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I' € [0, p — 1]™ with the side length h > p'/?(log p)!*¢. Here we
use this result to show the above vectors remain uniformly dis-
tributed, when x runs through a rather general set. We also obtain
new results about the distribution of solutions to system of poly-
nomial congruences.
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1. Introduction

Let p be a prime and let I, be the finite field of p elements, which we assume to be represented
by the set {0,1,...,p —1}.

Given n polynomials G;(Xi,..., Xm) € Fp[X1,..., Xml, j=1,...,n, in m variables with integer
coefficients, we consider the following points formed by fractional parts:
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We say that the polynomials Gy, ..., G, are degree 2 independent over IF,, if any nontrivial linear
combinations a;G1 + - - - +a, G, is a polynomial of degree at least 2 over Fj.

Let &y n,p denote the family of polynomial systems {G1,..., Gp} of n polynomials in m variables
that are degree 2 independent over FFp.

Fouvry and Katz [3] have shown that for any {Gi,...,Gu} € &ppp, the points (1) are uni-
formly distributed in the unit cube [0, 1]", where X runs through the integral points in any cube
I' €[0,p — 11™ with side length h > p'/2(log p)!*¢. Here we use several of the results from [3]
combined with some ideas of Schmidt [7] to obtain a similar uniformity of distribution result when
x runs through a set from a very general family. For example, this holds for x that belong to the
dilate p£2 of a convex set £2 € [0,1]™ of Lebesgue measure at least p~1/2*¢ for any fixed & > 0 and
sufficiently large p. We note that standard way of moving from boxes to arbitrary convex sets, via the
isotropic discrepancy, see [7, Theorem 2], leads to a much weaker result which is nontrivial only for
sets £2 € [0, 1]™ of Lebesgue measure at least p—1/2m+¢,

As in [8], it is crucial for our approach that the error term in the aforementioned asymptotic
formula of [3] depends on the size of the cube I' € [0,p — 1]™ and decreases rapidly together
with the size of I'. We note that a similar idea has also recently been used in [4] in combination
with a new upper bound on the number of zeros of multivariate polynomial congruences in small
cubes.

Furthermore, given n polynomials F;(X1,..., Xm) € Z[X1,..., Xm], j=1,...,n, we consider the
distribution of points in the set X}, of solutions X = (x1,...,Xn) € IF’;] to the system of congruences

Fix)=0(mod p), j=1,...,n (2)

Let §mn denote the family of polynomial systems {Fi,..., F;} of n polynomials in m >n + 1

variables with integer coefficients, such that the solution set of the system of equations (over C)
Fix)=0, j=1,...,n,

has at least one absolutely irreducible component of dimension m —n and no absolutely irreducible

component is contained in a hyperplane. For sufficiently large p all absolutely irreducible compo-

nents remain of the same dimension and are absolutely irreducible modulo p, so by the Lang-Weil
theorem [6] we have

#Xp =vp" " 0 (p" 1), (3)

where v is the number of absolutely irreducible components of X}, of dimension m —n. It is shown
in [8], that for a rather general class of sets £2, including all convex sets, we have

Tp(2) = #X,(1u(2) + 0 (p~ /2™ VD log p)) (4)
with
Tp(82) =#(Xp N £2).

The asymptotic formula (4) is based on a combination of a result of Fouvry [2] and Schmidt [7].

Here we show that for a more restricted class of sets, which includes such natural sets as
m-dimensional balls, one can improve (4) and obtain an asymptotic formula which is nontrivial pro-
vided that

[u(82) > p~ 1/

for any fixed € > 0 and a sufficiently large p, while (4) is nontrivial only under the condition ©(£2) >
p~1/2(tD+e (hyt applies to a wider class of sets).
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2. Well and very well shaped sets

Let Ts = (R/Z)* be the s-dimensional unit torus.
We define the distance between a vector u € T, and a set 2 C Ty, by

dist(u, £2) = inf |[u—w|,
weg2

where ||v|| denotes the Euclidean norm of v. Given &€ > 0 and a set £2 C T},,, we define the sets
2 ={ueTy\Q: dist(u, 2) < ¢}

and
2, ={ue: dist(u, T\ 2) <&}

We say that a set 2 is C-well shaped if

n(2F) < Ce, (5)

for some constant C, where p is the Lebesgue measure on Ty,.

It is known that any convex set in Ty, is C-well shaped for some C depending only on m, see [7,
Lemma 1].

Finally, a very general result of Weyl [9, Eq. (2)] (taken with n=m and v =n — 1), that actually
expresses M(Qgi) via a finite sum of powers &f, i =1,...,m in the case when the boundary of £
is manifold of dimension n — 1. Examining the constants in this expansion we see that any such set
with a bounded surface size is C-well shaped for some C.

Furthermore, for C > 0, we say that a set 2 C Ty, is C-very well shaped if for every & > 0 the
measures of the sets £2F exist and satisfy

w(2F) < c(p)!=Vme 4-&™). (6)

The most natural example of a C-very well shaped set (for some C > 0 depending only on m) is a
Euclidean ball.

We recall that the notation A(t) < B(t) is equivalent to A(t) = O (B(t)), which means that there
exists some absolute constant, «, such that |A(t)| < «B(t) for all values of t within a certain range.
Throughout the paper, the implied constants in symbols ‘O’ and ‘<’ may depend on the constant C
in (5) and (6) and it may also depend on the polynomial system {F1,..., Fy} € §m.n (but does not
depend on the polynomial system {G1,...,Gn} € Bmpp).

3. Discrepancy

Given a sequence Z of N points

- N
(=] z{(gk,]!--'vgk,n)}kzls (7)
in Ty, we define its discrepancy as
#A(E, IT)
A(&) = sup | ——— —A(D)|,
CcT, N

where A(Z, IT) is the number of k < N such that (&.1,...,&.n) € I1, A is the Lebesgue measure
on T, and the supremum is taken over all boxes



2866 B. Kerr, LE. Shparlinski / Journal of Number Theory 133 (2013) 2863-2873

I =[oy, B1) x -+ x [0, Br) C T, (8)

see [1,5].
We also define the discrepancy of an empty sequence as 1.

4. Main results

For a set £2 C Ty, let D(£2) be the discrepancy of the points

(). fe50)). s

Theorem 1. For any polynomial system {G1, ..., Gn} € &, p and any C-well shaped set §2 € Tp, for some
constant C, we have

D(2) < ()~ p~"*(log p)"*2.
We can get a sharper error term for the case of C-very well shaped sets.

Theorem 2. For any polynomial system {G1, ..., Gn} € & n p and any C-very well shaped set §2 € Ty, we
have

D(£2) < ()" p~2(log p)*+2.
We prove the following
Theorem 3. For any polynomial system {F1, ..., Fy} € §m,n and any C-very well shaped set 2 € Ty, we have
Tp(82) = #Xp (1(2) + 0 (w()!"/mp~ 120 Vlog p 4 p~12(log p)"*2)).
5. Exponential sum and congruences

Typically the bounds on the discrepancy of a sequence are derived from bounds of exponential
sums with elements of this sequence. The relation is made explicit in the celebrated Koksma-Sziisz
inequality, see [1, Theorem 1.21], which we present in the following form.

Lemma 4. Suppose that for the sequence of points (7) for some integer L > 1 and the real number S we have

<S8,

N n
Z exp (27Ti Z aj&,j)
k=1 =

forallintegers —L <a; <L, j=1,...,n, notall equal to zero. Then,

1  (logL)"
D(I" —
N« L + N )

where the implied constant depends only on n.

To use Lemma 4 we need the following bound of Fouvry and Katz [3, Eq. (10.6)]
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Lemma 5. For any polynomial system {G1, ..., G} € & 5 p and arbitrary integers u and w with1 < w < p,
uniformly over all non-zero modulo p integer vectors (aq, ..., a,) we have
u+w . n
27i _
Z exp<— Zajcj()(], . xm)> < p?w™ Tlogp.
X1 ,eeesXm=1U p j=1

Proof. The bound in [3, Eq. (10.6)], that gives the desired result for u = 0 is uniform in polynomials
G1,...,Gm. It now remains to notice that the property of being degree 2 independent is preserved
under the change of variables X; — Xj+u, j=1,....,m. O

The proof of Theorem 3 is based on the following bound for T, (C) for a cube C which is essentially
a result of Fouvry [2]

Lemma 6. For any polynomial system {F1, ..., Fy} € §m,n and any cubic box
uq ug +1 Un Um +1
c= —. = = Y+ ——— | CR™,
[Vl-i- K Y+ K ]X X[Vm-i- K Ym + X -
where uy, ..., un € Z, of side length 1/k, we have

1 m m—n—1
Tp(C) = #X, (E) +0 (p(’"‘”)/z(logp)’" + (E) p™ " 12(log p)”“)-

6. Proof of Theorem 1

For a set £2 C Ty, and a box IT C T, of the form (8) let N(£2; IT) be the number of integer vectors
x € p&2 for which the points (1) belong to I7.

In particular, let N(£2) = N(£2; T;) be the number of integer vectors X € p£2. A simple geometric
argument shows that if 2 = I" C Ty, is a cube then

N(I) = pu(D)p™ + 0 (p™ T () ™=D/m). 9)

We start with deriving a lower bound on N(£2; IT).

We now recall some constructions and arguments from the proof of [7, Theorem 2]. Pick a point
Y =1, ..., ¥Ym) € Ty such that all its coordinates are irrational. For positive k, let €(k) be the set of
cubes of the form

u up+1 u um+1
[y1+71,y1+ ! ]X--~X[Vm+7m,ym+ T

c m
[ k K k }—R’

where ug,...,uy, € Z. Note that the above irrationality condition guarantees that the points p~!

with x € Z™ all belong to the interior of the cubes from €(k).
Furthermore, let C(k) be the set of cubes from &€(k) that are contained inside of £2. By [7, Eq. (9)],
for any C-well shaped set 2 € Tp;, we have

X

#C(k) = k™ (2) + 0 (k™71), (10)

where the implied constant depends only on m and C. Let B1 =C(2) and for i =2,3,..., let B; be
the set of cubes I € C(2!) that are not contained in any cube from C(2!~1). Clearly

27 MR 427Dy (2 (), i=2,3,....
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We now see from (10) that

#B; « 21m=D (11)
and also for any integer M > 1,
M
e\e; cyrece
i=1TeB;
with e =m'/22=M_ Since §2 is C-well shaped, we obtain
M
M(U U r):u<9)+o(2M). (12)
i=1I€eBb;

Using Lemma 4 (taken with L = (p — 1)/2) and recalling the bound of Lemma 5 we see that the
discrepancy D(I") of the points (1) with x € pI', for a cube I satisfies

1/2( (F)l/m)m—l _ 3
Dy« ? p,lfL(F)pm (log )" = p~12p(r) =" log p)" .

Therefore, using (9), we derive

N(I'; [T) = A(IT)N(I') + O (N(I')D(I))

=AIDu()p™ + 0 (p™ 12 () ™=D/M (log py* ). (13)
Hence
M
N2 =Y 3 NI =2UDp™ Y Y () + 0(R), (14)
i=1I'eB; i=1IebBb;
where
M

R = pmi]/z(log p)n+1 Z#B[Zil(mil)«

i=1

We see from (12) that

M M
> ZM(F)=M< U F):/L(.Q)-i—O(ZM). (15)
i=1IeBb; i=1IeB;
Furthermore, using (11), we derive
R < Mp™~ /2 (log p)"*. (16)

We now choose M to satisfy

M < pl/2 LM+,
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Now, substituting (15) and (16) in (14) with the above choice of M, we obtain

N($2; IT) > 2D (2)p™ + 0 (p" /2 (log p)™*?). (17)
Since the complementary set 2 =Ty, \ £2 is also C-well shaped, we also have

N(&2; 1) <AUD(E2)p™ + 0 (p™ 2 (log p)™+2). (18)

Note that by (13) we have
N(Tm: IT) = 1(ID)p™ + 0 (p™~ /2 (log p)"*").
Now, since
N($2; IT) = N(Tp; IT) = N(IT) and  pu(2) =1 — (),

we now see that (18) implies that upper bound

N(2; IT) < JDp(2)p™ + 0 (P (log p)*+?)
together with (17) leads to the desired asymptotic formula

N(Q: IT) = M(ID(2)p™ + 0 (p™~ /2 (log p)"**2).

Since D(£2) < 1, we can assume that

-1/2 y+2

w(£2) = cop™/“(logp
for a sufficiently large constant ¢y > 0 as otherwise the result is trivial. Thus

N($2; IT) -1,.-1/2
———=AI1T)+ O (u(£2 2(1 n+2
N (IT) + 0 (u($2)~'p~/*(log p)"**)
which concludes the proof.

7. Proof of Theorem 2

If 2 is C-very well shaped we may use the same method as the proof of Theorem 1 to replace
the bounds (11) and (12) with

#B; < 1+ pu(§2)m=-D/maim=1) o)

and

M
“(U U r) = (82) + O (pu(82)m—D/mp=M 4 p=Mm), (20)

i=1IeB;

Recalling the lower bound (14)
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M
N(2:; 1) 2 A(DHp™ Y >~ () + O(R),
i=1IeB;

where

M

i=1

We use (19) to bound the term R. First we note if #55; > 0 we must have 2~™ < u(£2). Hence

M M
> o #B27 D = > #B;271m=1
i=1 i>—logu($2)/(mlog2)
M
<« Z (M(Q)(m—l)/m + Z—i(m—l))

i>—logu($2)/(mlog2)
K Mpu(2)M=D/m 4y (g2)m=D/m

so that
R < My (82)m=D/mpm=1/2(jog pyr+1.
By (20) we have
M M
DY )= M(U U F) = [1(2) + O (pu(82)m=D/mp=M 4 5=Mm),
i=1I'eBb; i=1TIebBb;
Hence
N($2; IT) > A(IT)p(82)p™ + 0 (pu(82) M= D/mpmp=M . pmp=Mm
Since D(£2) < 1, we can assume that
[1(£2) = cop™™?(log p)™*+?
for a sufficiently large constant cg > 0. Thus, choosing M so that
M < p < 2MHD
gives
N(2; IT) > (I p(2)p™ + 0 (u(2) ™ D/Mp™m=1/2 (log p)"*2).

The upper bounds for N(£2; IT) and D(£2) follow the same method as in the proof of Theorem 1.
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8. Proof of Theorem 3

2871

Given a C-very well shaped set £2, we consider the same constructions as in the proof of Theo-

rem 1. As in Theorem 2 we have the bound

#B; < 1+ () ~1/moitm=1,
The set inclusions
M
e\e;cyrce
i=1TeB;

give the approximation

||C§

(Y

Using Lemma 6 and (22),

B M(‘Q)l 1/m 1
L{; )—u(9)+o<2—+2m—M>

M M
Tp(2) > > Tp() =#Xp ) 3w+ O0(R),
i=1I'eB; n=1IeBb;
where
M .
R = Z#Bi(p(mfn)/z (lng)m + zfr(mfnfl)pmfnfl/z(log p)n+l).
i=1
By (23)
M 1-1/m
n(s82) 1
#X ) ) () =#X, <M(Q) +0 (2— + i
n=1IeB;
and using (3) we have
M pman(Q)lf]/m pmfn
#p Y D W) = #Xp(R) + o( i + S )
n=1TI€eB;

For the term R, by (21)

M
R« Z(p(m—n)/z (logp)m + (pz—i)m_n_lpl/z(log p)TH-l)
i=1
M

1
+ ) (@)t maim b p 2 (og py™ - (p271) " p! 2 (log p)™T)
i=1

(21)

(22)
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M
< Mp(m—n)/Z(logp)m + pm—n—l/z(]ogp)n+1 Zz—i(m—n—l)
i=1

M
+ M(Q)l—l/mp(m—n)/Z Z zi(m—l)(log p)m
i=1

M
+M(Q)1—1/mpm—n—1/2 Zzln(logp)n"r]
i=1
< M(p(m—n)/Z(logp)m +pm—n—1/2(logp)ﬂ+1)
+ M(9)1_1/m (ZM(m—Up(m—n)/Z (logp)m + 2anm—n—1/2(log p)n+1).

Hence we have

Tp(2) = #Xpu(2) + O(Ry + R2 + R3) (24)
with

pmfnu(9)1fl/m pmfn
oM omM ’

Ry = M(Q)]_]/m (ZM(m—l)p(m—n)/Z(logp)m + 2anm—n—l/2(log p)n+l)7
R3 — Mpm—n—l/Z(]ng)n+1 .

Ry =

It is clear that for the bound to be nontrivial we have to choose M = O (log p), under which condition
we have

m—n—1/2 n+2

R3=p (log p)

Now considering all four ways of balancing the terms of R1 and R3, after straightforward calculations
we conclude that the optimal choice of M is defined by the condition

2M < p=1200D) gy =M1

that balances the first term of Ry and the second term of R,. This gives

R« pm—n—l/Z(n+1)M(9)1—l/m lng + pm—n—m/2(n+1)(10g p)m
+ p(m—n)—l/Z(n+1)—n(m—]—n)/Z(n+1)M(Q)1—l/m logp

+ pmfnf‘l/Z(log p)n+2
< pm—nfl/Z(nJrl)/L(Q)]—l/m logp 4 pmfﬂfl/Z(log p)ﬂ+2. (25)

Hence by (3),
Tp(2) = #Xp (11(82) + O (u(82) /M p~ 120D Jog p 4 p~1/2 (log p)"*2)). (26)
Although since

(T \ )7 = 2,7 <C(u(2)' /Mg + &™)



B. Kerr, LE. Shparlinski / Journal of Number Theory 133 (2013) 2863-2873 2873
we may repeat the above argument to get

Tp(Tm \2) > #XpM(Tm \ £2)
+ 0 (#2 (u(2)!1/Mp~ /2 Vlog p + p~1/2(log p)"?)). (27)

Finally, combining (3), (26) and (27), gives the desired result.
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