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1. INTRODUCTION

Automatic sequences have many properties ranging from number theory
to harmonic analysis, from theoretical computer science to physics. See for
example [11], [2], or [5]. An intuitive definition is that, given an integer
d�2, a sequence (un)n�0 with values in a finite set is d-automatic if its n th
term can be computed by a finite-state machine using the base d expansion
of the integer n. (A precise definition is given below.)

In his seminal paper on automatic sequences [10], Cobham proves that,
given an automatic sequence (un)n�0 , the set of integers such that un takes
a given value, always has a logarithmic density. It may happen that this set
also has a natural density, which then must be a rational number [10].
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A typical example is the sequence defined by un=1 if n begins with a 1 in
base 3, and un=0 otherwise. This sequence is 3-automatic. The set of n's
for which un=1 does not have a natural density, but its logarithmic density
exists and is equal to log 2�log 3. The proof of Cobham consists in showing
that the sequence whose limit gives the existence of the logarithmic density,
is bounded respectively from below and from above by two sequences con-
verging towards a common limit.

In this paper we first study the Dirichlet series associated with automatic
sequences: we prove that they possess a meromorphic continuation to the
whole complex plane, and that the poles��if any��must lie on a finite
number of left half-lattices. This result was announced in [1] but details were
never written down; it is a generalization of the case of the Thue�Morse
sequence with values \1, that was addressed in [3], and for which the
Dirichlet series can be continued to an entire function in the complex
plane. We then obtain as a consequence of the properties of automatic
Dirichlet series, a new proof of the existence of logarithmic densities for
automatic sequences, and an expression of these densities in terms of a
numerical convergent series. The hint at this point is a result of analytic
number theory stating that logarithmic density exists if and only if analytic
density exists, and they are then equal. Finally we give applications to com-
puting infinite products, in the spirit of [3] (see also [4] and [6] for real
analysis methods).

2. DEFINITIONS. FIRST PROPERTIES

We first give a definition of d-automatic sequences.

Definition 1. Let d�2 be an integer. A sequence (un)n�0 with values
in the set 7 is called d-automatic if and only if its d-kernel Nd (u) is finite,
where the d-kernel of the sequence (un)n�0 is the set of subsequences
defined by

Nd (u)=[n [ ud kn+a ; k�0, 0�a�d k&1].

Remark 1. A d-automatic sequence necessarily takes finitely many
values (take a large k, and look at the values ua for 0�a�d k&1). Hence
we can assume that the set 7 is finite.

The following characterizations of d-automatic sequences are easy
consequences of the definition.

Theorem 1. Let d�2 be an integer and (un)n�0 a sequence with values
in 7. Then, the following properties are equivalent.
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(i) The sequence (un)n�0 is d-automatic.

(ii) There exist an integer t�1 and a set of t sequences N$=
[(u (1)

n )n�0 , ..., (u (t)
n )n�0], such that

�� the sequence (u (1)
n )n�0 is equal to the sequence (un)n�0 ,

�� the set N$ is closed under the maps (vn)n�0 [ (vdn+i)n�0 , for
0�i�d&1.

(iii) There exist an integer t�1 and a sequence (Un)n�0 with values in
7t, that we denote as a column vector. There exist d matrices of size t_t,
say A0 , A1 , ..., Ad&1 , with the property that each row of each Ai has exactly
one entry equal to 1, and the other t&1 entries equal to 0, such that

�� the first component of the vector (Un)n�0 is the sequence (un)n�0 ;

�� for each i=0, 1, ..., d&1, and for all n�0, the equality
Udn+i=Ai Un holds.

We recall now the definitions of natural, logarithmic and analytic
densities.

Definition 2. Let E be a subset of the integers. We say that the set E
has a natural density d if the limit

d= lim
x � �

1
x

*[n�x; n # E]

exists.
We say that the set E has a logarithmic density $ if the limit

$= lim
x � �

1
log x

:
n�x; n # E

1
n

exists.
We say that the set E has an analytic density $$ if the limit

$$= lim
s � 1+

(s&1) :
n�1, n # E

1
ns

exists.

Remark 2. It can be proved that if a set has a natural density, it also
has a logarithmic density, and both densities are equal. The converse is not
true as indicated in the introduction. The case of analytic density is
addressed in the following proposition.
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Theorem 2. A set has an analytic density if and only if it has a
logarithmic density. Both densities are then equal.

This result is given for example in [15, p. 96].

Definition 3. Let (un)n�0 be a sequence with values in a set 7, and let
x # 7. We say that x occurs in the sequence (un)n�0 with frequency f (resp.
logarithmic frequency f ) if the set [n # N"[0]; un=x] has a natural density
(resp. has a logarithmic density) that is equal to f.

3. DIRICHLET SERIES OF AUTOMATIC SEQUENCES

With a sequence (un)n�0 taking its values in C we associate two Dirichlet
series given by

:
�

n=0

un

(n+1)s and :
�

n=1

un

ns .

If the sequence (un)n�0 takes only finitely many values (this is in particular
the case if (un)n�0 is automatic) both series converge for Rs>1. The main
theorem of this section was announced in [1]. It reads as follows.

Theorem 3. Let d�2 be an integer and let (un)n�0 be a d-automatic
sequence with values in C. Then there exist an integer t�1 and d matrices
of size t_t (the matrices A0 , A1 , ..., Ad&1 defined in Theorem 1(iii)), such
that the Dirichlet series

:
�

n=0

un

(n+1)s and :
�

n=1

un

ns

are the first components of Dirichlet vectors (i.e., vectors of Dirichlet series)
F(s) and G(s), such that

v F satisfies the infinite functional equation

\I&d &s :
d&1

j=0

A j+ F(s)

= :
d&1

j=0

A j :
�

k=1
\s+k&1

k + (d& j&1)k F(s+k)
d s+k
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G satisfies the infinite functional equation

\I&d &s :
d&1

j=0

Aj+ G(s)=\ :
d&1

j=1

j&sAj+ U0

+ :
d&1

j=0

A j :
�

k=1

(&1)k \s+k&1
k + jk G(s+k)

d s+k

v F and G have meromorphic continuations to the whole complex plane,
whose poles (if any) are located on a finite number of left semi-lattices.

Proof. We give only the proof for F, since the proof for G follows the
same lines. Let A0 , A1 , ..., Ad&1 be the matrices, and (Un)n�0 be the
sequence of vectors given in Theorem 1(iii). Define a Dirichlet vector F(s)
for Rs�1 by

F(s)= :
�

n=0

Un

(n+1)s .

We can write, using Theorem 1(iii),

F(s)= :
d&1

j=0

:
�

n=0

Udn+ j

(dn+ j+1)s= :
d&1

j=0

:
�

n=0

AjUn

(dn+ j+1)s

= :
d&2

j=0

:
�

n=0

AjUn

(dn+ j+1)s+ :
�

n=0

Ad&1Un

(dn+d )s .

Hence, denoting by I the t_t unit matrix,

(I&d &sAd&1) F(s)= :
d&2

j=0

Aj :
�

n=0

Un

(dn+ j+1)s

= :
d&2

j=0

Aj :
�

n=0

d &s (n+1)&s \1&
d& j&1
(n+1) d+

&s

Un

= :
d&2

j=0

Aj :
�

n=0

d &s (n+1)&s Un

_ :
�

k=0 \
s+k&1

k + (d& j&1)k

(n+1)kd k . (1)

This gives

(I&d &sAd&1) F(s)= :
d&2

j=0

A j :
�

k=0
\s+k&1

k + (d& j&1)k F(s+k)
d s+k ,
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hence

(I&d &s (A0+A1+ } } } +Ad&1)) F(s)

= :
d&2

j=0

Aj :
�

k=1
\s+k&1

k + (d& j&1)k F(s+k)
d s+k . (2)

Let A=d &1 (�0� j�d&1 A j), and let M(X) be the transpose of the
comatrix of (A&XI ), so that

M(X)(A&XI )=(A&XI ) M(X)=det(A&XI ) I.

Then, by multiplying (2) by M(d s&1), we get

det(A&d s&1I ) F(s)

=&M(d s&1) :
d&2

j=0

Aj :
�

k=1
\s+k&1

k + (d& j&1)k F(s+k)
d k+1 . (3)

Note that for any fixed s # C, the Dirichlet vector F(s+k) is bounded for
large k's. The righthand side of the above infinite functional equation (3)
converges for Rs>0. Hence this gives a meromorphic continuation of F(s)
for 0<Rs�1 with poles (if any) at points s # C such that d s&1 is an eigen-
value of the matrix A. Now, if &1<Rs�0, the righthand side converges,
with the possible exception of those s for which d s is an eigenvalue of the
matrix A. This gives a meromorphic continuation of F for Rs>&1, with
poles (if any) for s such that either d s&1 or d s is an eigenvalue of the
matrix A. Iterating this process shows that F has a meromorphic continua-
tion to the whole complex plane with poles (if any) located at the points

s=
log *
log d

+
2ik?
log d

&l+1,

where * is any eigenvalue of the matrix A, k # Z, l # N, and log is a branch
of the complex logarithm.

Remark 9. The previous proof also gives an ``explicit'' meromorphic
continuation of F to the half-plane Rs>0. Namely, the first equality in (1)
above reads

(I&d &sAd&1) F(s)= :
d&2

j=0

A j :
�

n=0

Un

(dn+ j+1)s

364 ALLOUCHE, MENDE� S FRANCE, AND PEYRIE� RE



hence

(I&d &s (A0+A1+ } } } +Ad&1)) F(s)

= :
d&2

j=0

A j :
�

n=0

Un \ 1
(dn+ j+1)s&

1
(dn+d)s+ (4)

whose righthand side clearly converges for Rs>0.

Remark 4. The Dirichlet series of d-regular sequences (see [7]) can be
studied along similar lines: they converge for Rs large enough (since the
growth of d-regular sequences is at most polynomial [7]), and they can be
analytically continued to meromorphic functions, by means of an infinite
functional equation. For another interesting similar class of Dirichlet series,
namely Dirichlet series of (completely) d-multiplicative sequences, see [12].

4. DENSITIES OF AUTOMATIC SEQUENCES

In his 1972 paper [10], Cobham proves the following two results.

Theorem 4 (Cobham). Let d�2 be an integer. Let (un)n�0 be a
d-automatic sequence with values in the set 7. Then

v The logarithmic frequency of a in (un)n�0 exists for every a # 7;

v The frequency of a in (un)n�0 may not exist, but if it exists it must
be a rational number.

We give here another proof of the first part of this theorem. We first
state two lemmas. The first one is classical, see for example [14, p. 40].

Lemma 1. Let B be a t_t matrix over a commutative field. Let
pB(X)=det(B&XI ) be its characteristic polynomial and let ?B(X) be its
monic minimal polynomial. Let 2(X) be the monic gcd of the entries of (the
transpose of ) the comatrix of the matrix (B&XI). Then

pB(X)=(&1)t ?B(X) 2(X).

The second lemma deals with stochastic matrices, i.e., matrices whose
entries are nonnegative real numbers and for which every row sums up to
1. The first part of the lemma can be found for example in [13, Theorem
1.3, p. 45], the second part is an easy consequence of the first part.

Lemma 2. Let B be a t_t stochastic matrix. Then the elementary
divisors of the matrix (B&XI ) of the form (X&1)k with k�1 are all of
degree 1, i.e., of the form (X&1). In particular 1 is a simple root of the
minimal polynomial of B.
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Remark 5. Note that if the stochastic matrix B is irreducible, i.e., if for
each pair of indices (i, j), there exists a k such that the (i, j)-entry of the
matrix Bk is positive (this is in particular the case if the matrix B is
primitive, i.e., if there exists an integer l such that all entries of Bl are
positive), then 1 is a simple root of the characteristic polynomial of B, see
for example [13, Theorem 4.3, p. 14].

We now prove a theorem on the behaviour for s � 1+ of automatic
Dirichlet series.

Theorem 5. Let d�2 be an integer. Let (un)n�0 be a d-automatic
sequence with values in C. Let t be the integer, let (Un)n�0 be the t-dimen-
sional vector sequence, and let A0 , A1 , ..., Ad&1 be the t_t matrices, defined
for the sequence (un)n�0 in Theorem 1(iii). Let A=d &1 (A0+A1+ } } } +
Ad&1). Let M be the transpose of the comatrix of the matrix A&XI, and
let 2(X) be the monic gcd of the entries of M. Let F(s)=��

n=0
Un

(n+1)s . Then
lims � 1+

(s&1) F(s) exists and

lim
s � 1+

(s&1) F(s)=
(&1)t+1

?$A(1) log d \
M

2
(1)+

_ :
d&2

j=0

A j :
�

n=0

(d& j&1)
(dn+ j+1)(dn+d )

Un .

Proof. Multiplying the last equality (actually valid for Rs>0) of
Remark 3 by M(ds&1)

2(d s&1)
, and using Lemma 1, we obtain

(&1)t d 1&s?A (d s&1) F(s)=&
M(d s&1)
2(d s&1)

_ :
d&2

j=0

A j :
�

n=0

Un \ 1
(dn+ j+1)s&

1
(dn+d)s+ .

Hence

(s&1) F(s)=d s&1 (&1)t+1 s&1
?A (d s&1)

M(d s&1)
2(d s&1)

_ :
d&2

j=0

Aj :
�

n=0

Un \ 1
(dn+ j+1)s&

1
(dn+d )s+ .

Since M(X)
2(X) is a matrix with polynomial coefficients, the limit when s goes

to 1 of M(d s&1)
2(ds&1)

exists, and is equal to M
2 (1). The limit when s goes to 1 of

s&1
?A (ds&1) is equal to 1

?$A (1) log d since 1 is a simple root of ?A (X) (Lemma 2).
Thus the limit when s goes to 1 of (s&1) F(s) exists and
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lim
s � 1

(s&1) F(s)=
(&1)t+1

?$A (1) log d \
M

2
(1)+

_ :
d&2

j=0

Aj :
�

n=0

(d& j&1)
(dn+ j+1)(dn+d )

Un .

We are now ready to state our theorem on frequencies.

Theorem 6. Let d�2 be an integer. Let (un)n�0 be a d-automatic
sequence with values in a set 7. Let : # 7. Define the map % on 7 by
%(:)=1, and %(;)=0 for all ;{:. Let t be the integer, let (Un)n�0 be the
t-dimensional vector sequence, and let A0 , A1 , ..., Ad&1 be the t_t matrices,
defined for the sequence (un)n�0 in Theorem 1(iii). Let A=d &1 (A0+A1

+ } } } +Ad&1). Let M be the transpose of the comatrix of the matrix
A&XI, and let 2(X) be the gcd of the entries of M. Let (%(Un))n be the
t-dimensional vector sequence whose components are the images by % of the
components of (Un)n . Then the logarithmic frequency of : in the sequence
(un)n�0 exists, and it is equal to the first component of

(&1)t+1

?$A (1) log d \
M

2
(1)+ :

d&2

j=0

Aj :
�

n=0

(d& j&1)
(dn+ j+1)(dn+d )

%(Un).

Proof. The sequence (%(un))n is d-automatic. Let t, (Un)n , and A0 ,
A1 , ..., Ad&1 be defined as above. It is easily checked that for all j #
[0, 1, ..., d&1], we have

%(Udn+ j)=Aj %(Un)

(remember that each row of Aj contains exactly one 1, and that all other
entries in this row are equal to 0).

Using Theorem 6 above, we easily conclude by noting that the
logarithmic frequency of : in the sequence (un)n�0 is equal to the
logarithmic frequency of : in the sequence (un)n�1 , and by applying
Theorem 2.

5. INFINITE PRODUCTS

The reader can find in [3] applications of Dirichlet series associated
with the Thue�Morse sequence to computing generalizations of the classical
product

`
n�0

\2n+1
2n+2+

=n

=
- 2

2
(5)
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where (=n)n�0 is the Thue�Morse sequence on the alphabet [\1] (i.e.,
=n=(&1)s2(n) where s2 (n) is the sum of the binary digits of n). The proof
of such formulas relies on functional equations linking the sums of the
Dirichlet series associated with the Thue�Morse sequence.

We are going to give another derivation of these functional equations
which applies to more general situations. But before doing so, we do not
resist the temptation to give the simple proof of Equation (5) due to the
first author (1987, unpublished; this was only written without reference in
[8]).

5.1. A simple approach

Let P and Q be the infinite products defined by

P= `
�

n=0
\2n+1

2n+2+
=n

, Q= `
�

n=1
\ 2n

2n+1+
=n

.

Then

PQ=
1
2

`
�

n=1
\ n

n+1+
=n

=
1
2

`
�

n=1
\ 2n

2n+1+
=2n

`
�

n=0
\2n+1

2n+2+
=2n+1

.

Of course all products are convergent, due to Abel's theorem and to the
fact that the summatory function of the Thue�Morse sequence with values
\1 is bounded. Now, since =2n==n , and =2n+1=&=n , we get

PQ=
1
2

`
�

n=1 \
2n

2n+1+
=n

\ `
�

n=0 \
2n+1
2n+2+

=n

+
&1

=
1
2

QP&1.

Since Q{0, this gives P2=1�2, hence the result (P is positive).

Remark 6. Note that other products could be studied using the same
trick. We give two examples.

v Let f be a map from N to R+ such that there exists a real number
a such that f (2n)=af (n) for each n. Let

P$= `
�

n=0 \
f (2n+1)
f (2n+2)+

=n

, Q$= `
�

n=1 \
f (2n)

f (2n+1)+
=n

.

Then, provided the infinite products converge, we have

P$=
1

- af (1)
.
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Note that the condition f (2n)=af (n) is satisfied by completely multi-
plicative functions (i.e., functions such that f (mn)= f (m) f (n) for all m, n).
But if a completely multiplicative function is non-decreasing and unbounded,
it must be of the form n:. (Even more is known, see [9].) Note that, if f (n)=n:,
then the infinite products P$ and Q$ are respectively equal to P: and Q:.

v Define three maps u, v, w from Z�3Z to Z by

n 0 1 2

u(n) 1 1 &2
v(n) 1 &2 1
w(n) &2 1 1

Let s3 (n) be the sum of digits of the base-3 expansion of the integer n. Then

`
�

n=0

(3n+1)u(s3(n)) (3n+2)v(s3(n)) (3n+3)w(s3(n))=
1
3

.

This is proved by defining {(n)=3[ s3 (n)
3 ]&1 (where [x] is the fractional

part of the real number x). Let

P"= `
�

n=1
\ 3n

3n+1+
{(n)

, Q"= `
�

n=0
\3n+1

3n+2+
{(n)

, R"= `
�

n=0
\3n+2

3n+3+
{(n)

.

Then

P"Q"R"=\1
3+

{(0)

`
�

n=1
\ 3n

3n+3+
{(n)

=3 `
�

n=1
\ n

n+1+
{(n)

.

Decomposing this last product according to n mod 3, and simplifying by P"
gives the result.

5.2. An approach through integrals

Now, let us consider a polynomial P(X)=�k
j=0 aj X j such that P(0)=1

and P(1)=0. We are also given an integer d�2.
Let us consider the function H defined in the unit disk by H(z)=

>l�0 P(zdl

). Then H satisfies the functional equation H(z)=P(z) H(zd).
This function as well as all its derivatives vanish at 1. It has an expansion
in power series:

H(z)= :
j�0

#jz j.

Such a sequence (#j) need not be automatic. Nevertheless this is the case
when d>k and when the coefficients aj generate a finite multiplicative
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sub-monoid of C*. This is also the case in some other situations described
below. The Thue-Morse sequence can be defined in this way (with d=2
and P(X)=1&X).

If Rs>1 and Rz>0, define c(s, z)=�n�0 #n (n+z)&s and G(s)=
�n�1 #nn&s.

The formula 1(s) w&s=�+�
0 ts&1e&tw dt, valid for Rs>0, implies the

following equality

1(s) c(s, z)=|
+�

0
ts&1e&tzH(e&t) dt (6)

which gives, for all z, an analytic continuation of s [ c(s, z) to an entire
function.

The change of variable t � t�d in Formula (6) leads to

1(s) c(s, z)=d &s |
+�

0
ts&1e&tz�dP(e&t�d) H(e&t) dt

=1(s) d &s :
k

j=0

a jc \s,
z+ j

d + . (7)

In the same way we get

1(s) G(s)=|
+�

0
ts&1 (H(e&t)&1) dt

=}s |
+�

0
ts&1 (H(e&}t)&1) dt

and

(1&}&s) 1(s) G(s)=|
+�

0
ts&1 (H(e&t)&H(e&}t)) dt, (8)

where } is any positive number. As a consequence, the function G itself has
an analytic continuation to an entire function.

If we take }=d in the last formula, then

(1&d &s) 1(s) G(s)=|
+�

0
ts&1 (P(e&t)&1) H(e&td) dt

=d &s :
k

j=1

aj |
+�

0
ts&1e& jt�dH(e&t) dt

=d &s1(s) :
k

j=1

ajc(s, j�d ). (9)
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The negative integers are simple zeros of the functions G and s [ c(s, z).
Moreover, we have c(0, z)=0 and G(0)=&1. As a consequence of
Formula (9) we have the relation

:
k

j=1

aj
�c
�s

(0, j�d )=&log d.

This formula formally reads

`
k

j=1

`
n�0 \

dn+ j
d +

aj #n

=d

Actually when d>k this product converges provided its terms be suitably
grouped (look at the summatory function of #n , remembering that
P(1)=0). In this case it can also be (formally) written

`
k

j=1

`
n�0

(dn+ j)aj #n=d.

When the polynomial P has no root of modulus less than 1, we consider
the expansion 1

P(X)=� j�0 ;j X j. Then Formula (6) reads

1(s) c(s, z)=d s |
+�

0
ts&1e&dtzH(e&dt) dt

=d s :
j�0

;j |
+�

0
ts&1e&t(dz+ j)H(e&t) dt

=1(s) d s :
j�0

;jc(s, dz+ j).

5.3. Examples

We give some examples of the integral approach studied above.
Let : be a (k+1)-st root of 1 (other than 1), and let P=�k

j=0 : jX j.
Since we have P(X)&1=: X P(X)&Xk+1, the first equality in Formula
(9) yields the identity

(1&d &s) G(s)=: c(s, 1)&d &sc \s,
k+1

d + ,

from which we obtain

:
n�0

#n \: log(n+1)&log \n+
k+1

d ++=log d. (10)
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(This is a formal relation, but again its terms can be grouped to ensure
convergence when d>k. This will be also the case in the examples that
follow.)

Let us assume now that d>k. The sequence (#j) is then d-automatic. It
is easy to see that #n equals 0 if the base d expansion of n contains at least
one digit larger than k. Otherwise, we have #n=:sd (n), where sd (n) stands
for the sum of digits in the base d expansion of n. It will prove convenient
to define _d (n) to be sd (n) modulo d and to consider, if 2�b�d, the map
.b, d which transforms �j�0 n j b j (where 0�nj<b) into �j�0 nj d j.

Now, we can state several instances of Formula (10). If d=2, hence
k=1, we get Formula (5). More generally, if d>k=1, we obtain

`
n�0

_(.2, d (n)+1) \.2, d (n)+
2
d+&

(&1)s2(n)

=
1
d

. (11)

Let us take k=2, d=3. Then #n=e2i?s3(n)�3. By taking real and imaginary
parts in (10), we get

`
n�0

(n+1)_3(n)&1=32�3 and `
n�0

(n+1)v(_3(n))=32�- 3

(where v has been defined in Remark 6) as well as a formula analogous
to (11). In the same way, we obtain for k=3, d=4, :=i,

`
n�0

(n+1)[_4(n)�2]&1�2=2 and `
n�0

(n+1) |[(_4(n)&1)�2]|&1�2=2.

We end our paper by showing that the condition d>k is not necessary
to get automaticity.

First take k=d=2 and :=e2i?�3. Then, the coefficients #n are determined
by the following rules: #0=1, #2n+1=: #n for n�0, and #2n=#n+:2#n&1 .
If vn stands for the vector ( #n&1

#n
), these recursion relations can be written

v2n=( :
:2

0
1) vn and v2n+1=( :2

0
1
:) vn . If we denote by a and b the matrices

( :
:2

0
1) and ( :2

0
1
:), we have a3=b3=1 and (ab)2=(ba)2=&:. These rela-

tions imply that a and b generate a finite group (of order 72). It easily
follows that the sequence (#n) is 2-automatic.

Now take k=d=3 and P(X)=1+iX&X2&iX 3. Let vn stand for the
vector whose components are #n&1 , #n , and #n+1 . Then we obtain
v3n=a vn , v3n+1=b vn , and v3n+2=c vn , where

&1 0 0 &i 1 0 0 i 0

a=\&i 1 0+ , b=\ 0 i 0+ , and c=\0 &1 0+ .

0 i 0 0 &1 0 0 &i 1
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But, it can be checked that a, b, and c generate a finite monoid (of order
110). It follows that the sequence (#n) is automatic.
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