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the distribution of its non-trivial zeros in particular.
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1. Introduction

Let ϕ(n) denote the classical Euler totient function and let

E(x) =
∑
n�x

ϕ(n) − 3

π2
x2 (1.1)

be the associated error term. Our aim is to study its oscillatory properties. According the classical
result of Dirichlet, E(x) � x1+ε for every ε > 0. This was improved by F. Mertens [13] to E(x) � x log x,
and then by A. Walfisz [16], who proved that E(x) � x(log x)2/3(log log x)4/3. Walfisz’ estimate remains
the best result of this type up to date. Typically, E(x) is proportional to x as proved by S.S. Pillai and
S.D. Chowla [15]:
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∑
n�x

E(n) ∼ 3

2π2
x2

and S.D. Chowla [1]:

x∫
0

E(t)2 dt ∼ x3

6π2
.

There are however large deviations from this mean. The best omega result for E(x) belongs to
H.L. Montgomery [14]:

E(x) = Ω±(x
√

log log x). (1.2)

The smoothed error:

Ẽ(x) :=
x∫

0

E(t)
dt

t
=

∑
n�x

ϕ(n) log
x

n
− 3

2π2
x2 (1.3)

was studied by the present authors in [12]. It was proved that for x tending to infinity we have

Ẽ(x) = Ω±
(
x

1
2 log log log x

)
and moreover, assuming the Riemann Hypothesis, there exists a positive constant B such that

Ẽ(x) � x
1
2 exp

(
B

log x

log log x

)
.

1.1. Splitting the error term

It turns out that it is convenient to split E(x) into two summands. To this end let us consider the
following Volterra integral equation of second type:

F (x) −
∞∫

0

K (x, t)F (t)dt = E(x) (x � 1), (1.4)

where F (x) is the unknown function and the kernel K (x, t) is defined as follows:

K (x, t) =
{

1/t if 0 < t � x,
0 if 1 � x < t.

According to the general theory, (1.4) has a uniquely determined solution given as an absolutely con-
vergent Neumann series (see for instance [2, Chapter 3]). Let us be more explicit. We define the
operator δ1 on the linear space X of functions g : (0,∞) → R which are Lebesgue locally integrable
and such that

1∫ ∣∣g(t)
∣∣|log t|N dt

t
< ∞
0
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for every integer N � 1, as follows:

δ1(g)(x) =
x∫

0

g(t)

t
dt (x > 0, g ∈ X ). (1.5)

Moreover, let δk denote the k-fold iteration of δ1:

δk = δ1 ◦ · · · ◦ δ1 (k times) (1.6)

and let

Rk(x) = δk(E)(x), (1.7)

where E(x) is defined in (1.1). Then the Neumann series in question gives the following formal ex-
pansion:

F (x) = E(x) +
∞∑

k=1

Rk(x). (1.8)

Notice that δ1 was used also for instance in [5,6,9,11] and most recently in [7] and [8] showing its
usefulness in proving results on the distribution of values of various arithmetic error terms.

Our first aim is to solve (1.4) explicitly. This is the content of our first theorem. To formulate it let
us put

f (x) = −
∞∑

n=1

μ(n)

n

{
x

n

}
(1.9)

for every x � 0, where μ(n) denotes the Möbius function and {θ} = θ − [θ] is the fractional part of a
real number θ .

Theorem 1.1. The unique solution of (1.4) is F (x) = xf (x).

For x � 0 let us write

g(x) =
∞∑

n=1

μ(n)

{
x

n

}2

. (1.10)

Theorem 1.2. For x � 1 we have

E(x) = xf (x) + 1

2
g(x) + 1

2
.

Let us remark that Theorems 1.1 and 1.2 are equivalent. Our proof of the latter shows clearly
how it follows from Theorem 1.1. Equally well one can proceed in the opposite direction, establishing
Theorem 1.2 first.

According to Theorem 1.2, for x � 1 we can split E(x) as follows:

E(x) = EAR(x) + EAN(x), (1.11)
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where

EAR(x) = xf (x) and EAN(x) = 1

2
g(x) + 1

2
(1.12)

with f (x) and g(x) given by (1.9) and (1.10) respectively. Using Theorem 1.1, (1.4) and (1.8) it is easy
to see that

EAN(x) = −
∞∑

k=1

Rk(x) (1.13)

and hence in particular

EAN(x) = −
x∫

0

EAR(t)
dt

t
.

We see also that EAN(x) is absolutely continuous. Note that Ẽ(x) in (1.3) coincides up to the sign with
the first term of the expansion (1.13). We make use of the two initial terms of the Neumann series
(1.13) in the proof of Theorem 1.8 below.

We call EAR(x) and EAN(x) the arithmetic and the analytic part of E(x) respectively. As we shall
see, while EAN(x) depends heavily on the distribution of non-trivial zeros of the Riemann zeta func-
tion, EAR(x) does not. Our treatment of the latter is quite general, with μ(n) in (1.9) replaced by
an arithmetic function α(n) with certain axiomatic properties; see the definition of the class A in
Section 1.2. When α = μ, which is the case that applies to EAR(x), axioms can be verified in an ele-
mentary way using the method of Erdös and Selberg for proving the Prime Number Theorem. In other
cases, including those discussed in Section 1.3, the analysis can be done with a mild use of the zeros
of the involved L-functions using the standard complex integration method and appealing to a de la
Valleé–Poussin type zero-free region.

1.2. Analysis of the arithmetic part

To place the subject in a proper context we state a general theorem for a class of functions sim-
ilar to f (x) in (1.9). Let A denote the set of all arithmetic functions α(n) satisfying the following
conditions:

(i) α(n) is real and multiplicative.
(ii) There exists a positive real number θ < 1 such that

a(n) � nθ . (1.14)

(iii) We have

∞∑
n=1

α(n)

n2
	= 0. (1.15)

(iv) For every N � 1 we have

N∑
n=1

∣∣α(n)
∣∣ � N. (1.16)
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(v) The series

∞∑
n=1

α(n)

n

converges.
(vi) There exists a positive real number η and a sequence of positive numbers xν → ∞ such that

∑
p�xν

α(p)<0
p≡3 (mod 4)

|α(p)|
p

� η log log xν + O (1) (1.17)

for all ν � 1.

For such α(n) we write

f (x,α) =
∞∑

d=1

α(d)

d
s

(
x

d

)
, (1.18)

where s(x) denotes the saw tooth function:

s(x) =
{

0 if x ∈ Z,
1
2 − {x} otherwise.

Recalling that
∑

n μ(n)/n = 0 we have

f (x,μ) = 1

2

(
f (x − 0) + f (x + 0)

)
,

where f (x) is defined in (1.9). Hence for x /∈ Z we have f (x,μ) = f (x).
Moreover, for every x � 1 let us put

R(x,α) = sup
y�x

∣∣∣∣∑
n>y

α(n)

n

∣∣∣∣
and

R∗(x,α) =
√

R(
√

x,α) + 1

x
. (1.19)

It is evident that R∗(x,α) is positive, monotonic and according to (v) R∗(x,α) → 0 as x → ∞.

Theorem 1.3. Let α ∈ A. Then we have

f (x,α) = Ω±
((

log log
1

R∗(x2/3,α)

)η)

as x → ∞.
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Taking the Möbius μ-function as α(n) we see that we can apply the above result with η = 1/2.
Using de la Valleé–Poussin zero-free region and complex integration method one can easily show that

R∗(x,α) � exp(−c0

√
log x) (1.20)

for certain positive constant c0 and all x � 1. Consequently we have the following corollary which
was implicitly proved in [14].

Corollary 1.4. Let f (x) be defined in (1.9). Then

f (x) = Ω±(
√

log log x) and EAR(x) = Ω±(x
√

log log x)

as x → ∞.

Remark. Most probably estimate of type (1.20), possibly with (log x)β , β < 1/2, in place of
√

log x,
can be proved in an elementary way, and hence one can make our treatment of EAR(x) completely
independent of the theory of the Riemann zeta function.

1.3. Two examples

We show here that besides the Möbius function there are other interesting arithmetic functions
belonging to the class A. Let φ be a holomorphic newform of weight k and level q with the following
normalized Fourier expansion at infinity:

φ(z) =
∞∑

n=1

λφ(n)n
k−1

2 e(nz) (z ∈ H).

We refer to [4] for basic definitions and results used in this section.

Proposition 1.5. The function n �→ μ(n)|λφ(n)|2 belongs to the class A and satisfies condition (vi) with η =
1/2. In particular, for the corresponding function f we have the following omega estimate:

f
(
x,μ|λφ |2) = Ω±(

√
log log x)

as x → ∞.

Condition (i) is obviously satisfied since φ is an eigenfunction of the Hecke algebra. Moreover,
(ii) holds true with every positive θ according to the celebrated Deligne bound

∣∣λφ(n)
∣∣ � d(n), (1.21)

d(n) being the classical divisor function. Other conditions from the definition of A can easily be
verified using the known properties of the corresponding L-function

L(s, φ) =
∞∑

n=1

λφ(n)

ns
(σ > 1),

its twist by the primitive Dirichlet character (mod 4) L(s, φ⊗χ4), and the Rankin–Selberg convolution
L(s, φ ⊗ φ). Using Euler products it is easy to see that for σ > 1 we have
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∞∑
n=1

μ(n)|λφ(n)|2
ns

= h(s)

L(s, φ ⊗ φ)
, (1.22)

where h(s) is holomorphic and non-vanishing for σ > 1/2. Putting s = 2 we check condition (iii),
whereas (iv) follows immediately from the properties of the Rankin–Selberg convolution which imply

∞∑
n=1

∣∣λφ(n)
∣∣2 ∼ c0x

for a certain positive c0 = c0(φ) as x → ∞. Applying the usual complex integration technique to (1.22)
we obtain

∑
n�x

μ(n)
∣∣λφ(n)

∣∣2 � xe−c1
√

log x

for a certain positive c1 = c1(φ) as x → ∞. This implies (v) and shows also that

R∗(x,μ|λφ |2) � e−c2
√

log x

for a certain positive c2 = c2(φ) as x → ∞. Finally, using the Rankin–Selberg convolution once again,
we can prove that

∑
p�x

|λφ(p)|2
p

= log log x + O (1)

and

∑
p�x

|λφ(p)|2χ4(p)

p
= O (1)

as x → ∞. This implies

∑
p�x

p≡3 (mod 4)

|λφ(p)|2
p

= 1

2
log log x + O (1) (1.23)

as x → ∞ and gives (vi) with η = 1/2, as required. Proposition 1.5 therefore follows.
Let us now assume that coefficients λφ(n) are real. This happens for instance when φ is associated

to an elliptic curve defined over Q.

Proposition 1.6. Let φ be as above and have real Fourier coefficients. Then λφ(n) belongs to the class A and
satisfies condition (vi) with η = 1/8. In particular, we have

f (x, λφ) = Ω±
(
(log log x)1/8)

as x → ∞.
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One verifies axioms (i)–(v) along similar lines as before. Using (1.23) and the fact that |λφ(p)| � 2
(see (1.21)), we have

∑
p�x

p≡3 (mod 4)

|λφ(p)|
p

� 1

4
log log x + O (1).

Since

∑
p�x

p≡3 (mod 4)

λφ(p)

p
= O (1),

we easily deduce that

∑
p�x

p≡3 (mod 4)

λφ(p)<0

|λφ(p)|
p

� 1

8
log log x + O (1),

and condition (vi) follows with η = 1/8 as required.
Let us remark that the exponent 1/8 in the last proposition can in many cases be improved. The

authors hope to address this problem in a future paper.

1.4. Analysis of the analytic part

The properties of EAN(x) directly depend on the distribution of non-trivial zeros of the Riemann
zeta function. First of all let us observe that

EAN(x) � x exp

(
−A

(log x)3/5

(log log x)1/5

)
(1.24)

for a suitable positive constant A and x → ∞. Indeed, (1.24) follows from (5.6) below after a suitable
modification of the path of integration and by appealing to the classical zero-free region of Korobov
and Vinogradov. Details are similar to those in the proof of Theorem 12.2, [3], and can be omitted.
Let us remark that (1.24) together with Theorem 1.2 and Corollary 1.4 imply Montgomery’s estimate
(1.2).

We can restate the Riemann Hypothesis in terms of EAN(x) as follows.

Theorem 1.7. The following statements are equivalent.

(1) The Riemann Hypothesis is true.
(2) There exists a positive constant A such that for x � ee we have

EAN(x) � x
1
2 exp

(
A

log x

log log x

)
. (1.25)

(3) For every ε > 0 and x � 1 we have

EAN(x) �ε x
1
2 +ε.
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The following result gives an unconditional lower estimate for EAN(x).

Theorem 1.8. For x tending to infinity we have

EAN(x) = Ω±
(
x

1
2 log log log x

)
.

2. Proof of Theorems 1.1 and 1.2

Consider the subsidiary function defined for x � 0 by the formula

R(x) = E(x) − xf (x). (2.1)

We will prove Theorem 1.1 by showing that R(x) = ∫ x
0 f (t)dt or all x > 0.

Let us observe that R(x) is continuous. Indeed, for x = 0 or for positive x which are not integers it
is evident. If x = N ∈ N then

R(N + 0) − R(N − 0) = ϕ(N) − N
(

f (N + 0) − f (N − 0)
)
.

Since {
N + 0

n

}
−

{
N − 0

n

}
=

{
0 if n � N,

−1 if n | N,

we have

f (N + 0) − f (N − 0) =
∑
n|N

μ(n)

n
=

∏
p|N

(
1 − 1

p

)
= ϕ(N)

N
.

Therefore R(N + 0) − R(N − 0) = 0, and continuity of R(x) follows. Let now x be positive and not an
integer. Taking derivative of both sides of (2.1) we find

R ′(x) = − 1

ζ(2)
x − f (x) − xf ′(x).

For x /∈ N, x > 0, we have {x/n}′ = 1/n, and hence f ′(x) = −1/ζ(2). Consequently, we obtain

R ′(x) = − f (x) (x > 0, x /∈ N).

Hence

R(x) = −
x∫

0

f (t)dt + R(0). (2.2)

So far we proved (2.2) for x > 0, x /∈ N, but since both sides are continuous, equality holds for all
positive x. Theorem 1.1 follows now from (2.1) and (2.2) since R(0) = 0.

Let us prove Theorem 1.2 now. By Theorem 1.1 it is enough to show that for x � 1 we have

x∫
f (t)dt = −1

2
g(x) − 1

2
. (2.3)
0
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This can be done as follows. For x > 0 we have

x∫
0

{t}dt = 1

2
{x}2 + 1

2
[x]

and hence recalling (1.10) we obtain

x∫
0

f (t)dt = −
∞∑

n=1

μ(n)

x/n∫
0

{t}dt

= −1

2
g(x) − 1

2

∞∑
n=1

μ(n)

[
x

n

]
.

But for x � 1 the last sum equals

∑∑
nm�x

μ(n) =
∑
n�x

∑
d|n

μ(d) = 1,

and (2.3) follows. The proof is complete.

3. Some subsidiary estimates needed for the proof of Theorem 1.3

Lemma 3.1. Let α ∈ A. For y � max(xR∗(x,α),
√

x) we have

f (x,α) =
∑
d�y

α(d)

d
s

(
x

d

)
+ O

(
R∗(x,α)

)
.

Proof. For y � x we have by partial summation

∑
n>y

α(d)

d2
� 1

x
R(x,α)

and hence

f (x,α) =
∑
d�y

α(d)

d
s

(
x

d

)
+

∑
d>y

α(d)

d

(
1

2
− x

d

)

=
∑
d�y

α(d)

d
s

(
x

d

)
+ O

(
R(x,α)

)
,

which is more than enough since R(x,α) � R∗(x,α).
Suppose now that

max
(
xR∗(x,α),

√
x
)
� y < x. (3.1)
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Using the first part of the proof we write

f (x,α) =
∑
d�y

α(d)

d
s

(
x

d

)
+

∑
y<d�x

α(d)

d
s

(
x

d

)
+ O

(
R(x,α)

)

and split the range y < d � x into � x/y subranges (x/k) � d < x/(k − 1). In every such subrange,
s(x/d) is monotonic, and hence by partial summation

∑
(x/k)�d<x/(k−1)

α(d)

d
s

(
x

d

)
� R

(
x

k
,α

)
� R(y,α).

Since R(y,α) is monotonic as a function of y, and y �
√

x by (3.1), the total contribution of these
terms is

� x

y
R(

√
x,α).

Since by (3.1) and (1.19) we have y � xR∗(x,α) � x
√

R(
√

x,α), the last expression is

�
√

R(
√

x,α) � R∗(x,α).

This completes the proof. �
Lemma 3.2. Let b and r > 0 be relatively prime integers, and let β be a real number. Then for any positive N,

N∑
n=1

s

(
n

b

r
+ β

)
= N

r
s(rβ) + O (r).

Proof. This is Lemma 3 in [14]. Note that there is a misprint in (13) of [14], and “�” there should
read as “=”. �
Lemma 3.3. Let α ∈ A. For sufficiently large square-free integer

q � 1

2
min

(
R∗(N,α)−1,

√
N

)
and every real number 0 < a < q we have

N∑
n=1

f (nq + a,α) = c(q,a,α)N + O (N),

where

c(q,a,α) =
(∑

e|q

s(a/e)

e

∑
f1|e∞

α(ef1)

f 2
1

) ∑
( f2,q)=1

α( f2)

f 2
2

. (3.2)

The notation f1 | e∞ means that all the prime divisors of f1 divide e.
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Proof. We apply Lemma 3.1 with y = N and x = nq + a. Since q �
√

N/2 we have
√

nq + a �√
(N + 1)q � N. If nq + a � N then obviously (nq + a)R∗(nq + a,α) � N for sufficiently large q. Other-

wise, since q � R∗(N,α)−1/2, and using monotonicity of R∗(x,α), we have (nq +a)R∗(nq +a,α) � N .
Hence in all cases

N � max
(
(nq + a)R∗(nq + a,α),

√
nq + a

)
if q is large enough, so that we can apply Lemma 3.1. Consequently, using in addition Lemma 3.2 with
b = q/(q,d) and β = a/d we obtain

N∑
n=1

f (nq + a,α) =
N∑

n=1

N∑
d=1

α(d)

d
s

(
nq + a

d

)
+ O (N)

=
N∑

d=1

N∑
n=1

α(d)

d
s

(
nq + a

d

)
+ O (N)

= N
N∑

d=1

α(d)(q,d)

d2
s

(
a

(q,d)

)
+ O (N).

Putting in the last sum d = ef1 f2, where e = (q,d), f1 | e∞ , ( f2,q) = 1 and using multiplicativity of α
we arrive at (3.2) which ends the proof. �
Lemma 3.4. Let α ∈ A. Then there exists a positive constant c0 = c0(α) such that for every integer q we have

∣∣∣∣ ∑
(n,q)=1

α(n)

n2

∣∣∣∣ � c0.

Proof. Let

∞∑
n=1

α(n)

n2
=

∏
p

∞∑
l=0

α(pl)

p2l
=

∏
p

Ap,

say. By (1.15) we have that A p 	= 0 for all primes p. Using (1.14) it is easy to see that there exist
θ ′ = θ ′(α) > 1 and p0 = p0(θ

′) such that

∞∑
l=1

|α(pl)|
p2l

� 1

pθ ′

for p > p0. Then

∏
p>p0

p�q

Ap �
∏

p

(
1 − 1

pθ ′

)
= 1

ζ(θ ′)
.

Moreover, let p1, . . . , pr denote all primes � p0 and let

b0 := min
(

min
1� j�r

|Ap j |,1
)
.
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Then

∣∣∣∣ ∑
(n,q)=1

α(n)

n2

∣∣∣∣ =
∏

1� j�r
p j �q

|Ap j |
∏

p>p0
p�q

Ap �
br

0

ζ(θ ′)

and the lemma follows. �
4. Proof of Theorem 1.3

Let xν be as in the definition of the class A, see Section 1. Using (1.14) it is easy to see that there
exist positive constants θ ′ = θ ′(α) and c1 = c1(α) such that

∞∑
l=1

|α(pl+1)|
p2l

� 1

p2θ ′ (4.1)

for all primes p � c1. We have obviously

∑
|α(p)|�p−θ ′

|α(p)|
p

� 1

and hence according to (1.17) we have

∑
p�xν

α(p)<−p−θ ′
p≡3 (mod 4)

|α(p)|
p

� η log log xν + O (1). (4.2)

Let

q = qν :=
∏

c2(ν)�p�xν

α(p)<−p−θ ′
p≡3 (mod 4)

p, (4.3)

where c2(ν) � c1 is chosen in such a way that q ≡ 1 (mod 4) and c2(ν) � 1 as ν → ∞. For p | q we
have using (4.1) and inequality |α(p)| > p−θ ′

∞∑
l=0

α(pl+1)

p2l
= α(p) + ϑp

∞∑
l=1

|α(pl+1)|
p2l

= α(p)
(
1 + ϑ ′

p p−θ ′)
for certain |ϑp|, |ϑ ′

p| � 1. Hence for every e | q we have
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∑
f1|e∞

α(ef1)

f 2
1

=
∏
p|e

∞∑
l=0

α(pl+1)

p2l

= α(e)
∏
p|e

(
1 + ϑ ′

p p−θ ′)
. (4.4)

Let now suppose that ν is sufficiently large and put

N := min

{
k � 1:

1

2
min

(
R∗(k,α)−1,

√
k
)
� q

}
,

a = q/4, (4.5)

and

ε = sgn
∑

(n,q)=1

α(n)

n2
.

Observe that for large ν , ε is independent of ν . This follows from the fact that factors A p in the proof
of Lemma 3.4 are positive for sufficiently large p’s. By Lemma 3.3 we have

N∑
n=1

ε f (nq + a,α) = εc(q,a,α)N + O (N). (4.6)

Observe that for e | q, the value s(a/e) is positive (and equals 1/4) if and only if e ≡ 1 (mod 4), which
happens exactly when e has an even number of prime factors. Hence

sgn s(a/e) = sgnα(e),

and thus using in addition Lemma 3.4 and (4.4) we have

εc(q,a,α) = ∣∣c(q,a,α)
∣∣ �

∑
e|q

|α(e)|
e

∏
p|e

(
1 + ϑ ′

p p−θ ′)

=
∏
p|q

(
1 + |α(p)|

p

(
1 + ϑ ′

p p−θ ′)) � exp

(∑
p|q

|α(p)|
p

)
.

Using (4.2) and (4.3) this is � (log xν)η . Now using q = exp(O (xν)) and recalling (4.5) we obtain

log xν � log log q � min

(
log log

1

R∗(N − 1,α)
, log log(N − 1)

)

= log log
1

R∗(N − 1,α)
.

The last equality follows from the inequality R∗(N −1,α) � 1/(N −1) which holds according to (1.19).
Gathering the above estimates and using

nq + a � (N + 1)q � (N − 1)3/2
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we obtain using (4.6)

max
1�x�(N−1)3/2

(
ε f (x,α)

) �
(

log log
1

R∗(N − 1,α)

)η

+ O (1)

which gives

ε f (x,α) = Ω+
((

log log
1

R∗(x2/3,α)

)η)
.

Choosing a = 3q/4 we obtain Ω−-estimate and the result follows.

5. Proof of Theorem 1.8

It is convenient to derive the assertion from the results proved in [12].

Lemma 5.1. With the notation (1.7) we have

R1(x) + R2(x) = Ω±(
√

x log log log x)

as x → ∞.

Proof. Analogous result for R1(x) in the place of R1(x) + R2(x) was established in [12]. The present
lemma follows by repeating all steps in the proof of Theorem 1.1 in [12]. The required modifications
are straightforward and shall not be described here in details. �
Lemma 5.2. For σ > 2 we have

∞∫
1

EAN(x)x−s−1 dx = 3

π2

1

s − 2
+ ζ(s − 1)

s(1 − s)ζ(s)
. (5.1)

Proof. According to (1.11) we have EAN(x) = E(x) − xf (x). We insert this into the integral in (5.1) and
use the following identities which are easy to verify by a straightforward computations

∞∫
1

E(x)x−s−1 dx = ζ(s − 1)

sζ(s)
− 3

π2

1

s − 2

and

∞∫
1

f (x)x−s dx = ζ(s − 1)

(s − 1)ζ(s)
− 6

π2

1

s − 2
.

The lemma then follows. �
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Lemma 5.3. Suppose that a measurable, locally bounded function h : [1,∞) → R satisfies h(x) = O (xA), and
h(x) � Bxa log log x or h(x) � −Bxa log log x for certain positive a, A and B and all large x. Moreover, let its
Mellin transform F (s) = ∫ ∞

1 h(x)x−s−1 dx be holomorphic on the interval [a, A]. Then F (s) is holomorphic for
σ > a and

F (s) � 1

σ − a
log

(
1

σ − a

)

uniformly for a < σ < a + (1/2).

Proof. This is Corollary 3.2 in [10] or Lemma 2.1 in [12]. �
Lemma 5.4. Suppose that

∃x0,C0>0 ∀x�x0 EAN(x) � C0x
1
2 log log x (5.2)

or

∃x0,C0>0 ∀x�x0 EAN(x) � −C0x
1
2 log log x. (5.3)

Then the Riemann Hypothesis is true, all non-trivial zeros of the Riemann zeta function are simple, and denoting
by ρ = (1/2) + iγ a generic non-trivial zero we have

ζ(ρ − 1)

ζ ′(ρ)
� γ 2 log |γ |. (5.4)

Proof. We apply Lemmas 5.2 and 5.3 to h(x) = EAN(x), a = 1/2, A = 2 and conclude that ζ(s −1)/ζ(s)
is holomorphic for σ > (1/2). Moreover, we obtain that

ζ(s − 1)

ζ(s)
� |s|2

σ − (1/2)
log

1

σ − (1/2)
(5.5)

for (1/2) < σ < 1. Consequently, Riemann Hypothesis holds true and zeros on the critical line are
simple. Estimate (5.4) follows from (5.5) as it was shown in the proof of Lemma 2.3 in [12]. �

Now we can conclude the proof of Theorem 1.8. We can assume that (5.2) and (5.3) are true since
otherwise there is nothing left to be proved. Taking the inverse Mellin transform in (5.1) we obtain
after some trivial computations

EAN(x) = 1

2π i

∫
L

ζ(s − 1)

ζ(s)

xs

s(1 − s)
ds, (5.6)

where the path of integration L consists of the half-line [3 − i∞,3 − 2i], the semi-circle s = 3 + 2eiθ ,
3π/2 > θ > π/2 and the half-line [3 + 2i,3 + i∞]. Writing

1

s(1 − s)
= − 1

s2
− 1

s3
+ 1

s3(1 − s)

we split the last integral into three parts



J. Kaczorowski, K. Wiertelak / Journal of Number Theory 130 (2010) 2683–2700 2699
−R1(x) − R2(x) + 1

2π i

∫
L

ζ(s − 1)

ζ(s)

xs

s3(1 − s)
ds = −R1(x) − R2(x) + I,

say. Shifting the line of integration to the left we have

I =
∑
ρ

ζ(ρ − 1)

ρ3(1 − ρ)ζ ′(ρ)
xρ + 1

2π i

(1/4)+i∞∫
(1/4)−i∞

ζ(s − 1)

ζ(s)

xs

s3(1 − s)
ds.

According to Lemma 5.4, the sum over zeros is

� x1/2
∑
ρ

log |γ |
γ 2

� x1/2,

whereas the integral is

x1/4

(1/4)+i∞∫
(1/4)−i∞

|s|−3+ε |ds| � x1/4,

and hence

EAN(x) = −R1(x) − R2(x) + O
(
x1/2).

The assertion now follows from Lemma 5.1 and Theorem 1.2.

6. Proof of Theorem 1.7

Let us assume that the Riemann Hypothesis is true. Then shifting the line of integration in (5.6)
we obtain

EAN(x) = 1

2π i

( (1/2)+η−ix2∫
(5/2)−ix2

+
(1/2)+η+ix2∫

(1/2)+η−ix2

+
(5/2)+ix2∫

(1/2)+η+ix2

)
ζ(s − 1)

ζ(s)

xs

s(1 − s)
ds + O

(
x1/2),

where η = 1/ log(2 log x). We estimate these integrals exactly in the same way as in the proof of
Theorem 1.2 in [12] getting (1.25). Hence (1) implies (2). Moreover, (3) follows from (2) in a trivial
way. To conclude the proof let us remark that if EAN(x) � x(1/2)+ε then the integral in (5.1) defines for
�(s) > 1/2 a holomorphic function and hence ζ(s) has no zeros in this half-plane. We see therefore
that (3) implies (1) and the result follows.
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