (4.37)

Integrating over y1 and y2 and normalisation by (4.25) gives the explicit form of the 
corresponding PDF.

Proposition 15. In the setting of Propositions 12 and 14, the PDF for the length of the 
second shortest basis vector is equal to

3
C

{
χ1<r<(4/3)1/4π

r4 − 1
r

+ χ(4/3)1/4<r<21/4

×
(

2r
√

3r4 − 4 + 4(r4 − 1)
r

(
arctan r2

√
3r4 − 4

+ arctan r2√3r4 − 4 − 2r4 + 2
r4 − 2 − π

2

))

+ χr>21/4

(
2r(r2 −

√
r4 − 2) + 4(r4 − 1)

r

(
arctan r2 +

√
r4 − 2

r2 −
√
r4 − 2

− π

2

))}
.

(4.38)

Proof. Regarding r > 1 as a parameter, there are three ranges of r values giving a 
distinctly shaped region as defined by the three inequalities in (4.37); see Fig. 4.1.

The regions satisfying all the inequalities have been divided into subregions a, . . . , d, 
A, . . . , D, which allow for explicit parametrisation of the ranges of integration. Thus for 
1 < r < (4/3)1/4,

a =

√
(r2−r−2)/2∫

0

dy1

y1∫
0

dy2 , b =

√
r2−r−2∫

√
(r2−r−2)/2

dy1

√
r2−r−2−y2

1∫
0

dy2 ;

or (4/3)1/4 < r < 21/4,
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A =

√
(r2−r−2)/2∫

0

dy1

y1∫
(y1/r2)

√
3r4−4

dy2 , B =
r/2∫

√
(r2−r−2)/2

dy1

√
r2−r−2−y2

1∫
(y1/r2)

√
3r4−4

dy2

C =

√
(r2−

√
r4−1)/2∫

0

dy1

(y1/r
2)

√
3r4−4∫

0

dy2 , D =
r/2∫

√
(r2−r−2)/2

dy1

(y1/r
2)

√
3r4−4∫

√
r2−y2

1−1/(4y2
1)

dy2 ;

and for r > 21/4

c =

√
(r2−

√
r4−1)/2∫

0

dy1

y1∫
0

dy2 , d =

√
(r2−

√
r4−1)/4∫

√
(r2−

√
r4−1)/2

dy1

y1∫
√

r2−y2
1−1/(4y2

1)

dy2.

To compute the PDF of the second shortest basis vector, each of these integrations should 
be extended to include the function 1/(r2 − y2

1 − y2
2)2 for their integrand, as required by 

(4.37). The resulting integrals can all be computed explicitly. Multiplying the result by 
16π2r as also required by (4.37), and normalising by (4.25) we obtain (4.38). �
Remark 16. Expanding (4.38) for large r one obtains with the help of computer algebra

3
C

( 1
r5 + 2

3r9 + O
( 1
r13

))
.

Multiplying by dr to obtain the corresponding probability measure, then changing vari-
ables s = 1/r, the resulting PDF thus has for its leading term in the small s expansion 
3s3/C. This coincides with the small t behaviour of the PDF for the shortest vector 
(4.36), and in particular has the same functional dependence on the arithmetic con-
stant C.

In the case of lattice reduction applied to bases chosen with invariant measure from 
SL2(R), one can deduce from [14, Eq. (4.16)] that for large s the PDF for the distribution 
of the second shortest basis vector has the large s expansion (12/(πs))(1/(2s2) +1/(8s6) +
· · · ). In the variable s̃ = 1/s, the leading term in the s̃ → 0 expansion of the transformed 
PDF is thus 6s̃/π. This is precisely the form of the PDF of the shortest lattice vector in 
the range 0 < s < 1 [14, Eq. (4.15)], analogous to what was just exhibited in relation to 
(4.38) and (4.36). Such a property to be expected, as the volume of the unit cell must 
be unity, and in the case of one very short vector, and one very long vector, the volume 
to leading order will just be the product of the lengths, telling us that such vectors are 
equal in number.

The final quantity to be considered is the complex analogue of the cosine of the angle 
between the shortest reduced basis vectors (4.24). We write
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ξR = t
(r)
12√

(t(r)12 )2 + (t(i)12 )2 + 1/t211
, ξI = t

(i)
12√

(t(r)12 )2 + (t(i)12 )2 + 1/t211
. (4.39)

Their joint distribution can be calculated according to the following result.

Proposition 17. The variables ξR, ξI specified by (4.39) have joint distribution with PDF 
equal to

− 3
C

log 4 max(|ξR|2, |ξI |2)
4(1 − ξ2

R − ξ2
I )2

(4.40)

supported on

max(|ξR|2, |ξI |2) � 1/4. (4.41)

Proof. It follows from (4.39) that

t
(r)
12 = ξR

t11
√

1 − ξ2
R − ξ2

I

, t
(i)
12 = ξI

t11
√

1 − ξ2
R − ξ2

I

.

The Jacobian for the change of variables from (t(r)12 , t
(i)
12 ) =: (t12, s12) to (ξR, ξI) is thus∣∣∣∣∣det

[
∂t12
∂ξR

∂t12
∂ξI

∂s12
∂ξR

∂s12
∂ξI

]∣∣∣∣∣ = 1
t211(1 − ξ2

R − ξ2
I )2

.

The functional form in (4.22) thus transforms to

(2π2)
t11(1 − ξ2

R − ξ2
I )2

χt411<
1

1−ξ2R−ξ2I
χ
t411>

4ξ2I
1−ξ2R−ξ2I

χ
t411>

4ξ2R
1−ξ2R−ξ2I

dt11dξRdξI .

Integration over t11 in this expression is elementary, and after dividing by the normali-
sation (4.25) the PDF (4.40) results. �
Corollary 18. Let ξR = ξ cos θ, ξI = ξ sin θ, ξ > 0, 0 < θ < 2π so that ξ = (ξ2

R + ξ2
I )1/2. 

The PDF of ξ is equal to

− 6ξ
C(1 − ξ2)2

⎛⎜⎝χ0<ξ<1/2

(π
2 log ξ + C

)
+ χ1/2<ξ<1/

√
2

π/4∫
arccos(1/2ξ)

log(4ξ2 cos2 θ)dθ

⎞⎟⎠ .

(4.42)

Proof. The Jacobian for the change of variables to polar coordinates is dξRdξI = ξdξdθ. 
For 0 < ξ < 1/2, the inequality (4.41) is valid for all 0 < θ < 2π, and the integral over θ
in (4.40) is equal to



P.J. Forrester, J. Zhang / Journal of Number Theory 190 (2018) 1–39 27
− 3
4C(1 − ξ2)2 8

π/4∫
0

log(4ξ2 cos2 θ)dθ

which after multiplication by ξ evaluates to the first case in (4.42). For 1/2 < ξ <

1/
√

2, and restricting θ to the range 0 < θ < π/4, the inequality (4.41) is valid for 
arccos(1/2ξ) < θ < π/4, and this implies the second case in (4.42). �

In [14, Remark 4.5] it was noted that the PDF for the length of the shortest lattice 
vector in the real case, which for 0 < s < 1 was found to equal 6s/π, is consistent with 
a corollary of Siegel’s mean value theorem [34] requiring that the expected number of 
vectors in a disk of radius R be equal to the area of the disk. Siegel’s mean value theorem 
in [34] applies to the case of real lattices, but the more general statement of the mean 
value theorem by Weil [39] (for a clear statement of the latter, see [25, Th. 3]) removes 
this requirement, and in particular allows the case of a complex lattice to be considered.

The corollary of the mean value theorem of interest is the requirement that the ex-
pected number of vectors in the punctured complex disk of radius R, Ω(R), be equal to 
the volume of the disk. The latter, corresponding to the set |w|2 + |z|2 < R2, w, z, ∈ C is 
equal to the volume of a ball of radius R in R4, which has value π

2

2 R4, so as a consequence 
of the mean value theorem we must have

Ω(R) = π2

2 R4. (4.43)

On the other hand, in light of Propositions 14 and 17 together, for R < 1 the punctured 
complex disk of radius R will only contain certain Gaussian integer multiplies of the 
shortest lattice vector α: mα, m ∈ Z[i] with |m| ||α|| < R, (m �= 0). Define ||α||/R = s, 
and define NZ[i](p) to be the number of Gaussian integers with square norm less than or 
equal to p. Use of (4.36) for t < 1 shows that for R < 1

Ω(R) = 3
C
R4

∞∑
p=1

NZ[i](p)
(1/p)1/2∫

(1/(p+1))1/2

s3 ds

= 3R4

4C

∞∑
p=1

NZ[i](p)
( 1
p2 − 1

(p + 1)2
)

= 3R4

4C

∞∑
p=1

MZ[i](p)
p2 , (4.44)

where MZ[i](p) := NZ[i](p) −NZ[i](p − 1) specifies the number of Gaussian integers with 
square norm equal to p. In the notation (2.31) we have

∞∑
p=1

MZ[i](p)
p2 = 4ζZ[i](2) = 4π

2

6 C,

which substituted in (4.44) reclaims (4.43).
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4.5. The case of Eisenstein integers

For the choices of w as equal to 12(1 +
√
D) for D = −3, −7, −11 as in (4.2) the domain 

specified by the second condition in (4.12) is a hexagon rather than a square (D = −1), 
or rectangle (D = −2) in the coordinates X = t

(r)
12 /t11, Y = t

(i)
12 /t11. Specifically, for 

D = −3 the hexagon has vertices at(
0, 1√

3

)
,

(
1
2 ,

1
2
√

3

)
,

(
1
2 ,−

1
2
√

3

)
,

(
0,− 1√

3

)
,

(
−1

2 ,−
1

2
√

3

)
,

(
−1

2 ,
1

2
√

3

)
(4.45)

and is thus a regular hexagon with side length 1/
√

3, centred at the origin and with 
two sides parallel to the y-axis. In terms of inequalities, this hexagon is specified by the 
requirements that

|X| < 1
2 ,

√
3|Y | + |X| < 1. (4.46)

Using the variables {t11, X, Y } the analogue of (4.22) for the invariant measure restricted 
to the domain of the shortest reduced basis is the expression

(2π2)t311χ1−1/t411�X2+Y 2χ(X,Y )∈Hdt11dXdY, (4.47)

where H denotes the above specified regular hexagon.
Analogous to the computation of (4.36), the statistics of the shortest reduced basis 

can be obtained by appropriate integration over (4.47). We begin with the normalisation, 
obtained by integrating (4.47).

Proposition 19. Let the volume associated with (4.47) be denoted vol Γ̂H. We have

vol Γ̂H = π

2 log 2 − 3π
8 log 3 + 3

2

(
ImL2

(
3 − i

√
3

6

)
+ ImL2

(
3 + i

√
3

4

))
, (4.48)

where

L2(z) =
∞∑

n=1

zn

n2 (4.49)

is the dilogarithm function.

Proof. For t11 > 1 the inequalities in (4.47) correspond to the overlap between the 
regular hexagon H with vertices (4.45) and the outside of a circle of radius 1 −1/t411. For 
0 < t11 < 1 the first inequality is always valid, and the remaining factor χ(X,Y )∈H is the 
indicator function of the hexagon. Noting that H has area 

√
3/2 shows that integration 

over X and Y in (4.47) gives the function of t
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χ0<t<1t
3
√

3
2 + χt>1t

3
(√

3
2 − V Hd

(
(1 − 1/t4)1/2

))
, (4.50)

where V Hd(a) is the area of overlap between the hexagon H and a disk of radius a
centred at the origin.

Elementary considerations give

V Hd(a) =

⎧⎪⎪⎨⎪⎪⎩
πa2, 0 < a < 1/2,
πa2 − 6a2 arctan(4a2 − 1)1/2 + 3

2(4a2 − 1)1/2, 1/2 < a < 1/
√

3,
√

3
2 , a > 1/

√
3.

(4.51)

If we write

vol Γ̂H = V1 + V2, V2 = −6
(3/2)1/4∫

(4/3)1/4

1
t

arctan
(

3 − 4
t4

)1/2

dt

then the integral over t specifying V1 as implied by (4.50) and (4.51) can either be done 
by elementary computation or the use of computer algebra and gives

V1 = π

4 log 3
2 . (4.52)

For the integral defining V2 straightforward changes of variables give

V2 = −3
2

1/
√

3∫
0

2s
3 − s2 arctan sds

= π

4 log 8
3 − 3

2

1/
√

3∫
0

log(3 − s2)
1 + s2 ds

= 3π log 2 − 5π
8 log 3 + 3

2

(
ImL2

(
3 − i

√
3

6

)
+ ImL2

(
3 + i

√
3

4

))
, (4.53)

where the second equality uses integration by parts, and the third computer algebra; in 
the latter L2(z) is the dilogarithm function. Adding (4.52) and (4.53) gives the first line 
on (4.48). �

The volume (4.48), obtained by direct integration, can be written in a simpler form 
by adopting instead an indirect approach using Siegel’s mean value theorem.
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Proposition 20. An alternative evaluation of the volume in Proposition 19 is

vol Γ̂H = 1
4 ImL2

(
1 + i

√
3

2

)
. (4.54)

Proof. According to (4.50), for 0 < t < 1 the PDF of the shortest vector is 1
vol Γ̂H

√
3

2 t3. 
Siegel’s mean value theorem [34], generalised by Weil [39] to apply in the present setting, 
has the consequence that the expected number of lattice points in a (complex) disk of 
radius R is equal to the area of that disk (this assumes a unit normalisation of the volume 
associated with the integers; see below).

Repeating the considerations which led to (4.44) we obtain

Ω(R) = R4

vol Γ̂H

(√3
2

)1
4

∑
(m,n)∈Z

2

(m,n) �=(0,0)

1
((m + n/2)2 + n2(3/4))2 .

As an analytic function in s one has (see e.g. [1, Eq. (1.4.16)])

∑
(m,n)∈Z

2

(m,n) �=(0,0)

1
((m + n/2)2 + n2(3/4))s =

∑
(m,n)∈Z

2

(m,n) �=(0,0)

1
(m2 + mn + n2)s = 6ζ(s)g(s),

where ζ(s) denotes the Riemann zeta function and

g(s) = 1 − 2−s + 4−s − 5−s + 7−s − · · · = 2√
3
Im Lis(e2πi/3),

Lis denoting the polylogarithm function. For s = 2 (dilogarithm case) the duplication 
formula Li2(z2) = 2(Li2(z) + Li2(−z)) implies Im Lis(e2πi/3) = 2

3 Im Lis(eπi/3) and so 
substituting (4.54) we see the latter is valid provided

Ω(R) =
(4

3

)(π2R4

2

)
. (4.55)

This is a factor 4
3 bigger than (4.43). To understand this, we note that as a lattice 

in R
2, Z[i] has unit cells of area 1, while Z(1

2 + i
√

3) has unit cells of area 
√

3
2 . The latter 

creates a scale factor which when raised to the power of d (the (complex) dimension of the 
lattice; here d = 2) should be included in the meaning of Ω(R) (for a real lattice, choosing 
even integers rather than integers best illustrates this point), thus implying (4.55). �

The (un-normalised) PDF for the length of the shortest basis vector is given by (4.50). 
Normalising by (4.54) and substituting (4.51) allows us to specify the analogue of Propo-
sition 14 in the case of the Eisenstein integers.



P.J. Forrester, J. Zhang / Journal of Number Theory 190 (2018) 1–39 31
Proposition 21. For random complex lattices in C2, with the defining basis vectors chosen 
with invariant measure and the lattice formed using the Eisenstein integers, the PDF for 
the length of the shortest basis vector is equal to

1
vol Γ̂H

{
χ0<t<1t

3
√

3
2 + χ1<t<(4/3)1/4t3

(√
3

2 − π

(
1 − 1

t4

))

+ χ(4/3)1/4<t<(3/2)1/4t3
(√

3
2 − π

(
1 − 1

t4

)
+ 6

(
1 − 1

t4

)
arctan

(
3 − 4

t4

)1/2

− 3
2

(
3 − 4

t4

)1/2 )}
, (4.56)

where vol Γ̂H is given by (4.54).

We have not attempted to compute the PDF of the second shortest basis vector, due 
to the complexity of the calculation as evident from the proof of Proposition 14. However, 
the computation of the joint distribution of

ξR = X√
X2 + Y 2 + 1/t411

, ξI = Y√
X2 + Y 2 + 1/t411

(4.57)

and thus the analogue of Proposition 17 is straightforward.

Proposition 22. The joint distribution of the variables ξR, ξI as specified by (4.57) has 
PDF

− 1
ImL2((1 + i

√
3)/2)

log max (4|ξR|2, (|ξR| +
√

3|ξI |)2)
(1 − ξ2

R − ξ2
I )2

supported on max (4|ξR|2, (|ξR| +
√

3|ξI |2)) ≤ 1.

5. The quaternion Lagrange–Gauss algorithm

The definition of the quaternion number system was revised at the beginning of Sec-
tion 4.2. The Hurwitz integers H are the quaternions (2.1) with each ai either all integers, 
or all half integers. Their distinguishing feature from the obvious Lipschitz integers, de-
fined as the quaternions (2.1) with each ai an integer, is that they allow for a Euclidean 
algorithm [4]. With b0, b1 ∈ H

2 we make use of the Hurwitz integers to define the 
quaternion lattice

LH = {m0b0 + m1b1 |m0,m1 ∈ H}. (5.1)

For notational convenience let us rewrite (2.1) as a =
∑3

j=0 ajej , aj ∈ R, and denote 
Re q = a0, Imej q = aj (j = 1, 2, 3). For z ∈ H define the lattice quantiser
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DH(z) = argmin
λ∈H

‖λ− z‖. (5.2)

We see that analogous to (4.7)

DH(z) = argmin
β∈{DH1 (z),DH2 (z)}

|β − z|

where

DH1(z) = 	Re z
 +
3∑

ν=1
eν 	Imeν z


DH2(z) = 	Re(z − 1/2)
 + 1
2 +

3∑
ν=1

eν

(
	Imeν (z − 1/2)
 + 1

2

)
.

The lattice quantiser is relevant to the formulation of a quaternion Lagrange–Gauss 
algorithm. Thus the reasoning leading to (4.9) tells us that

bj+1 = bj−1 − bj DH

(
bj · bj−1

‖bj‖2

)
(5.3)

(note the order of the multiplication in the final term). We will see below that the 
analogues of Lemma 8 and Proposition 9 remain true. On the other hand, the rewrite of 
this quaternion vector equation to a scalar equation using the doubling of the quaternions 
to the octonions as implied by (4.16) breaks down. This is because to identify the first 
component of (a, −b)(c, d) as specified by (4.16) with a dot product requires that db = bd

– and thus commutivity – which is not true in general for quaternions.
Iteration of (5.3) typically gives smaller vectors, as known in the real and complex 

cases from Lemmas 8 and 10.

Lemma 23. Define mj by (4.8) with Z[w] replaced by H. Define bj+1 by (5.3) and suppose 
the resulting value of mj+1 is nonzero. Then

||bj+1|| < ||bj ||.

Proof. The same proof as for Lemma 8 suffices. �
As in the analogous setting for lattice reduction in R2 and C2, it follows from 

Lemma 23 that the quaternion Lagrange–Gauss algorithm terminates, and furthermore 
that the output vectors α, β can be chosen to satisfy

||α|| ≤ ||β||, DH

(α · β
||α||2

)
= 0. (5.4)

The second of these conditions is equivalent to requiring that
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||β + nα|| ≥ ||β||, ∀n ∈ H

(cf. going from (4.12) to (4.13)) and thus {α, β} is a greedy basis. But we know from 
the proofs of Propositions 9 and 11 that subject only to the set of integers – here the 
Hurwitz integers H – being a Euclidean domain with absolute value for norm, the greedy 
basis {α, β} is the shortest reduced basis. It has already been remarked that as distinct 
from the Lipschitz integers the Hurwitz integers do allow for a Euclidean algorithm, and 
it furthermore is true that the absolute value function is the norm. Hence we have a 
quaternion analogue of Propositions 9 and 11.

Proposition 24. Let {α, β} be a greedy basis for the Hurwitz integer quaternion lattice 
(5.1). Then {α, β} is a shortest reduced basis.

As for the real and complex cases, a convenient parametrisation of the shortest basis 
is obtained by using the Gram–Schmidt basis. Thus one decomposes V = UT where 
U ∈ SL2(H) and

T =
[
t11e0 t012e0 +

∑3
l=1 elt

l
12

0 t22e0

]
, t11 > 0, t22 = 1/t11.

Since in the Gram–Schmidt basis

α = (t11, 0), β =
( 3∑

l=0

elt
l
12, 1/t11

)
,

the conditions (5.4) characterising the shortest basis give

1 − 1/t411 ≤
3∑

l=0

X2
l , DH

( 3∑
l=0

elXl

)
= 0,

where Xl = tl12/t11.
Also, the Jacobian associated with the change of variables to the Gram–Schmidt basis 

is t711t322 (see e.g. [12, Ex. 3.2 q.5(i)]). Thus for F = H the (normalised) invariant measure 
(2.4) in the variables {t11, t22, {Xl}3

l=0} after integrating out over t22 reads

1
vol Γ4,H

χ1−1/t411≤
∑3

l=0 X2
l
χDH(

∑3
l=0 elXl)=0t

7
11dt11

3∏
l=0

dXl, (5.5)

where vol Γ4,H is the normalisation.
The functional form of the PDF for the length t say of the shortest basis vector can 

be read off from (5.5) in the region t < 1.
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Proposition 25. Let vol Γ4,H be as in (5.5). For 0 < t < 1 the PDF for the length of the 
shortest basis vector is equal to

1
vol Γ4,H

t7

2 . (5.6)

Proof. With t = t11, for 0 < t < 1 the first of the two constraints in (5.5) – and the only 
one involving t, is always valid. Noting that

∫
χDH(

∑3
l=0 elXl)=0

3∏
l=0

dXl = volV, (5.7)

where V denotes the Voronoi cell, then noting that volV is equal to the volume of a 
fundamental cell for the lattice in R4 corresponding to the Hurwitz integers, the task is 
to calculate this latter volume. Since the lattice corresponding to the Hurwitz integers 
can be generated by ⎡⎢⎣1/2 0 0 0

1/2 1 0 0
1/2 0 1 0
1/2 0 0 1

⎤⎥⎦
we conclude volV = 1/2, and (5.6) follows. �

From the definition of the Hurwitz integers, and the quantiser DH , the constraint 
DH(

∑3
l=0 elXl) = 0 can be characterised by the inequalities

|Xl| <
1
2 (l = 0, . . . , 3) and

3∑
l=0

|Xl| < 1. (5.8)

We have not succeeded in extending the method of the proof of Propositions 12 and 19
for a direct calculation of

vol Γ4,H =
∫

χ21/4>t11>0χ1−1/t411≤
∑3

l=0 X2
l

( 3∏
l=0

χ|Xl|≤1/2

)
χ∑3

l=0 |Xl|≤1t
7
11dt11

3∏
l=0

dXl,

(5.9)

where in obtaining this integral we have used the fact vol Γ4,H is the normalisation in 
(5.5), and that t11 is positive and can be no bigger than 21/4. But we can deduce its 
value, as we now proceed to demonstrate.

First, we remark that the integrand in (5.9) is even in the Xl, and so can be restricted 
to positive values of these variables provided we multiply by 24. Doing this, the change 
of variables Xl = xl/t11, t11 = u1/4 shows
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vol Γ4,H = 4
∫

χ2>u>0χu1/2−u−1/2≤
∑3

l=0 x2
l

( 3∏
l=0

χ21/4/2>xl>0χxl≤u1/4/2

)

× χ∑3
l=0 xl≤u1/4du

3∏
l=0

dxl. (5.10)

This is well suited to approximate numerical evaluation by a Monte Carlo rejection 
method, which with 106 trials gives the estimate 0.105. In fact Siegel’s mean value 
theorem can be used to indirectly compute the exact value.

Proposition 26. The exact value of the normalisation is

Γ4,H = 7ζ(3)
80 ≈ 0.1051799 · · · (5.11)

Proof. Let Ω(R) denote the expected number of vectors in the punctured quaternion 
disk of radius R. The fact that as a lattice in R4, the Hurwitz integers have unit cell of 
area 12 (recall the proof of Proposition 25) tells us that the appropriate version of Siegel’s 
mean value theorem as generalised by Weil [39] is the statement that

Ω(R) = 22π
4R8

24 , (5.12)

where π4R8/24 is the volume of the ball of radius R in R8. The factor of 22 is due 
to the area of the unit cell corresponding to the Hurwitz integers being 1/2; recall the 
discussion below (4.55).

On the other hand, starting with (5.6), the considerations which led to (4.44) give

Ω(R) = R8

16vol Γ4,H

∑
q∈H\{0}

1
|q|8 .

With ζ(s) denoting the Riemann zeta function, results contained in [42] tell us that

∑
q∈H\{0}

1
|q|8 = 21ζ(3)ζ(4) = 21π4

90 ζ(3)

and thus

Ω(R) = 7π4R8ζ(3)
25 · 3 · 5 · vol Γ4,H

(5.13)

Equating with (5.12) gives (5.11). �
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Remark 27. For the PDF of the second shortest basis vector in the real and complex 
cases, it has been demonstrated in Remark 16 that the asymptotic form for large length 
s, after the change of variables s �→ 1/s, is precisely the same as the small-s form of the 
PDF of the shortest basis vector. Here we will demonstrate this same property for the 
quaternion case. In (5.5), with the quantiser rewritten according to (5.8), and the change 
of variables Xl �→ t11Xl, we set and X = (X0, . . . , X3), and further change variables from 
t11 to s = (|X|2 + 1/t211)1/2 – the length of the second shortest basis vector – to deduce 
that the PDF of the latter is

1
vol Γ4,H

∫
χ|X|2≤s2−1/s2

( 3∏
l=0

χ|X|2+1/4X2
l ≥s2

)
χ|X|2+1/(

∑3
l=0 |Xl|)2≥s2

s

(s2 − |X|2)3

×
3∏

l=0

dXl. (5.14)

Denote

Γ1 = {X : |X|2 ≤ s2 − 1/s2}, Γ2 = ∪3
l=0{X : |X|2 + 1/4X2

l ≥ s2},

Γ3 = {X : |X|2 + 1/(
3∑

l=0

|Xl|)2 ≥ s2},

and for μ = 1, 2 let

Dμ = ∪3
l=0{X : |Xl|2 ≤ (s2 −

√
s4 − 2μ−1)/22μ−1},

Rμ = {X : (
3∑

l=0

|Xl|)2 ≤ 4(s2 −
√
s4 − 2μ−1)/22μ−1}.

Here D1 (D2) results from replacing |X|2 by |Xl|2 (2|Xl|2) in Γ2, then solving for |Xl|2. 
Similarly, R1 (R2) results from replacing |X|2 by 1

2 (
∑3

l=0 |Xl|)2 ((
∑3

l=0 |Xl|)2) respec-
tively. By construction

D2 ⊆ Γ2 ⊆ D1, R2 ⊆ Γ3 ⊆ R1.

Also, as s → ∞, Γ2 ⊆ Γ1 and

D1, D2 → ∪3
l=0{Xl : 1/(2s)+O(1/s5) ≥ |Xl|}, R1, R2 → {X : 1/s+O(1/s5) ≥

3∑
l=0

|Xl|}.

It follows from the above working that for large s the PDF (5.14) has the leading asymp-
totic form

1
vol Γ4,H

1
s5

∫ 3∏
χ|Xl|≤1/2s χ∑3

l=0 |Xl|≤1/s

3∏
dXl.
l=0 l=0
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Fig. 5.2. A total of 106 matrices were sampled from SL2(H) with invariant measure and bound R = 40 on the 
2-norm. For each, the quaternion Lagrange–Gauss lattice reduction algorithm with respect to the Hurwitz 
integers has been applied to compute the shortest basis vector α. A histogram has been formed for the 
PDF of ||α||. In the range 0 < s < 1 the theoretical prediction (5.6) with Γ4,H specified by (5.11) has been 
superimposed.

Scaling s from the integral, then recognising what remains as (5.7) simplifies this to

1
2vol Γ4,H

1
s9 .

Associating this with a measure and thus multiplying by ds, changing variables s �→ 1/s
we obtain (5.6), which was our claim. As discussed in Remark 16, this can be anticipated 
from the fact that the area of a unit cell is unity.

In the quaternion case the analogue of the variables (4.39) and (4.57) are the four 
variables

ξl = Xl√
|X|2 + 1/t411

l = 0, . . . , 3.

Although we don’t give the details, we remark that the joint distribution of these variables 
can be computed to obtain a PDF analogous to those in Propositions 17 and 22.

Using an extension of the numerical method detailed in [14] the quaternion version 
of the Lagrange–Gauss algorithm as detailed above has been implemented, allowing 
for the plotting of a histogram approximating the PDF for the shortest basis vector. 
As shown in Fig. 5.2 this exhibits excellent agreement with the theoretical prediction 
(5.6) augmented by (5.11). The numerical methods of [14] have also been appropriately 
generalised to provide realisations by way of histograms of the PDFs (4.36), (4.38), (4.42)
and (4.56). Although we refrain from displaying the results, we remark that again the 
agreement is excellent.
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