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We examine various extensions of a series of theorems proved by Chudnovsky in
the 1980s on the algebraic independence (transcendence degree 2) of certain quanti-
ties involving integrals of the first and second kind on elliptic curves; these exten-
sions include generalizations to abelian varieties of arbitrary dimensions, quantita-
tive refinements in terms of measures of simultaneous approximation, as well as
some attempt at unifying the aforementioned theorems. In the process we develop
tools that might prove useful in other contexts, revolving around explicit ‘‘alge-
braic’’ theta functions on the one hand, and Eisenstein’s theorem and G-functions
on the other hand. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

This text has its source in several, both old and recent, results:

• First and foremost, a series of theorems of Chudnovsky from the
1970s [Chu84, Chap. 7] which, as they are central here and somewhat
scattered in Chudnovsky’s book, we presently recall:

Theorem 1.1 (Chudnovsky’s Theorems). Let L=Zw+ZwŒ … C be a
lattice with invariants g2, g3, Weierstrass functions ^, z and quasi-periods g,
gŒ, all defined in the usual way (see [Sil94]). Each of the sets below contains
at least two algebraically independent numbers: first

(1) {g2, g3,
g

w , p
w},

(2) {g2, g3, w, g, wŒ, gŒ};



if we assume g2, g3 ¥ Q̄:

(3) {g

w , p
w},

(4) {w, wŒ, g, gŒ};

and if, still assuming g2, g3 ¥ Q̄, we consider two complex numbers u and uŒ,
Q-linearly independent and such that ^(u), ^(uŒ) ¥ Q̄:

(5) {g

w , z(u) − g

w u},
(6) {u, uŒ, z(u), z(uŒ)}.

It can be noticed that the above assertions are related, regardless of their
truthfulness, by the following logical implications :

(1) S (3) R (5)
e e

(2) S (4) R (6)

• Second, a result announced in Chudnovsky’s book [Chu84,
Theorem 9, p. 9] which extends assertion (4) above to abelian varieties of
arbitrary dimension; a complete proof was recently given in [Vas96].

• Third, Theorem 4.1 of [RW97], where a measure of simultaneous
approximation is established which has Theorem 1.1(4) as a corollary.

• Fourth, a ‘‘trick’’ introduced by Chudnovsky in [Chu82] to prove a
sharp measure of algebraic independence refining assertion (3) above;
recently rediscovered in [Phi99, Bru99], it consists in relating elliptic and
quasi-elliptic (like Weierstrass’s z) functions to G-functions, allowing better
arithmetic estimates in the transcendence proof and, ultimately, an optimal
dependence of measures in the parameter controlling the height.

One important feature of our results, coming from point Three above, is
the following:

Definition 1.1. A (simultaneous) approximation measure for (h1, ..., hn)
¥ Cn is a function f: N × R+Q R+ such that for some constant C > 0, for
any (a1, ..., an) ¥ Q̄n with [Q(a1, ..., an) : Q] [ D, h(ai) [ h (absolute loga-
rithmic height as defined in [Wal92]) and D, h \ C one has

log max
i

|hi − ai | \ − Cf(D, h).

Before stating our main result, we recall a few more definitions. Let A be
an abelian variety of dimension g defined over a subfield K of C. A ratio-
nal (hence meromorphic) differential on A is said to be of the second kind
if it has no residues [GH78, p. 454]; the quotient space of second-kind by
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exact differentials has dimension 2g and will be denoted by H1
DR(A, K), or

H1
DR(A) when we implicitly take K=C (the notation H1

DR is justified by
[FW84, p. 192]). On the other hand, H1(A, Z) will denote the usual first
homology group of A(C).

Theorem 1.2. Let A be an abelian variety defined over a field K … C,
(w1, ..., w2g) representing a basis of H1

DR(A, K) and u1, ..., ur ¥ T0A(C)
(tangent space at the origin), Q-linearly independent and such that
expA(uj) ¥ A(K). We let r=r

g .

(1) If K … Q̄, the set of >uj0 wi (1 [ i [ 2g, 1 [ j [ r) admits the
following approximation measure:

f1(D, h)=D
3
2+
1
r(log D)−1/2 (D2/r+h).

(2) If all the uj are periods (elements of the period lattice
L=ker expA), the set made up by all >uj0 wi (1 [ i [ 2g, 1 [ j [ r) together
with a generating system of K over Q admits the following approximation
measure:

f2(D, h)=[D(h+log D)]3/r.

Using a theorem of Laurent and Roy [LR99, Théorème 1.2] we
can deduce from assertions (1) and (2) (resp.) of the preceding theorem
extensions in arbitrary dimension of assertions (6) and (2) (resp.) of
Theorem 1.1:

Corollary 1.1. (1) If K … Q̄ and r=2g, the >uj0 wi generate a field of
transcendence degree at least 2.

(2) If r \ g+1 and the uj are periods, the field generated over K by the
>uj0 wi has transcendence degree (over Q) at least 2.

The text is arranged as follows. Section 2 briefly reviews embeddings of
extensions of abelian varieties by powers of the additive group [FW84],
and ends with a zero estimate, corollary of [Phi96], tailored to this partic-
ular type of algebraic groups. Section 3 contains addition, multiplication
and differentiation formulae for the functions involved in these embed-
dings, much in the spirit and continuation of [MW93, Sect. 3]; there we
also construct, starting from classical theta functions, ‘‘sigma functions’’
which are nothing but the ‘‘algebraic’’ theta functions whose existence is
proved in [Bar70]. The next section (Section 4) develops, in the context of
the algebraic groups described above, Chudnovsky’s ‘‘G-trick’’ mentioned
earlier (point Four); it is based on a quite general and effective version of
Eisenstein’s classical theorem stating that every algebraic power series is a
G-function (see [PS76, VIII.3.3 and VIII.4.4]). In Section 5, we review
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briefly the very special but classical case g=1 of the general results con-
tained in the previous two sections. In Section 6 we state in full detail and
carry out the proof of our main result; and in Section 7, we discuss various
results closely related to our main theorem, state some with summary indi-
cations of proofs, and examine which technical difficulties (coming from
the insufficiency of known Schwarz/interpolation lemmas) arise in proving
more.

2. EMBEDDINGS AND ZERO LEMMA

Here we will describe the type of embeddings we will be using for exten-
sions, by powers of the additive group Ga, of principally polarized abelian
varieties.

Let A be such an abelian variety, L … C a lattice such that A(C) 4 C/L.
For i=1...g write “i=“/“zi, and for any derivation “, “ log f=“f

f . The
following, elementary but fundamental, lemma provides us with an explicit
basis for the quotient H1

DR(A, C) of the space of first-order meromorphic
differentials of the second kind on A (i.e., without residues) by that of exact
differentials. We refer the reader to [Lan82] for both the definition of a
nondegenerate theta function (all of those considered in this text will be so)
and the reduction process used in the proof, as they both are classical and
will not be used in the rest of the text.

Lemma 2.1. For any nondegenerate theta function h for the lattice L, the
differential forms dz1, ..., dzg (coordinates in Cg) and

d“1 log h, ..., d“g log h

make up a basis of H1
DR(A, C).

Proof. We actually show the nondegeneracy of the (quasi-)period
matrix

1F lj

0
wi 2

1 [ i, j [ 2g
,

where (l1, ..., l2g) is a basis of L and wi=dzi, wg+i=d“i log h for i=1...g;
this obviously implies the lemma. For the proof, by the same process as in
[Lan82, pp. 93–94] (and without affecting the rank of our matrix), we
reduce h to a theta function with a particularly simple automorphy factor,
viz. (for some Frobenius basis (e1, ..., eg, v1, ..., vg) of L)

h(z+ei)=h(z),

h(z+vi)=h(z) exp(cizi+di)
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with every ci ] 0; the (quasi-)period matrix then appears to be triangular
and trivially nondegenerate. L

Assume now that the complex torus Cg/L is embedded into a projective
space PN using a ‘‘theta embedding’’ G=(h0 : · · · : hN). The above lemma
then allows us to associate to each w ¥ H1

DR(A, C) a derivation “ and a
linear form L, both uniquely determined, such that in H1

DR(A) the equality
w=d“ log h0+dL takes place. We will denote by G̃w the following appli-
cation, which defines an embedding of (the complex locus of) the extension
of A by Ga associated with w [FW84, III.2]:

Cg× C Q P2N+1(C)

(z; t) W (h0(z) : · · · : hN(z) :

(“+L(z)+t) h0(z) : · · · : (“+L(z)+t) hN(z)).

In the following we will often write, just as we did here, (“+L(z)+t) hi(z)
for “hi(z)+(L(z)+t) hi(z) and, once “ and L have been fixed, h̃i(z; t)=
(“+L(z)+t) hi(z).

For w
¯

=(w1, ..., wl) a family of differentials of the second kind, linearly
independent in H1

DR(A), associated in the above way to derivations
“1, ..., “l and linear forms L1, ..., Ll, we define the application

G̃w
¯

:Cg× C l Q P(l+1)(N+1)−1(C)

(z; t) W (h0(z) : · · · : hN(z) :

(“1+t1+L1(z)) h0(z) : · · · : (“l+tl+Ll(z)) hN(z))

obtained by ‘‘concatenation’’ of the G̃wi
(i=1...l); it defines an embedding

of the extension G of A by G l
a associated to w

¯
. Note that, in particular, the

subgroup G l
a is naturally defined within G by a system of equations

hi(0) Xj=hj(0) Xi (0 [ i < j [ N).
We can now state the zero lemma we will be using, a corollary of

Théorème 9 from [Phi96]:

Proposition 2.1 (Zero Lemma). For any g ¥ Ng, l ¥ N there exists c > 0
with the following property. Let G be an algebraic group of dimension
d=g+l defined over a subfield K of C, extension of an abelian variety A of
dimension g by G l

a,

0 Q G l
a Q

i G Q
p A Q 0

and embedded in a projective space PM in the fashion described above. If E is
a subset of G(K) containing 0; if a homogeneous polynomial P ¥

K[X0, ..., XM], with degree bounded by L2, vanishes on dE− dE (where dE

140 PIERRE GRINSPAN



denotes the sum of d terms E+ · · · +E, and the difference dE− dE has
similar meaning) to the order T along some subspace V of the tangent space
TG to G at the origin, without however vanishing identically on G; if, finally,
its restriction to G l

a … G (see above) can be written as a polynomial of degree
bounded by L1; then for some proper algebraic subgroup GŒ of G the inequality

NŒTdŒ deg GŒ [ cL l
−

1L
a −

2

holds, where NŒ is the cardinality of (E+GŒ)/GŒ, dŒ the dimension of
(V+TGŒ)/TGŒ, lŒ that of L/(L 5 GŒ), and aŒ that of A/p(GŒ).

3. THETA AND SIGMA FUNCTIONS

Here we will recall a few properties of classical theta functions and con-
struct from these some analogues in higher dimension of Weierstrass’s
sigma function from the theory of elliptic functions.

Let g be a non-zero integer, and fix an element y of Siegel’s upper half-
plane Hg formed by all square complex matrices of size g, symmetrical and
with definite-positive imaginary part. The theta function with characteristic
m=(mŒ, mœ) ¥ (Rg)2 associated to y is defined by

hm(y, u)= C
n ¥ Zg

exp[ip((n+mŒ) y t(n+mŒ)+2(n+mŒ) t (u+mœ))];

most of the time we will omit its dependence in y and simply write hm(u).
We will, however, say that some object (e.g., polynomial) which depends a
priori on y is ‘‘locally independent’’ of y if it is constant on each element of
some open covering of Hg.

If now m is restricted to (12 Zg)2, the classical relations

hm(−u)=h−m(u),

hm+n(u)=exp(2ipmŒ tnœ) hm(u)(n=(nŒ, nœ) ¥ (Zg)2)

imply in particular that hm is either even or odd, depending on whether
2mŒ tmœ is an integer or not; they also suggest that we deal only with m in
some fixed system Z2 of representatives of (12 Z2g)/Z2g.

One of the fundamental properties of theta functions is the existence of
‘‘Riemann relations’’ (see [MW93, relation (3.1) and Lemma 3.2]). It is
easily checked that for any homogeneous quadratic polynomial Q ¥ C[u],
those relations are still satisfied by the family (sm)m ¥Z2

defined by

sm=hmeQ;
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thus any property of the family (hm)m ¥Z2
which follows from them is still

valid for the (sm)m ¥Z2
. For the following, we will fix such a family and

write G=(sm)m ¥Z2
. First we can deduce from the above-mentioned results

[MW93]:

Lemma 3.1 (Riemann Relations). (1) For any m, n, p, q ¥ R2g and
z, w ¥ Cg the following relation holds,

sm(z+w) sn(z − w) sp(0) sq(0)

=2−g C
b ¥Z2

cbsa+b(z) sb+b(z) sc+b(w) sd+b(w),

where cb= ± 1 depends on b and m, while

(a, b, c, d)=
1
2

(m, n, p, q) R
1 1 1 1
1 1 − 1 − 1
1 − 1 1 − 1
1 − 1 − 1 1

S .
(2) Moreover, for any m, n ¥Z2 there exist p — m+a, q — n+a

(a ¥Z2) in Z2 such that a, b, c, d defined by the formula above are half-
integers (a, b, c, d ¥ 12 Z2g) and that sp(0) sq(0) ] 0.

Let N+1=4g; this is the number of elements in Z2. We define T, X, X1,
X2, Y1, Y2 to be families of (N+1) variables, all independent; furthermore
D ¥ Ng will be an integer depending only on g and whose precise value will
be of little importance to us; finally, we will call homogeneous of degree 0
in some set of variables, say T, any quotient of two homogeneous poly-
nomials of the same degree in T.

We define a basis of derivations (“1, ..., “g) on Cg as follows. We assume
the elements of Z2 (and accordingly, functions hm and sm) to be numbered
so that h0(0) ] 0 (thus h0, s0 are even) and that the jacobian matrix

P=
1

h0(0)
1“hi
“uj

(0)2
1 [ i, j [ g

of si/s0=hi/h0 (i=1...g) at the origin is invertible (thus hi and si,
i=1...g, are odd). We then let

1 “
“u1

, ...,
“

“ug
2=(“1, ..., “g) P;

we also introduce coordinates z=(z1, ..., zg) in Cg so that (dz1, ..., dzg) is
dual to (“1, ..., “g), and by a slight abuse of notation we will from now on
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write the sm as functions of z. As a last piece of notation we define, for any
functions f and g, [f, g]i=g2“i(f/g)=g“if − f“i g (in a manner similar
to [Dav89]).

Using what was said above about the sm, we deduce from Lemmas 3.1
and 3.7 of [MW93]:

Proposition 3.1 (Masser–Wüstholz). There exist finite families

(Dmni)m, n ¥Z2
i=1, ..., g

, (Fm)m ¥M,

with Fm ¥ Q[T, X] bi-homogeneous of degree (D, 2) and Dmni ¥ Q(T)[X] of
degree (0, 2), locally independent of y and satisfying:

(1) The polynomials obtained by specializing the Fm at T=G(0)
provide a system of equations for the image of G; the family of their differ-
entials at X=G(0) has rank N − g+1.

(2) For any m, n ¥Z2 and i=1...g we have the following equality
(between entire functions on Cg):

[sm, sn]i=Dmni(G(0), G).

The purpose of this section will be to establish, using only the Riemann
relations, similar results for the functions s̃M appearing in the embedding
G̃=G̃w defined in Section 2, associated to a derivation “ and a linear
form L.

3.1. Addition

We start from the Riemann relation stated in Lemma 3.1; fixing (z − w)
and differentiating (with “) with respect to (z+w), we get

2g+1“sm(z+w) sn(z − w) sp(0) sq(0)

= C
b ¥Z2

cb[“sa+b(z) sb+b(z) sc+b(w) sd+b(w)

+sa+b(z) “sb+b(z) sc+b(w) sd+b(w)

+sa+b(z) sb+b(z) “sc+b(w) sd+b(w)

+sa+b(z) sb+b(z) sc+b(w) “sd+b(w)];
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it follows easily that for t, u ¥ C,

2g+1s̃m(z+w; t+u) sn(z − w) sp(0) sq(0)

= C
b ¥Z2

cb[sb+b(z) s̃a+b(z; t)(sc+bsd+b)(w)

+sa+b(z) s̃b+b(z; t)(sc+bsd+b)(w)

+(sa+bsb+b)(z) sd+b(w) s̃c+b(w; u)

+(sa+bsb+b)(z) sc+b(w) s̃d+b(w; u)].

Similarly to the proof of Lemma 3.3 in [MW93], the latter equality
together with Lemma 3.1 yields

Proposition 3.2 (Addition Formulae). There exist finite families

(At
m)m ¥Z2, t ¥ X, (Bt

m)m ¥Z2, t ¥ X

of elements of Q[T, X1, X2, Y1, Y2], locally independent of y, with the
following properties:

• Each polynomial At
m is multi-homogeneous in (T, X1, X2, Y1, Y2) with

degree (D, 2, 0, 2, 0); each polynomial Bt
m is homogeneous in T with degree

D, in (X1, X2) with degree 2, in (Y1, Y2) with degree 2, and in (X2, Y2) with
degree 1.
• For any z, w ¥ Cg, t, u ¥ C and t ¥ X, the family ((At

m)m ¥Z2
, (Bt

m)m ¥Z2
)

at T=G(0), X1=(si(z))0 [ i [N, X2=(s̃i(z; t))0 [ i [N, Y1=(si(w))0 [ i [N,
Y2=(s̃i(w; u))0 [ i [N, provides a system of projective coordinates for the
point G̃(z+w; t+u), unless identically zero.
• For any z0, w0 ¥ Cg there is t ¥ X such that for all t, u ¥ C, z ¥ Cg near

z0 and w ¥ Cg near w0, the family above does not vanish identically.

This proposition does not, however, stress the particularly simple form
taken by the addition law whenever w belongs to the period lattice
L y=2Zg+Zgy; the latter form can be found by a different method. First,
differentiating with respect to w then evaluating at w=w

2 (w ¥ L y) the
Riemann relation with n=m, q=p, we obtain

5“sm 1z+
w

2
2 sm 1z −

w

2
2− sm 1z+

w

2
2 “sm 1z −

w

2
26 s2p(0)

=21−g C
b ¥Z2

cbsm+p+b(z) sm−p+b(z)(sb“sb) 1w
2
2 .
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Subtracting 2(“sn/sn)(w
2 ) times the original Riemann relation (still with

n=m, p=q, w=w
2 , and with n ¥Z2 chosen so that sn(

w
2) ] 0), we deduce

“sm 1z+
w

2
2 sm 1z −

w

2
2− sm 1z+

w

2
2 “sm 1z −

w

2
2

− 2
“sn

sn
1w

2
2 sm 1z+

w

2
2 sm 1z −

w

2
2

=
21−g

s2p(0)
C

b ¥Z2

cbsm+p+b(z) sm−p+b(z)1sb

sn
“

sb

sn
21w

2
2 s2n 1

w

2
2 .

Now we notice that for any b ¥Z2 the function f=sb/sn, being on the
one hand periodic, on the other hand either even or odd, satisfies

f“f 1 − w

2
2=f“f 1w

2
2=−f“f 1 − w

2
2 ;

this means that the preceding expression is in fact zero. Finally we let
x=z − w

2 to get, for any x ¥ Cg, m ¥Z2 with sm(x) ] 0 and n ¥Z2 with
sn(

w
2) ] 0:

“sm

sm
(x+w) −

“sm

sm
(x)=2

“sn

sn
1w

2
2 .

Taking x=0 we find in particular, for any p ¥Z2 such that sp(w) ] 0 (so
sp is even),

“sp

sp
(w)=2

“sn

sn
1w

2
2 .

We can now write

“sm(x+w)=
sm(x+w)

sm(x)
1“sm(x)+sm(x)

“sp

sp
(w)2 ;

it follows that the vector

((sp(w) sm(x))m ¥Z2
, (sp(w) “sm(x)+sm(x) “sp(w))m ¥Z2

)

is equal to the quotient of

((sm(x+w))m ¥Z2
, (“sm(x+w))m ¥Z2

)
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by the quantity

sm(x+w)
sp(w) sm(x)

,

independent of m ¥Z2 (as long as sm(x) ] 0) since w ¥ Ly; finally, adding
the t variable we readily conclude:

Proposition 3.3. For any x ¥ Cg, w ¥ L y, and t, u ¥ C, the family

((sp(w) sm(x))m ¥Z2
, (sp(w) s̃m(x; t)+sm(x) s̃p(w; u))m ¥Z2

),

with p ¥Z2 such that sp(0) ] 0, provides a system of projective coordinates
for G̃(x+w, t+u).

3.2. Multiplication

In a way similar to [Rém00, Proposition 5.2], we now deduce from the
addition law a multiplication law which, although not optimal (the right
degree, according to Serre’s appendix to [Wal87], is only n2), will be
enough for our purpose. Note that since all our functions are either even or
odd, we really do not need to consider subtractions or multiplications by
a < 0.

Proposition 3.4 (Multiplication Formulae). There is a constant C > 0
(depending only on g) and families of polynomials

(Mr
ma)m ¥Z2, a ¥ Ng

r ¥ P

, (M̃r
ma)m ¥Z2, a ¥ Ng

r ¥ P

,

locally independent of y, with, for each a, Mr
ma, M̃r

ma ¥ Q[T, X1, X2] homo-
geneous of degree d(a) [ 4a2 in (X1, X2), with degree dŒ(a) [ (4a2/3) D in
T, length at most L(a) with log L(a) [ C(4a2/3), and finally with total
degrees in variables X2 bounded by 0 forMr

ma and 1 for M̃r
ma, such that:

• For any a ¥ Ng, r ¥ P, z ¥ Cg, and t ¥ C, the family

((Mr
ma)m ¥Z2

, (M̃r
ma)m ¥Z2

)

evaluated at T=G(0), X1=(si(z))0 [ i [N, X2=(s̃i(z; t))0 [ i [N provides a
system of projective coordinates for G̃(az; at) unless identically zero.
• For any z0 ¥ Cg, a ¥ Ng there exist r ¥ P such that for z ¥ Cg close to

z0 and any t ¥ C, the preceding family does not vanish identically.
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Proof. Write C for the logarithm of the greatest length of polynomials
At
m, Bt

m (t ¥ X) appearing in Proposition 3.2. We define functions d, dŒ, and
L by d(1)=1, dŒ(1)=0, L(1)=0 and, in accordance with Proposition 3.2,

d(2a)=4d(a), d(2a+1)=2d(a)+2d(a+1),

dŒ(2a)=D+4dŒ(a), dŒ(2a+1)=D+2dŒ(a)+2dŒ(a+1),

L(2a)=eCL(a)4, L(2a+1)=eCL(a)2L(a+1)2.

It follows by induction that dŒ(a)=d(a)−1
3 D and log L(a)=Cd(a)−13 , hence

we only have to bound d(a). Now it is easily seen, on the one hand that for
a=2k we have d(a)=22k=a2, on the other hand that the function d is non-
decreasing; this allows us to (very roughly) bound d(a) by d(2k) for any a
between 2k−1 and 2k. Note that, when applied with care, the above for-
mulae yield the value d(a)=2k−1(3a − 2k) for 2k−1 [ a [ 2k. L

On the other hand, we can deduce from Proposition 3.3 the following

Corollary 3.1. For any x ¥ Cg, w ¥ L y, t, u ¥ C and a ¥ Ng, the family

((sp(w) sm(x))m ¥Z2
, (sp(w) s̃m(x; t)+asm(x) s̃p(w; u))m ¥Z2

),

with p ¥Z2 such that sp(0) ] 0, provides a system of projective coordinates
for G̃(x+aw, t+au).

3.3. Differentiation

We now turn to differentiating the s̃i; here the modification we made
from the hi to the si will, at last, play a (crucial) part, and so will the choice
of the derivation “=;g

j=1 (“zj) “j and linear form L(z)=;g
i=1 (“iL) zi

used in constructing the s̃i.
We start again from the addition formula for s̃m, which we summarize as

(Ã) 2g+1s̃m(z+w; t+u) sn(z − w) sp(0) sq(0)

= C
a, b, c, d ¥Z2

cabcd[sa(z) s̃b(z; t) sc(w) sd(w)+sa(z) sb(z) s̃c(w; u) sd(w)],

where (with some new notation) cabcd is an integer depending on m, n, p, q,
a, b, c, d. We differentiate it (using “i, 1 [ i [ g) with respect to w, then let
u=w=0 to obtain

2g+1sp(0) sq(0)[s̃m, sn]i

= C
a, b, c, d ¥Z2

cabcdsa[(sd“isc+sc“isd)(0) s̃b

+(sd(“i“+“iL) sc+“sc“isd)(0) sb].
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In order to get rid of first-order derivatives at 0, we note that (by Proposi-
tion 3.1(2)) every function sk (k ¥Z2) and derivation “j (j=1...g) satisfy,
since s0 is even,

s0(0) “jsk(0)=[sk, s0]j (0)=Dk0j(G(0), G(0)).

Applying this to sc and sd, to “i and “, we get

“isc(0)=
1

s0(0)
Dc0i(G(0), G(0)),

“isd(0)=
1

s0(0)
Dd0i(G(0), G(0))

while

“sc(0)=C
g

j=1
“zj“jsc(0)=C

g

j=1
“zj

1
s0(0)

Dc0j(G(0), G(0));

all together this yields

2g+1sp(0) sq(0) s20(0)[s̃m, sn]i

= C
a, b ¥Z2

[Pabi(G(0), G(0)) sas̃b+Qabi(G(0), G(0), (“zj)1 [ j [ g, “iL) sasb]

+ C
a, b, c, d ¥Z2

cabcds
2
0(0) “i“sc(0) sd(0) sasb,

where Pabi, Qabi are homogeneous (as rational fractions) of degree 0 in their
first set of variables, (as polynomials) of degree 4 in their second one, and
furthermore Qab is (polynomially) homogeneous of degree 1 in its last
(g+1) variables. Now all we have to do is get rid of the second-order
derivatives “i“sc(0). To do this, we apply “ to the equality

[sc, s0]i=Dc0i(G(0), G)

from Proposition 3.1(2) then specialize the result at 0; we thus get
(remembering that s0 is even)

s0(0) ““isc(0) − sc(0) ““is0(0)=“[Dc0i(G(0), G)](0),

exhibiting on the right-hand side a linear combination, with coefficients
linear in (“zj)1 [ j [ g, of terms sk(0) “jsl(0) to which, after mutliplying them
with s0(0), we can apply Proposition 3.1(2) again. This allows us to express

(s20““isc − s0sc““is0)(0)
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as a bi-homogeneous polynomial of degree 3 in G(0) and 1 in (“zj)1 [ j [ g,
with coefficients homogeneous of degree 0 in Q(G(0)). Eventually,

2g+1sp(0) sq(0) s20(0)[s̃m, sn]i= C
a, b ¥Z2

Pabi(G(0), G(0)) sas̃b

+ C
a, b ¥Z2

sasb[Rabi(G(0), G(0), (“zj)1 [ j [ g, “iL)

+s0(0) ““is0(0) Sabi(G(0), G(0))],

where Pabi, Rabi are homogeneous of degree 0 in their first set of variables
and 4 in their second one, Rabi is also linear (homogeneous of degree 1) in
((“zj)1 [ j [ g, “iL), and Sabi ¥ Q(T)[X] has bi-degree (0, 2). We can
conclude:

Proposition 3.5. Assume the polynomial Q used in defining (sm)m ¥Z2
is

chosen so that all second-order derivatives of s0 vanish at 0. Then there exists
a family (Emni)m, n ¥Z2

i=1, ..., g

, locally independent (“ being fixed) of y, of elements of

Q(T)[X1, X2, Z1, ..., Zg, ZŒ]

homogeneous of degree 0 in T, 2 in (X1, X2) and 1 in (X2, Z1, ..., Zg, ZŒ),
such that for any m, n ¥Z2 and i=1, ..., g we have

[s̃m, sn]i=Emni(G(0))((si)0 [ i [N, (s̃i)0 [ i [N, “z1, ..., “zg, “iL).

Finally, whenever m=n we expect the terms s̃i to vanish from the
expression of [s̃m, sm]i; to check this we go back to Eq. (Ã) above (with
n=m) and subtract the ‘‘symmetrical’’ equation

2g+1s̃m(z − w; t − u) sm(z+w) sp(0) sq(0)

= C
a, b, c, d ¥Z2

cabcd[sa(z) s̃b(z; t) sc(w) sd(w) − sa(z) sb(z) s̃c(w; u) sd(w)]

obtained by differentiating Riemann’s relation with respect to (z − w)
instead of (z+w); in this way we find an expression for

2g(s̃m(z+w; t+u) sm(z − w) − s̃m(z − w; t − u) sm(z+w)) spsq(0)

without any s̃b(z). Differentiating again as above (using derivation “i) with
respect to w before letting u=w=0, we get

2g+1[s̃m, sm]ispsq(0)

= C
a, b, c, d ¥Z2

cabcdsa(z) sb(z)[(“iL+“i“) sc(0) sd(0)+“sc(0) “isd(0)];
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clearing out derivatives at 0, as we did above, yields:

Corollary 3.2. Under the same hypotheses, if m=n, the variables X2
do not appear in polynomials Emni.

Throughout this paper, the functions si will be assumed to be normalized as
above, i.e., so that all second-order derivatives of s0 vanish at 0.

3.4. Conclusion

The preceding results allow us to specify the ‘‘normalized’’ embeddings G

and G̃w
¯

(notation of Section 2) we will use throughout the text:

Proposition 3.6. For any lattice L ¥ Cg, there exists a family
G=(sm)m ¥Z2

of theta functions for L and a choice of coordinates (z1, ..., zg)
in Cg, such that for all K-linear combinations “ (1), ..., “ (l) of “1=
“/“z1, ..., “g=“/“zg and linear forms L1, ..., Ll ¥ VectK(z1, ..., zg) with
C ‡ K ‡ Q((s1/s0)(0), ..., (sN/s0)(0)), the embedding G̃w

¯
associated in

section 2 to w1=d“ (1) log s0+dL1, ..., wl=d“ (l) log s0+dLl, as well as
derivations “1, ..., “g, are defined over K; moreover the family

1dz1, ..., dzg, d
“ log s0

“z1
, ..., d

“ log s0

“zg
2

provides a basis for the space H1
DR(A, K) of K-rational classes of differentials

of the second kind on A.

Remark 3.1. The function s0 constructed here is essentially JX attached
to X=Divh0 in [Bar70].

4. EISENSTEIN’S THEOREM AND CONSEQUENCES

4.1. A Variant of Eisenstein’s Theorem

The following result is an effective version (cf. [DvdP92; HS00,
Sect. E.9]) of an extension (cf. [MW93, Lemma 5.3]) of a classical
theorem of Eisenstein [PS76, VIII.3.3 and VIII.4.4], in the simple case
where the implicit function theorem would apply.

Proposition 4.1. Let g and n be non-zero integers, K=Q(h1, ..., hm)=
Q(h) a field of finite type and O=Z[h] its ‘‘integer ring,’’ X=(X1, ..., Xg)
and Y=(Y1, ..., Yn) two families of independent variables, (Fd)d ¥ N a family
of n-tuples with coefficients in O[[X]][Y], Fd being homogeneous of degree
d in Y, and F=; d ¥ N Fd. Letting, for each d ¥ N, Fd=(Fd1, ..., Fdn) and
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Fdj=; k ¥ N Fdjk with Fdjk ¥ Z[h, X, Y] homogeneous of degree k in X, we
assume that we have, for every (d, k, j) ¥ N2× {1, ..., n}, degh Fdjk [
d0d+d1k and L(Fdjk) [ Ld0L

k
1 . We assume moreover that F(0, 0)=0, and

that the determinant D ¥ O[[X]] of

F1(X, Y) ¥ (O[[X]] Y1+ · · · +O[[X]] Yn)n

in the basis (Y1, ..., Yn) satisfies D(0)=d ] 0. Then the equation

(E): F(X, y)=0

has a unique solution y=(y1, ..., yn) ¥ (K[[X]])n vanishing at 0, and the
homogeneous polynomials yjk ¥ K[X] (degX yjk=k) such that yj=
; k ¥ Ng yjk satisfy the following:

(1) zjk=d2k−1yjk belongs to O[X];
(2) zjk ¥ Z[h, X] has degree in h bounded by [(2k − 1) n − 1] d0+kd1,

and length at most L (2k−1) n−10 ckL
k
1 , where w=; k \ 1 ckTk is such that

2w+
1

(1 − T)n−1
=

1
(1 − T)n(1 − w)

and the sequence of integers (ck)k \ 1 grows at most geometrically: ck [ Ck for
some constant C=C(n) > 0.

Remark 4.1. The fact that F is not necessarily a polynomial already
appeared in [PS76, VIII, No. 153].

Proof. (1) The proof relies on a rewriting of (E) as

F1(X, y)=−F0(X) − C
d \ 2

Fd(X, y)

or, denoting by F1(X) the matrix associated to F1, whose determinant is D:

F1(X) y=−F0(X) − C
d \ 2

Fd(X, y).

Guided by the shape of the desired property we let ỹ=y
d and X̃=X

d
2 ; we

now have to show that ỹ ¥ (O[[X̃]])n. We use the formula F1(X)−1=
(det F1(X))−1 com F1(X), where com is the comatrix, together with the
usual formula for the reciprocal of a power series; we thus obtain

F1(X)−1=
1
d

com F1(X) C
r ¥ N

11 −
D(X)

d
2 r
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and finally the following equation for ỹ:

(Ẽ) ỹ=−com F1(X) C
r ¥ N

11 −
D(X)

d
2 r 5F0(X)

d2
+ C
d \ 2

dd−2Fd(X, ỹ)6 .

Now we only have to notice that D(X) ¥ dO[[X̃]], Fd(X, Y) ¥
O[[X]][Y] … O[[X̃]][Y] (d \ 1) and (since it has no constant term)
F0(X) ¥ d2O[[X̃]] to conclude from (Ẽ), by induction on k, that indeed all
the coefficients zjk belong to O.

(2) We assume that for any kŒ strictly less than k we have (for all
j=1...n) degh zjkŒ [ [(2kŒ− 1) n − 1] d0+kŒd1, and estimate degh zjk using
formula (Ẽ). Imagining the latter fully expanded, we focus on the coeffi-
cient in the product of terms X̃a from com F1, X̃ l1...X̃ lr from (1 − D

d)
r,

X̃bYi1 ...Yid from Fd and X̃km in each ỹim (m=1...d), with

k=|a|+|l1 |+ · · · +|lr |+|b|+|k1 |+ · · · +|kd |

(where |x| denotes, for any tuple x, the sum of the absolute values of its
components). The total degree in h of this product is bounded by

(n − 1) d0+|a| d1+2 |a| degh d+ C
r

m=1
[nd0+|lm | d1+(2 |lm | − 1) degh d]

+dd0+|b| d1+2 |b| degh d+(d − 2) degh d+ C
d

m=1
[(2 |km | − 1) n − 1] d0

+ C
d

m=1
|km | d1

or simply, since degh d [ nd0 and k=|a|+|l1|+· · ·+|lr|+|b|+|k1|+· · ·+|kd|,
by (2kn − n − 1) d0+kd1 as announced.

What remains now is to compute the length of zjk. To do this, we think
in terms of ‘‘majorization’’

C akXk°C bkXk. (-k, |ak | [ bk)

and notice the following. If the length were a non-archimedean quantity
like, say, exp(degh), then the same method that allowed us to bound the
degree of zjk by [(2k − 1) n − 1] d0+kd1 would here lead to the bound
L (2k−1) n−10 Lk1 for its length; now the problem reduces to computing what
additional factor stems from the (cumulated) number of terms adding up at
each step of the induction defining the zjk. This leads to a similar but
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simpler induction, defining a sequence of integers ck which can be con-
veniently, if somewhat artificially, dealt with by introducing the series
w=; k ¥ Ng ckTk satisfying

w=1 1
1 − T
2n−1 · C

r ¥ N

51 1
1 − T
2n− 16

r

·51 1
1 − T
211+ C

d \ 2
wd2− 16

or equivalently

2w+1 1
1 − T
2n−1=1 1

1 − T
2n 1

1 − w
.

This formal power series is algebraic, hence [Rui93, p. 106] has a non-zero
convergence radius; this implies the existence of C=C(n) such that
|ck | [ Ck. L

We give separately, as we will make no use of this estimate, an explicit
value for the constant C(n) appearing above:

Lemma 4.1. For the constant C=C(n) above, we can take C(n)=60n.

Proof. We use, as in [Ahl66, Sect. 8.2.2], a corollary of the residue
formula which states that w, defined implicitly by an equation f(w, T)=0,
can be expressed by an integral w=(1/2ip) >Ce

z(“1f/f)(z, T) dz along a
circle Ce of radius e small enough to separate the point w0=0 from the
other roots of f(wi, 0)=0. Applying this to

f(z, T)=2z+1 1
1 − T
2n−1− 1

1 − z
1 1

1 − T
2n

with e=1
3 , we get

w=
1

2ip
F
|z|=1

3

2z −
z

(1 − z)2
1 1

1 − T
2n

2z+1 1
1 − T
2n−1− 1

1 − z
1 1

1 − T
2n

dz.

Using once more the ‘‘majorization’’ method, we then find

w °
1
3

2
3
+

3
4
1 1

1 − T
2n

1
6

− 3 51 1
1 − T
2n− 16

°
1/2
1/6

1 1
1 − T
2n

1 − 18 51 1
1 − T
2n− 16

.
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Then, since 1/(1 − T)n° 1/(1 − nT),

w °
3

1 − 19nT
° 3+ C

k ¥ Ng
(60nT)k

whence, since we also know that w has no constant term, the desired
result. L

The following (classical) two lemmas will allow us to estimate ‘‘common
denominators’’ for certain power series expansions obtained by integration:

Lemma 4.2. There exists an absolute constant c > 0 such that, for any
n ¥ Ng, lcm(1, 2, ..., n) [ ecn.

Proof.

log lcm(1, 2, ..., n)= C
p [ n
p prime

(log p) max
k [ n

vp(k) [ C
p [ n
p prime

log p
log n
log p

=p(n) log n

where p(n)=card{p prime [ n}. A weak form of the prime number
theorem now suffices to prove p(n) log n=O(n) and the lemma. L

Corollary 4.1. For any r ¥ Ng the integer

dn(r)=lcm{n1...nrŒ | rŒ [ r, (-i) ni ] 0, n1+ · · · +nrŒ [ n}

is bounded by (er)cn, c being the constant from the previous lemma.

Proof. Without loss of generality we can assume n1, ..., nrŒ to be in non-
increasing order, whence ini [ n or ni [

n
i (1 [ i [ rŒ); the l.c.m. we want is

thus bounded by

D
r

i=1
lcm 11, ..., 5n

i
62 [ D

r

i=1
ecn/i [ ecn(1+log r),

which concludes the proof. L

4.2. Application to Quasi-Abelian Functions

We now deduce from Proposition 4.1 some results concerning the
various functions introduced in Section 3.

For i=0...N we let fi=si/s0, then f
¯

=(f1, ..., fN). We consider the
linear system from Proposition 3.1(1), which we dehomogenize with respect
to variable X0, defining Gm(Z1, ..., ZN)=Fm(f

¯
(0); 1, Z1, ..., ZN). The

statement made there regarding differentials of the Fm (which is nothing
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but the characteristic property of an embedding) implies that the family
(dGm(f

¯
(0)))m ¥M has rank N − g. Thus we can find MŒ … M with cardinality

N − g corresponding to equations whose differentials at f
¯

(0) are indepen-
dent. We can then apply Proposition 4.1, taking n=N − g and h=f

¯
(0),

the parameters d0, d1, L0, and L1 being equal to some constants depending
on g; finally Xi=Zi − fi(0) (i=1...g), assuming (just like in Section 3)
Jac0(fi)i=1...g ] 0, and the vector y is then made up, if we write
f̃i=fi − fi(0), by expansions in powers of f̃1, ..., f̃g of the functions
f̃g+1, ..., f̃N near 0. From all this, we deduce the following (in this and the
next few statements, Ci (i ¥ N) is a constant depending only on g):

Corollary 4.2. In a neighbourhood of 0, the functions fj=sj/s0
(j=g+1, ..., N) can be expanded as

fj= C
k ¥ Ng

fjkf̃k,

where the fjk ¥ K=Q(f1(0), ..., fN(0)) satisfy

(1) there exists d ¥ O=Z[f1(0), ..., fN(0)], with degree and length
bounded by C0, such that for all j, k we have d |k|fjk ¥ O;

(2) the degree and logarithm of the length of d |k|fjk ¥ O are bounded by
(resp.) (1+|k|) C0 and C |k|

0 ;

(3) the polynomials (in Z[Z1, ..., ZN]) giving the expressions of d and
d |k|fjk are locally independent of y ¥Hg.

Let us introduce the

Definition 4.1. We say a function f holomorphic near the origin in Cg

is a G-function of type (d, C, CŒ, r) (d ¥ O, r ¥ N, C, CŒ > 0) if it can be
written f=; k ¥ Ng fkf̃k with, for any k ¥ Ng:

(1) d |k|d|k|(r) fk ¥ O, the sequence (dn(r))n ¥ Ng being that of Lemma
4.1 (with the convention that dn(0)=1);

(2) the degree and length of d |k|fk are bounded by (resp.) CŒ+|k| C
and CŒC |k|.

So, for example, fj (1 [ j [ N) has type (d, C0, C0, 0).
Now, define a new set of derivations (“̄1, ..., “̄g) on K(A) by

(“1, ..., “g)=(“̄1, ..., “̄g) J,

where

J=(“jfi)1 [ i, j [ g;
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note that the only difference between “i and “̄i is that the matrix linking the
latter to the dzi is not the jacobian matrix of the fi evaluated at 0, but
indeed their jacobian matrix as a function. What makes the “̄i interesting
for us is that they differentiate, by construction, ‘‘with respect to the f̃i’’
(i=1...g): that is, if a function f expands as

f= C
k ¥ Ng

fkf̃k

near the origin, then for any i=1, ..., g we have

“̄if= C
k ¥ Ng

fkki
f̃k

f̃i
.

By integrating the f̃-expansions of derivatives “̄if (i=1...g) we can there-
fore deduce, up to its constant term, that of f. Furthermore, the matrix J
has (by Proposition 3.1(2)) entries polynomial in the fi; its reciprocal is a
matrix with similar shape divided by the determinant (det J), which again
is a polynomial in the fi (i=1...N) and which, by definition of “̄j, has
value 1 at the origin; since 1

1−u=; n ¥ N un this entails that 1
det J is a

G-function of type (d, C1, C1, 0), and so are the entries of J−1. Thus, if the
derivatives “if of a function f all have type (d, C, C, 0) then the “̄jf have
type (d, CC2, CC2, 0) and integrating them, as suggested above, yields the
g-expansion of f:

Lemma 4.3. If all derivatives “if of a function f with f(0)=0 are
G-functions of type (d, C, C, 0) then f has type (d, CC2, 0, 1).

Remark 4.2. Actually, integration yields slightly more information
than this as the denominator of fk appears to divide d |k| gcd(k1, ..., kg).

We can now apply this to the coordinate functions z1, ..., zg of Cg whose
differentials form the dual basis of (“1, ..., “g).

Corollary 4.3. The coordinate functions u1, ..., ug of Cg defined by
“iuj=dij are G-functions of type (d, C3, 0, 1).

Now we turn to “is0/s0. According to Corollary 3.2, applied with “=“i
and L=0, each “i(s̃0/s0)=“i(“s0/s0) can be written as a homogeneous
quadratic polynomial, with coefficients in K, in the functions fj (j=1...N);
therefore we can apply the above lemma to get

Corollary 4.4. Each function “is0/s0 (i=1...g) is a G-function of
type (d, C3, 0, 1).

156 PIERRE GRINSPAN



Eventually, we will have to deal with monomials in the fi, uj, and
“js0/s0. Noticing (the sequence dn(r) was introduced just for this) that a
product of G-functions of types (d, C, CŒ, e1), ..., (d, C, CŒ, er) is a
G-function of type (d, C4C, (C4CŒ) r, e1+ · · · +er), we get:

Corollary 4.5. Every monomial of degree L2 in the fi, uj, “js0/s0, and
L1 in the uj and “js0/s0, is a G-function of type (d, C5, CL2

5 , L1).

5. THE ELLIPTIC CASE

In this section, focusing on the case g=1, we relate the functions con-
structed in Section 3, and their properties exhibited in Section 4, to some
classical facts from elliptic function theory [Law89, Cha85].

When g=1, the four classical theta functions are

h3(y, z)=h0, 0(y, z)= C
n ¥ Z

exp [ip(n2y+2nz)],

h4(y, z)=h0, 12(y, z)= C
n ¥ Z

exp [ip(n2+2n(z+1
2))],

h2(y, z)=h1
2, 0

(y, z)= C
n ¥ Z

exp[ip((n+1
2)
2+2z(n+1

2))],

h1(y, z)=h−12, 12(y, z)=− C
n ¥ Z

exp[ip((n+1
2)
2+2(n+1

2)(z+1
2))]

whose dependence on y will be mostly ‘‘forgotten’’ by writing h1(z), etc.,
once the parameter y ¥H (upper half-plane) has been fixed. Their link with
Weierstrass functions for the lattice L y=Z+Zy is based on the relation

sy(z)=
1

h −1(0)
exp 1 − h −−−1 (0)

6h −1(0)
z22 h1(z),

where sy denotes the Weierstrass sigma function for L y. The function sy

satisfies s −y(0)=1, s −−−y (0)=s'y (0)=sy(0)=0; it is, roughly speaking, the
function obtained from h1 by the ‘‘normalization’’ process described in
Section 3, with a slight difference since here, for an odd theta function, it is
the third derivative that is equated to zero. Next, letting − h −−−1 (0)/3h −1(0)
=gy we find

(log h1)Œ(z)=zy(z) − gyz,

(log h1)œ(z)=−^y(z) − gy,
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where zy=(log sy)Œ and ^y=−(log sy)œ; the notation gy traditionally
reserved for the quasi-period 2zy(

1
2)=zy(z+1) − zy(z) is perfectly justified

here since the 1-periodicity of (h1)2 implies that of (log h1)Œ(z)=zy(z) − gyz.
For any w ¥ Cg we introduce the Weierstrass sigma function for the

lattice L=wL y by letting s(z)=wsy(
z
w); then we let

si(z)=exp 1gy

2
1 z

w
222

hi+1 1
z
w
2

hi+1(0)

for i=1, 2, 3; the four functions s, s1, s2, s3 define an embedding of C/L

into P3(C).
The construction of ‘‘algebraic’’ derivations “i made in section 3 shows

that ddz is one if we let w=(h −1/h3)(0). However, any w whose ratio with the
latter belongs to K=Q((h2/h3)(0), (h4/h3)(0)) will be just as good, and
Jacobi’s relation h −1(0)=p(h2h3h4)(0) shows that it is, in particular, the
case for w=ph23(0); it is the latter normalization that leads to the classical
Jacobi functions sn=s/s3, cn=s1/s3, dn=s2/s3.

If we now let zg(z)=(s −3/s3)(z) and g=gy/w=zg(w), then Jacobi’s Z
function can be defined by

Z(z)=
s −3
s3

(z) −
g

w
z;

it satisfies in particular [Law89, 3.6] Z(z+w)=Z(z) and Z(wŒ)=−2ipw .
As for assertions made in Section 4.2, here the formula snŒ=cn .dn,

together with cn=`1 − sn2 and dn=`1 − lsn2, first yields

z=F
d(sn)

`(1 − sn2)(1 − lsn2)
;

then from the system [Cha85, VII.4]

snŒ=cn .dn, cnŒ=−sn .dn, dnŒ=−lsn .cn

(where, as usual, l=k2=(h2/h3)(0)4), differentiating and evaluating at 0
we can deduce

s'1 (0)=
l − 2

3
, s'2 (0)=

1 − 2l

3
, s'3 (0)=

1+l

3
;

this, together with the ‘‘Riemann’’ identity

s3(x+y) s3(x − y)=s23(x) s23(y)+ls2(x) s2(y),
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allows us to find, using the method described in Section 3.3,

(log s3)Œ=F 11+l

3
+lsn22 d(sn)

`(1 − sn2)(1 − lsn2)
.

6. STATEMENT AND PROOF OF THE MAIN RESULT

6.1. Statement

Let A be an abelian variety of dimension g, which for simplicity (replac-
ing if necessary our variety with another one isogenous to one of its
factors) we assume to be principally polarized and simple, associated
through the relation A(C) 4 Cg/(Zg+Zgy) to an element y of the Siegel
upper half-plane Hg formed by all square complex matrices of size g whose
imaginary part is positive definite; we also assume, as we can without loss
of generality, that y is in the fundamental domain defined in [Igu72] (V.4).
We define as in section 3 an embedding G=(s0, ..., sN) (depending on y),
with kernel L=Zg+Zgy, of Cg/L into PN(C), and let

P=
1

s0(0)
1“si
“zj

(0)2
1 [ i, j [ g

(“1, ..., “g)=1 “
“z1

, ...,
“

“zg
2 P−1,

Z1(z)=(“1 log s0(z), ..., “g log s0(z)),

Z2(z)=(z1, ..., zg) t P

(with t denoting transposition) and Z=(Z1; Z2)=(z1, ..., z2g), mero-
morphic function from Cg to C2g. We will consider the algebraic group G,
extension of A by G2g

a associated with w
¯

=dZ; it is embedded into the
projective space P(2g+1)(N+1)−1(C) by means of G̃=G̃w

¯
as described in

Section 2.
Let u1, ..., up ¥ Cg, o=p

g . In the following, ||.|| denotes the supremum
norm in Cn (for arbitrary n) and for x, y ¥ PN(C), we let

||x − y||=
max0 [ i, j [N |xi yj − xj yi |

max0 [ i [N |xi | max0 [ i [N |yi |
;

finally, for any n-tuple k=(k1, ..., kn) we let |k|=|k1 |+ · · · +|kn |.

Proposition 6.1. There exists positive constants C0 (depending on g
and p) and C1 (depending on g, p, and an upper bound for ||Imy||) with the
following properties:
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(1) If A is simple and G(0)=J ¥ PN(Q̄), if D, h0, h1 \ C0 and the uj
satisfy

• (-j) ||uj || [ C1,
• (-j) G(uj)=tj ¥ PN(Q̄),
• the following hypothesis (H) holds:

(H) -q=(q1, ..., qp) ¥ Zp0{0}, ||q|| [ C1[D(h0)+log D)]1/o S q.u ] 0;

if, moreover, max(h(J), max1 [ j [ p(h(t1), ..., h(tp))) [ h0 and the

aj ¥ P(2g+1)(N+1)−1(Q̄) (1 [ j [ p)

are such that

max
1 [ j [ p

h(aj) [ h1,

[Q(J, t, a) : Q] [ D

(where t=(t1, ..., tp), a=(a1, ..., ap)), then we have

max
1 [ j [ p

||aj − G̃(uj)|| \ exp(−C1f1(D, h0, h1))

(here and later the second parameter of G̃ will be omitted when it is 0) with

f(D, h0, h1)=
D
3
2+
1
o(h0+log D)

1
o h

1
2
0

(log(Dh0))
1
2+
1
o

51D(h0+log D)
log(Dh0)

2
2
o

h0+h16 .

(2) If, furthermore, all the uj belong to the lattice L, then f can be
improved to

f(D, h0, h1)=D
1
o(h0+log D)

1
o (D(h1+log D)+D

2
o(h0+log D)

2
o).

Assertion (1) of Theorem 1.2 follows immediately from assertion (1)
above, together with Proposition 3.6. As for assertion (2) of Theorem 1.2,
it will follow from the

Lemma 6.1. Assertions (1) and (2) above remain valid if we

• replace hypothesis (H) with

(HŒ) -S ¥ Ng, -q ¥ Zp0{0}, ||q|| [ S S log ||q.u|| \ − C1S3,
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• do not assume J, tj ¥ PN(Q̄) to be equal to G(0), resp. G(uj) anymore,
AND

• in the conclusion, replace max1 [ j [ p ||aj − G̃(uj)|| with

max(||J − G(0)||, max
1 [ j [ p

||aj − G̃(uj)||, max
1 [ j [ p

(||tj − G(uj)||)).

Proof. We can assume without loss of generality that J belongs to the
algebraic variety spanned by all points G(0) ¥ PN(C) as A varies, together
with y and G; then, in view of [Igu72, V.4, Corollary of Theorem 4], the
implicit function theorem allows us to find yŒ ¥Hg such that (exceptionally
indexing G with the modulus yŒ) GyŒ(0)=J, with yŒ ‘‘close’’ to y in the sense
that log ||yŒ− y|| is at most an absolute constant times log ||J − G(0)||. Note
that it follows, e.g., from [Sas83] that yŒ must correspond, just like y, to
a simple abelian variety, say AŒ. Now we construct, using the implicit
function theorem again, points u −j close to the uj in the above sense (so
that G̃yŒ(uŒ) is still close to a) such that GyŒ(u −j)=tj; it remains to deduce
property (H) for the u −j from (H’) for the uj. Indeed, if ||q|| [ S=
C1[D(h0)+log D)]1/o and q.uŒ=0 then log ||q.u|| is at most a constant
times log max1 [ j [ p(||tj − G(uj)||); but this, because S3 is smaller than (a
constant times) f(D, h0, h1), would contradict hypothesis (H’). L

Remark 6.1. Using the same lemma, one can obtain a result where J
and the G(uj) are not assumed to be algebraic, nor are the uj assumed to be
in L, but then an ad hoc, ‘‘technical’’ assumption must be included in the
hypotheses in order to ensure (H’) above.

6.2. Parameters

We let K0=Q(J), K1=K0(t), K=K1(a) and, in order to treat both
cases simultaneously yet smoothly, we introduce a parameter r equal to 2
in case (1), 0 in case (2). Arguing by contradiction, we suppose found
a ¥ (P (2g+1)(N+1)−1(Q̄))p with max1 [ j [ p h(aj) [ h1, [Q(J, t, a) : Q] [ D and
max1 [ j [ p ||aj − G̃(uj)|| < e−V where, depending on the case,

(1) V=c200
D
3
2+
1
o(h0+log D)

1
o h

1
2
0

(log(Dh0))
1
2+
1
o

51D(h0+log D)
log(Dh0)

2
2
o

h0+h16 ,

(2) V=c200 D
1
o(h0+log D)

1
o (D(h1+log D)+D

2
o(h0+log D)

2
o),

c0 being a constant ‘‘sufficiently large’’ and depending on g, p and an upper
bound for ||Imy|| as stated in the proposition.

APPROXIMATION OF ABELIAN QUASI-PERIODS 161



We can also assume without loss of generality that the first N+1 coor-
dinates of each aj are nothing but those of tj, and that a is also an element
of G, i.e., the relations

zlsi(uj)=
si

s0
(uj)(zls0)(uj),

s0(uj) “lsi(uj)=si(uj) “ls0(uj)+[si, s0]l (uj) (l=1...g, i=0...N)

between entries of G̃(uj) still hold for their counterparts in aj; as a conse-
quence (which will be used in Section 6.4), the field K0(a) is generated over
K1 by the quantities

aj, iN

aj, 0
(j=1...p, i=1...2g)

or equivalently, for any choice of indices ij (j=1...p), by the

aj, kN+ij
aj, ij

(j=1...p, k=1...2g)

provided these quantities are well-defined, i.e., have non-zero denomina-
tors.

Letting (0=h0+log D, (1=h1+log D we define the following param-
eters, depending on which case we are considering:

(1) T=5c2+15o0 D
1
2+
1
o(
1
o
−1
0 h1/20 (log(Dh0))−

1
2−
1
o 11 D(0

log(Dh0)
2
2
o

h0+h1 26 ,

S=5c5/o
0
1 D(0

log(Dh0)
21/o6 ,

E=Dh0,

L1=5c2+5o0
1 D(0

log(Dh0)
21/o 1 Dh0

log(Dh0)
21/26 ,

L2=5c2+5o0 D
1
2−
1
o(
−1/o
0 h−1/20 (log(Dh0))−1/2 11 D(0

log(Dh0)
2
2
o

h0+h1 26 ;

(2) T=[c2+
15
o

0 (D(0)
1
o
−1 (D(1+(D(0)2/o)],

S=[c5/o
0 (D(0)1/o],

E=1,

L1=[c2+
5
o

0 (D(0)1/o],

L2=[c2+
5
o

0 (D(0)−1/o (D(1+(D(0)2/o)].
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Note that the modulus y ¥Hg (Siegel upper half-plane) of our abelian
varieties will be scarcely mentioned explicitly throughout the proof; the
unspecified dependence of constants in our results on bounds for ||Imy||
essentially comes from the basic fact that any continuous function is
bounded on the compact subset (||Imy|| [ C) of the fundamental domain
for Hg.

6.3. The ‘‘Baker–Coates–Anderson–Chudnovsky Trick’’

It is known (see [Dav91, Théorème 3.1]) that for any z ¥ Cg at least one
of the si (i=0...N) has modulus bounded from below at z by
exp(−c0 ||z||2); from now on for z=t.u=t1u1+ · · · +tpup (t ¥ Zp) we will
denote by it an index such that sit is such a function.

In the following lemma, X, Y1, ..., Yp, Z1, ..., Zp, T are families of (N+1)
variables, all independent. The functions s0, ..., sg being still as in section
3, we let fi=si/s0 for i=1, ..., g.

Lemma 6.2. There exists polynomials D ¥ Z[X] (homogeneous),
Dt ¥ Z[X, Y1, ..., Yp, T] (homogeneous in each of their (p+2) sets of
(N+1) variables) for (t1, ..., tp) ¥ Zp and, for any r ¥ N2g with |r| [ L1 and
s ¥ Ng with |s| [ L2, Qrstn ¥ Q[X, Y1, Z1, ..., Yp, Zp] (homogeneous in X and
in each pair (Yj, Zj)) with the following properties. For z ¥ Cg in a neigh-
borhood of 0,

Dt 1J, t,
G

s0
(z)2

L1+L2 51 s0
sit

2L1+L2 1s1
s0
2 s1...1sg

s0
2 sg Z r6 (t .u+z)

= C
n ¥ Ng

Qrstn(J, G̃(u)) 1 f
D(J)
2n (z)

with Dt(J, t, G
s0

(0)) ] 0. Moreover the partial degrees and logarithmic length
of Dt are bounded by c0 |t|r, those of D by some constant depending only on
g, and

degX Qrstn=|n| degX D+(L1+L2) degX Dt,

deg(Yj, Zj) Qrstn=(L1+L2) degYj Dt,

deg(Z1, ..., Zp) Qrstn [ |r|

and

L(Qrstn) [ (1+|t|) |r| c |n|+(L1+L2) |t|
r

0 .
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Finally, for any n ] 0 we have dn(|r|) Qrstn ¥ Z[X, Y, T], dn(|r|) being the
quantity introduced in Corollary 4.1.

Proof. We treat only case (1), the other one being treated in a similar
but easier way using Proposition 3.3 and Corollary 3.1 instead of their
‘‘non-periodic’’ equivalents. First Proposition 3.2 allows us to write, for
each function si (i=0...g) and each index j=1...g,

si

sit
(t .u+z)=

Ai(G(t .u); G(z))
Ait (G(t .u); G(z))

,

1 s0
sit

zj 2(t .u+z)=
Bj(G̃(t .u); G̃(z))
Ait (G(t .u); G(z))

where the parameters G(0) and t, being both fixed, are omitted; thus Ai, Bj
here have coefficients in K0. Then, in order to express the value of G̃ at the
point t .u=t1u1+ · · · +trur we apply Proposition 3.4, together with the
addition formula again, which now tells us that the family G̃(tkuk)
(k=1...p) is proportional to some

(M0tk (G), ..., MNtk (G), M̃0tk (G̃), ..., M̃Ntk (G̃))(uk).

The quantities (si/sit )(t .u+z), ((s0/sit ) zj)(t .u+z) now appear as ratio-
nal functions in the values of G̃ at points uk on the one hand, z on the other
hand, with numerators and denominators homogeneous of degree at most
c0 |t|r (r=2 in case (1)) in the former, and 2 in the latter. Dehomogenizing
with respect to s0(z) allows us to express (si/sit )(t .u+z) and
((s0/sit ) zj)(t .u+z) as rational functions, with coefficients in K0, in the
values of G̃ at points uk, and at z, of (1/s0) G̃. The latter function, whose
coordinates are the functions (si/s0), (si/s0) zj and

“lsi

s0
=

si

s0

“ls0

s0
+“l

si

s0
(l=1...g),

can be rewritten according to Proposition 3.1(2) using only the si/s0 and zj
(j=1...2g). Now we only have to substitute for the latter their respective
g-expansions as given by Corollaries 4.3 and 4.4, then invoke Corollary 4.5
to conclude the proof. L

6.4. Construction of an invertible matrix with algebraic entries

We form the matrix M0 whose entries are the

dn(L1) Qrstn(J, a)
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from Lemma 6.2, with lines indexed by (3g)-tuples (r, s) (|r| < L1, |s| < L2)
and columns by (t, n) (|t| < S, |n| < T). Here and in the following, unless
otherwise specified, any mention of a projective point G(t .u), resp. G̃(t .u),
as an argument to a polynomial actually refers to the quotient (G/sit )(t .u),
resp. (G̃/sit )(t .u), with it as in Lemma 6.2; similarly, in such a situation aj
will be understood to mean aj/aj, iej

where (e1, ..., ep) is the canonical basis
of Zp.

We denote by I0 and J0 the sets indexing the lines, resp. columns of M0.
The purpose of this section will be to prove the

Lemma 6.3. The matrixM0 has maximal rank, that is, L
2g
1 Lg2 .

This will allow us to extract from M0 a square non-degenerate submatrix
M(a) of size L=L2g1 Lg2 , with

M ¥MatL2g1 Lg2 (Z[J][Y1, Z1, ..., Yp, Zp])

(Yj, Zj being as in Lemma 6.2); we will let J1 be the subset of J0 indexing its
columns and D=det M, so that by construction Dar=D(a) ¥ Q̄g.

We now turn to the proof of the above lemma. Assume its conclusion to
be false; then a non-trivial linear combination of its lines vanishes:

|n| < T, |t| < S S C
|r| < L1
|s| < L2

lrsQrstn(J, t, a)=0.

The algebraic group G being the image of G̃ as above, we define

P(X0, ..., X(2g+1)(N+1)−1)

= C
|r| < L1
|s| < L2

lrsX
L1+L2 − |r|− |s|
0 X s1

1 ...X sg
g D
2g

i=1
X ri
i(N+1)

and

V=VectC
1 “
“z1

, ...,
“

“zg
2

in the tangent space at the origin of G identified in a natural way with
Cg× C2g. Finally, the set E is that of points ct ¥ G(K) (|t| < S), images
through G̃ of t .(u; e) where

ejk=
aj, kN+iej

aj, iej

−“k log siej
(uj) (k [ g),

ejk=
aj, kN+iej

aj, iej

− uj, k−g (g+1 [ k [ 2g)
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(so that in particular ||e|| [ max1 [ j [ p ||aj − G̃(uj)|| [ e−V); hypothesis (H) in
the Proposition ensures that t ] tŒS t .u ] tŒ .u.

It is easily seen, going over the proof of Lemma 6.2 (see also [Phi88,
Sect. 3.1.3]) that the quantities Qrstn(J, a) are nothing but the coefficients
in the f-expansion of the expression from the left-hand side of Lemma 6.2
with each Z (j=1...2g) replaced with Z+t.e; it follows that the polynomial
P vanishes along V with order at least T at each point of E. This allows us
to deduce from Proposition 2.1 the existence of a proper algebraic
subgroup GŒ of G such that, with the notation from that Proposition,

NŒTdŒ deg GŒ [ cL l
−

1L
a −

2

However, since the variety A is assumed to be simple, there are only two
kinds of such subgroups:

• GŒ … G2g
a … G.

Then we have, to begin with, dŒ=g. Furthermore, if two points ct and ctŒ
are congruent modulo GŒ then their projections in A are equal, which
implies (t − tŒ).u ¥ L. Now the important point is to notice that GŒ cannot
contain more than (dim GŒ) Z-linearly independent elements of E; this
follows easily from the fact that for e small enough (which we can assume
here), any family of ‘‘perturbed’’ elements Z(t .u)+t.e ¥ C2g (t being such
that t .u ¥ L) has the same rank over C as the ‘‘unperturbed’’ family of the
Z(t .u), which by Lemma 2.1 is just the rank of the Z-module generated by
the corresponding t’s. From this we deduce

Sp−min(p, dim GŒ)Tg [ c0L
2g−dim G −

1 Lg2

or equivalently

So−min(o, 1g dim GŒ)T [ c1/g0 L2−
1
g dim GŒ

1 L2

which leads us to a contradiction for values 0 and min(o, 2), hence also for
all others, of the ratio 1

g dim GŒ—this is due to the inequalities

c1/g0 L21L2 < TSo,

S [ L1.

• GŒ contains G0, universal extension of A by Gg
a .

In this case G/GŒ is isomorphic to a quotient of G/G0 4 Gg
a by a

subgroup Gg of dimension strictly less than g; then dŒ is equal to
(g − dim Gg) and we get

Tg−dim G
g
[ NŒTg−dim G

g
[ c0L

g−dim Gg

1 ,

incompatible once again with our choice of parameters.
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6.5. Application of a Schwarz Lemma

Let I … I0 and J … J0 with the same cardinality m (in the following, I0
and J0 will sometimes be identified with {1, ..., m}). We define a function
fIJ of one complex variable by

fIJ(u)=det(“ (n)z ki(ut.u))i=(r, s) ¥ I
j=(t, n) ¥ J

,

where “z=( “
“z1

, ..., “
“zg

) and for any n ¥ Ng,

“
(n)
z =

1
n!
“
n
z=

1
n1!...ng!
1 “
“z1
2n1...1 “

“zg
2ng,

while

ki=krs=sL1+L20
1s1

s0
2 s1...1sg

s0
2 sg Z r.

Lemma 6.4. The function fIJ vanishes at the origin with order at least

Wm=m 1 g2

(g+1) e
m1/g− 2g − T2 .

Proof. The same reasoning as in [Wal97, Sect. 5(d), Premier pas and
Lemme 5.2] leads to

Wm+mT \ A RA+g − 1
g
S− C

A−1

a=0

Ra+g
g
S

=A RA+g − 1
g
S−RA+g

g+1
S=R

A+g

g
S 1 A2

A+g
−

A
g+1
2

where the integer A is defined by

RA+g − 1
g
S [ m < RA+g

g
S ;

it follows that

Wm+mT \ m
A(A − 1) g

(A+g)(g+1)
.

But then,

m [ RA+g
g
S [ 1 e

g
(A+g)2

g
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implies A+gg \ 1
e m1/g hence, writing Y=1

e m1/g,

Wm+mT \ m
g(Y − 1)
(g+1) Y

[gY − (g+1)] \ m 1 g2

g+1
Y − 2g2 .

L

We can now apply to fIJ the following, most elementary form of
Schwarz lemma:

Lemma 6.5. Let R \ 1, W a positive integer, f analytical in the disk
D(0, R) … C and vanishing with order at least W at the origin; then

|f(1)| [ R−W |f|R,

where |f|R=supD(0, R) |f|.

A rough estimate (using Cauchy’s formula for derivatives) of |fIJ |R yields

|fIJ |R [ m!(max
i

|ki |c0SR+1)
m [ ec0m(L1+L2)(SR)

2

hence the lemma leads to

|fIJ(t
¯
.u)| [ exp( − Wm log R+c0m(L1+L2)(SR)2).

Now assume m \ 1
2 L. Then Wm \ 1

12 L21L2m; on the other hand
L1+L2 [ 2L2, and we can take

R=
1
c0

L1
S

to finally obtain the

Lemma 6.6. For any I … I0 and J … J0 with the same cardinality m \ L
2 ,

for t
¯
=(tj)j=(tj, nj) ¥ J we have

|fIJ(t
¯

.u)| [ exp 1 − 1
c0

(L1/g) m log E2

(see above, in the list of parameters, the definition of E).

6.6. Conclusion of the Proof

We let, as in Section 4.2, “̄1=“/“f1, ..., “̄g=“/“fg, corresponding to
the local parameters (fi=si/s0)1 [ i [ g at the origin; then we define, as we
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did for “z, “̄ (n)=
1
n! “̄

n for any n ¥ Ng. We recall that by definition of the
polynomials Qrsnt,

Qrsnt(J, G̃(u))=D(J) |n| “̄ (n) 5Dt 1J, t,
G

s0
(z)2

L1+L2
(s−(L1+L2)it ki)(t .u+z)6

z=0

(where i=(r, s) as before).
We use the following formula, easily read from power series substitution

rules,

“̄
(n)= C

k ¥ Ng

|k| [ |n|

5 C
i1, ..., i|k| ¥ Ng

i1+· · ·+i|k|=n

D
g

j=1

1 D
k1+· · ·+kj

l=k1+· · ·+kj−1+1
“̄
(il)zj 26 “ (k)z ,

together with the product differentiation formula (Leibniz rule), to find

Qrsnt(J, G̃(u))=D(J) |n| C
k ¥ Ng

|k| [ |n|

5 C
i1, ..., i|k| ¥ Ng

i1+· · ·+i|k|=n

D
g

j=1

1 D
k1+· · ·+kj

l=k1+· · ·+kj−1+1
“̄
(il)zj(0)26

× C
l1+l2+l3=k

“
(l1)
z
1Dt 1J, t,

G

s0
(z)2

L1+L2 2 (0)

×“ (l2)z (s−(L1+L2)it )(t .u) “ (l3)z ki(t .u)

expressing the left-hand side as a linear combination of the “ (k)z ki(t .u)
(|k| [ |n|),

Qrsnt(J, G̃(u))= C
|k| [ |n|

lnkt“
(k)
z ki(t .u).

Thus, the columns of M(G̃(u)) can be written as linear combinations of
those of

(“ (n)z ki(t .u))i=(r, s) ¥ I0
j=(t, n) ¥ J0

with coefficients equal to the lnkt from the formula above.
To bound these lnkt, we bound the number of terms in their expression

by a rough cT0 , the modulus |sit (t .u)−1| by ec
2
0S
2
, while by Cauchy’s formula

differentiation introduces at most a factor cT0 ; we thus find

|lnkt | [ c3T0 (ec
2
0S
2
L(Dt) cdeg Dt0 )L1+L2 [ c3T0 exp (2c20(L1+L2) S2).
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Now let s ¥ N (2g+1)(N+1) p with length |s|=mŒ [ L. Writing Li for the line
of index i in M, we use the standard formula for differentiating determi-
nants to express “ (s)D(G̃(u)) as a sum

“
(s)D(G̃(u))= C

s1+· · ·+sL=s

det (“ (si)Li(G̃(u)))i ¥ I0

of determinants where at least (L − mŒ) out of L lines have not been dif-
ferentiated, i.e., are equal to the initial Li. Developing these determinants
yields (according to the Laplace formula) a sum of minors of size
m=L − mŒ coming from M(G̃(u)), multiplied by their cofactors in

(“ (si)Li(G̃(u)))i ¥ I0 .

According to the calculations made earlier, these minors of M(G̃(u)) can
in turn be expressed as linear combinations of minors (with the same size
m) of the shape fIJ(t

¯
u); using Lemma 6.6 together with trivial estimates for

the cofactors yields the following: for any s ¥ N (2g+1)(N+1) p with |s| [ L,
letting |s|=mŒ and m=L − mŒ, we have

|“ (s)D(G̃(u))| [ cL0 max
s1+· · ·+sL=s

|det (“ (si)Li(G̃(u)))i ¥ I0 |

[ cL0 (max
|n| < T

dn(L1))L max
I … I0, J … J1
|I|=|J|=m

|det (Qrstn(J, G̃(u)))(r, s) ¥ I
(t, n) ¥ J

|

×RL
m
S max

;i |si | [ mŒ
|det (“ (si)Qrstn(J, G̃(u))i=(r, s) ¥ I0 0I

j=(t, n) ¥ J1 0J

|

[ cL0 (max
n < T

dn(L1))L Tc0m max
|n|, |k| < T
|t| < S

|lnkt |m max
I … I0, J … J0
|I|=|J|=m

|fIJ(t
¯
u)|

×
L!
m!

max
(r, s, t, n)

(deg QrstnL(Qrstn) cdeg Qrstn0 )mŒ;

this brings us to

|“ (s)D(G̃(u))|

[ (c0L)L Lc0TL1 (c4T0 e2c
2
0(L1+L2) S

2
)m

× (ec
2
0(T+(L1+L2) S

2))mŒ max
I … I0, J … J0
|I|=|J|=m

|fIJ(t
¯
.u)|

[ exp[3c20L(T log L1+(L1+L2) S2)] exp 1 − 1
c0

(L1/g) m log E2
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or, taking into account the fact that c40T log L1 [ L21L2 log E and

c20S [ L1 [ L2,

Lemma 6.7. For any s ¥ N (2g+1)(N+1) p such that m=L − |s| \ 1
2 L, we

have

|“ (s)D(G̃(u))| [ exp 1 − 1
2c0

(L1/g) m log E2 .

Now all we have to do is write the Taylor formula with order M=[L2],

:D(a) − C
|s|=mŒ [M

(a − G̃(u))s
“
(s)D(G̃(u)):

[ exp(−(M+1) V) C
|s|=M+1

sup
||x− G̃(u)|| [ e −V

|“ (s)D(x)|

whence, using again a trivial estimate for |“ (s)D(x)|,

|D(a)| [ Lc0 exp 1 − L min 1 1
2c0

L1/g log E, V22

+Lc0 exp(−(M+1) V) L!(ec
2
0(T+(L1+L2) S

2))L

and finally

|D(a)| [ exp 1 − 1
2

L min 1 1
2c0

L1/g log E, V22

+exp 5L 12c20(T+(L1+L2) S2) −
1
2

V26 .

Since

L1/g log E=L21L2 log E [ c0V,

this entails

|D(a)| [ exp 1 − 1
5c0

L1+
1
g log E2 .
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Now we can apply to D(a), which is in fact the value at (J, a) of a poly-
nomial D̃ ¥ Z[X, Y1, Z1, ..., Yp, Zp], the classical Liouville inequality
[Wal92]. Since

degT D̃ [ LL1,

degX D̃ [ c0L(T+(L1+L2) Sr),

degY D̃ [ c0L(L1+L2) Sr

and

L(D̃) [ (Lc0T1 SL1ec0(T+(L1+L2) S
r))L,

that inequality turns out to be incompatible with the conditions

c30D(L1+L2) Srh0 [ L21L2 log E,

c30DT(h0+log L1) [ L21L2 log E,

c30DL1(h1+log S) [ L21L2 log E

satisfied by our parameters. Our proof by contradiction is therefore
complete.

7. QUESTIONS AND (PARTIAL) ANSWERS

We conclude by raising, and beginning to answer, a few questions that
may seem natural on comparing Corollary 1.1 to Theorem 1.1.

• How about combining Chudnovsky’s statements, say (1) and (5)?
It is indeed tempting to conjecture that in general at least two numbers

among g2, g3,
g

a w, ^(u), z(u) − g

a wu (notation from Theorem 1.1) are alge-
braically independent. As noted in Remark 6.1, a measure of simultaneous
approximation for these numbers seems to require an additional, ‘‘techni-
cal’’ hypothesis; in any case, the measure obtained is far from one that
would grant algebraic independence. The preceding conjecture, although
only a corollary of the Main Conjecture of [Ber00], thus appears to be still
out of reach through this ‘‘classical’’ method.

• What about differential forms with vanishing periods, such as dz − g

w dz
in the elliptic case?

Their treatment requires that the basic Schwarz Lemma we used in the
proof be replaced with a more sophisticated one, such as the following:
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Lemma 7.1 [Wal93, Lemma 7.1; Gra99, Théorème n]. Let E be a
subset of C with cardinality S inside the ball of radius r > 0 centered at the
origin, let W > 0 and R=7r, and let f be an analytical in the poly-disc of
radius R centered at 0 in Cn, vanishing with order at least W at each point of
En … Cn; then

|f|r [ e−SW |f|R.

Indeed, this particular lemma combined with the method of proof
described above yields the following quantitative refinements of assertions
(1) and (5) from Theorem 1.1:

Proposition 7.1. Let E be an elliptic curve defined over a field K … C
and w ¥ H1

DR(E, C), defined over KŒ ‡ K, with a non-trivial zero period:

,l ¥ H1(E, Z), l ] 0, F
l

w=0.

Let u ¥ T0E(C) (tangent space at the origin) be non-zero and such that
expE(u) ¥ A(K).

(1) If K … Q̄, the set made up by >u0 w together with a generating
system of KŒ over K admits the following approximation measure:

f1(D, h)=D7/4(log D)3/2 (h+`D log D).

(2) If u is a period (element of the period lattice L=kerexpE) inde-
pendent of l, the set made up by >u0 w together with a generating system of KŒ
over Q admits the following approximation measure:

f2(D, h)=[D(h+log D)]3/2.

The desirable extensions to higher dimensions would require corre-
sponding extensions of the preceding lemma to accommodate functions f

and sets E in a space Cg of arbitrary dimension (at least for an E contained
in a fixed lattice of Cg); such a lemma does not seem to be known at
present.

Note, however, that according to a recent result of D. Roy [Roy00] it
could be deduced from a ‘‘satisfactory’’ interpolation lemma for lattices in
arbitrary dimension; this is not available in full generality, but has been
proved by Masser (see [Mas78b, Theorem B; and Mas78a, Lemma 7]) for
lattices (coming from abelian varieties) with complex multiplication. As a
consequence, one can prove (still in much the same way as above) the
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Proposition 7.2. Let A be an abelian variety of dimension g with
complex multiplication, w1, ..., wf be linearly independent in H1

DR(A, K) and
such that, for some integer q [ 2g,

-i=1...f, -j=q+1...2g, gij=F
lj

wi=0.

Then the set made up by all quasi-periods gij=>lj
wi (i=1...f, j=1...q)

together with a generating system of K over Q admits as a measure of simul-
taneous approximation the function f defined by

f(D, h)=CD(h+log D)(D log D)q/2f.

This provides, in the case of complex multiplication only, a quantitative
refinement of the following algebraic independence statement which turns
out to be true in general:

Proposition 7.3. Let A be an abelian variety defined over K … C,
(l1, ..., l2g) a basis of H1(A, Z), w1, ..., wf (f [ 2g) independent elements of
H1
DR(A, K) sharing p=2g − q independent periods, and satisfying moreover

>lj
0 wi ¥ K for all i [ f and j [ 2g. If 2f > q, then deg tr K \ 2.

The latter result is shown by yet the same method but, being of a quali-
tative nature, instead of an interpolation lemma it requires only a Schwarz
lemma (for a function having many zeroes, not just small values) which can
be found, e.g., in [Wal87, Proposition 7.4.1].

Remark 7.1. In his most recent text [Roy01], Roy establishes one of
the (so far unknown) interpolation lemmas mentioned above: he basically
(up to constants) extends Masser’s result from [Mas78a] to arbitrary, non-
CM varieties. This allows the removal from Proposition 7.2 of the unna-
tural hypothesis of complex multiplication, as well as the inclusion among
the quantities involved of a generating system (not necessarily algebraic
anymore) of A over Q, giving a measure of the same shape as Proposition
6.1(2):

f(D, h0, h1)=D(h1+h0+log D)[D(h0+log D)]
q
2f.

ACKNOWLEDGMENTS

I thank Michel Waldschmidt for his constant help, Daniel Bertrand for introducing me to
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[Dav91] S. David, Fonctions thêta et points de torsion des variétés abéliennes, Compositio
Math. 78 (1991), 121–160.

[DvdP92] B. M. Dwork and A. J. van der Poorten, The Eisenstein constant, Duke Math. J.
65 (1992), 23–43.

[FW84] G. Faltings and G. Wüstholz, Einbettungen kommutativer algebraischer Gruppen
und einige ihrer Eigenschaften, J. Reine Angew. Math. 354 (1984), 175–205.

[GH78] Ph. Griffiths and J. Harris, ‘‘Principles of Algebraic Geometry,’’ Pure and Applied
Mathematics, Wiley–Interscience, New York, 1978.

[Gra99] F. Gramain, Lemme de Schwarz pour des produits cartésiens, in ‘‘Annales
Mathématiques Blaise Pascal, 2001,’’ to appear.

[HS00] M. Hindry and J. H. Silverman, ‘‘Diophantine Geometry,’’ Springer-Verlag, New
York, 2000.

[Igu72] Jun-ichi Igusa, ‘‘Theta Functions,’’ Die Grundlehren der Mathematischen
Wissenschaften, Vol. 194, Springer-Verlag, New York, 1972.

[Lan82] S. Lang, ‘‘Introduction to Algebraic and Abelian Functions,’’ 2nd ed., Springer-
Verlag, New York, 1982.

[Law89] D. F. Lawden, ‘‘Elliptic Functions and Applications,’’ Springer-Verlag, New York,
1989.

[LR99] M. Laurent and D. Roy, Sur l’approximation algébrique en degré transcendance
un, Ann. Inst. Fourier (Grenoble) 49 (1999), 27–55.

[Mas78a] D. W. Masser, Diophantine approximation and lattices with complex multiplica-
tion, Invent. Math. 45 (1978), 61–82.

[Mas78b] D. W. Masser, Polynomial interpolation in several complex variables, J. Approx.
Theory 24 (1978), 18–34.

[MW93] D. Masser and G. Wüstholz, Periods and minimal abelian subvarieties, Ann. of
Math. 137 (1993), 407–458.

[Phi88] G. Philibert, Une mesure d’indépendance algébrique, Ann. Inst. Fourier (Grenoble)
38 (1988), 85–103.

[Phi96] P. Philippon, Nouveaux lemmes de zéros dans les groupes algébriques commuta-
tifs, Rocky Mountain J. Math. 26 (1996), 1069–1088.

[Phi99] P. Philippon, Mesures d’approximation de valeurs de fonctions analytiques, Acta
Arith. 88 (1999), 113–127.

APPROXIMATION OF ABELIAN QUASI-PERIODS 175
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