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We study certain real functions defined in a very simple way 
by Zagier as sums of powers of quadratic polynomials with 
integer coefficients. These functions give the even parts of 
the period polynomials of the modular forms which are the 
coefficients in the Fourier expansion of the kernel function 
for the Shimura–Shintani correspondence. We give three 
different representations of these sums in terms of a finite 
set of polynomials coming from reduction of binary quadratic 
forms and in terms of the infinite set of transformations 
occurring in a continued fraction algorithm of the real 
variable. We deduce the exponential convergence of the sums, 
which was conjectured by Zagier as well as one of the three 
representations.
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1. Introduction

In [14], D. Zagier studied a class of functions which are defined as sums over certain 
quadratic polynomials with integer coefficients, and discovered that these functions have 
many surprising properties. That is, for x ∈ R, Zagier considered sums over all quadratic 
functions Q(X) = aX2 + bX + c with integer coefficients and fixed discriminant that 
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are negative at infinity (which for convenience we write as Q(∞) < 0) and positive at x. 
For example, Zagier found that:

Theorem 1.1. Let D be a positive non-square discriminant. Then the sum

AD(x) :=
∑

discr(Q)=D
Q(∞)<0<Q(x)

Q(x) (1)

converges for all x ∈ R and has a constant value αD independent of x.

For example, one finds A5(x) = 2, and more generally αD = −5L(−1, χD), where 
L(s, χD) is the Dirichlet L-series of the character χD(n) = (D/n) (Kronecker symbol). 
We denote

Q =
{
aX2 + bX + c

∣∣ a, b, c ∈ Z, b2 − 4ac > 0, b2 − 4ac not a square
}
,

and for any positive non-square discriminant D,

QD =
{
aX2 + bX + c ∈ Q

∣∣ b2 − 4ac = D
}
,

QD〈x〉 =
{
Q ∈ QD

∣∣ Q(∞) < 0 < Q(x)
}
.

The sum (1) is the special case k = 2 of the function

Ak,D(x) :=
∑

Q∈QD〈x〉
Q(x)k−1 (k ≥ 2). (2)

Theorem 1.1 is still true for k = 4 with αD now replaced by L(−3, χD), but this fails 
for even k ≥ 6 because of the existence of cusp forms of weight 2k on the full modular 
group. More explicitly, for even k ≥ 6, the function Ak,D(x) is a linear combination of 
a constant function and the functions 

∑
n≥1 n

1−2kaf (n) cos(2πnx), where f runs over 
the normalized Hecke eigenforms in S2k(PSL(2, Z)) and af (n) denotes the n-th Fourier 
coefficient of f . The function Ak,D(x) arose from studying the modular form of weight 
2k which is the D-th coefficient in the Fourier expansion of the kernel function for the 
Shimura and Shintani lifts between half-integral and integral weight cusp forms [8,9]. 
The function Ak,D(x) is (modulo a constant multiple of X2k−2 − 1) the even part of its 
Eichler integral on R and so gives the even part of its period polynomial (see [6,7,14]
or [2] for a recent proof).

The convergence of Ak,D(x) is not immediate at all. As Zagier observed, one has 
Q(x) = O(1/aQ) for all the Q occurring in (2) and one sees easily that there are only 
O(1) quadratic functions Q for each a-value. Therefore the series (2) converges at most 
like 

∑
a>0 a

1−k if k ≥ 4. In the case k = 2, however, this argument fails and Zagier 
could only deduce the convergence of (1) from the fact that the function is finite and 
constant (= −5L(−1, χD)) when x is rational. In fact, if for some value of x the sum 
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diverged, then, since all summands are positive, there would be finitely many quadratic 
functions Q whose sum at x already exceeded −5L(−1, χD), and the sum of their values 
at a sufficiently nearby rational number would also exceed −5L(−1, χD).

Following this proof, the sum might converge extremely slowly. However, experiments 
carried out for the value x = 1/π suggested that the series (1) (and hence also the 
series (2)) converge extremely rapidly. More precisely, for x = 1/π and D = 5, Zagier 
found experimentally that the elements of QD〈x〉 belong to the union of two lists, each 
having values that tend to 0 exponentially quickly. Each quadratic function Q in each 
list is obtained from the preceding one by applying a fairly simple element of PGL(2, Z)
giving the positive continued fraction of x. The two lists start with the opposite of the 
simple forms coming from the reduction theory of binary quadratic forms with fixed 
discriminant 5: [1, −1, −1] and [1, 1, −1].

The following tables give the first five functions Q, and the corresponding values of 
Q(1/π) in each list. The first five functions produced by the first list appear in the sum 
A5(x). This is not the case for the functions in the second list, for which we have chosen 
to include only the ones appearing in the sum.

Q Q(1/π)
[−1, 1, 1] 1.216989
[−11, 7,−1] 0.113636
[−541, 345,−55] 0.00215
[−117 731, 74 951,−11 929] 0.000008
[−133 351, 84 893,−13 511] 0.000008
Sum: 1.332791

Q Q(1/π)
[−1,−1, 1] 0.580369
[−5, 5,−1] 0.084943
[−409, 259,−41] 0.001896
[−5 959 340 757 998 441, 3 793 834 156 817 819,−603 807 459 328 429] 6.856501 E-17
[−7 755 390 254 828 071, 493 723 477 865 040,−785 785 320 227 431] 1.568047 E-18
Sum: 0.667208

Zagier conjectured that all the functions in one list and some in the second one occur 
in A5(x), but he found no criterion to decide which ones. He suggested there is a similar 
situation in the general case.

We prove Zagier’s conjectures, giving a criterion for the second list, and establish a 
similar result for the general case, obtaining the exponential convergence for Ak,D(x) and 
a direct proof for the convergence in the case k = 2. Marie Jameson addresses the same 
sort of questions in [5] in very different terms. We also prove other descriptions of Ak,D(x)
analogous to the one conjectured by Zagier: first we replace the simple forms with the 
reduced forms and the usual algorithm of positive continued fraction with a different 
one (with sign + as well). Later we keep the simple forms but we consider the (usual) 
negative continued fraction. We give correspondences between all these situations. This 
is done in the third section.

In the fourth section we prove an unexpected result: the values at x of the functions 
in the lists that do not appear in the sum Ak,D(x) cancel each other out. Thus the sum 
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over all the functions in the lists is equal to Ak,D(x). A similar phenomenon holds for 
the description with the negative continued fraction. This is a consequence of the more 
general Corollary 4.2 which gives the even part of the Eichler integral on x ∈ R of a cusp 
form for PSL(2, Z) in terms of the even part of its period polynomial and the continued 
fraction of x.

2. Reduction theories

In this section we give the main connections between reduction theory of binary 
quadratic forms with positive non-square discriminant for PSL(2, Z) and the continued 
fractions of a real number. We also recall some simple properties of positive and negative 
continued fractions and give the nonstandard algorithm that we use in the next sections.

We denote

ε =
(

0 1
1 0

)
, σ =

(
−1 0
0 1

)
,

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
, U =

(
1 −1
1 0

)
.

The matrices ε, σ, T generate the group Γ = PGL(2, Z) and S, T generate the group 
Γ1 = PSL(2, Z). Clearly

ε2 = σ2 = S2 = εσS = 1

so {1, ε, σ, S} form a Klein 4-group. We write Γ̂ to mean Γ or Γ1. The group Γ̂ acts on 
the projective line by fractional linear transformations:

γ(x) := rx + s

tx + u

(
γ =

(
r s

t u

)
∈ Γ̂

)
,

and on the set of binary quadratic forms by

Q|γ(X,Y ) = Q(rX + sY, tX + uY ). (3)

For a positive non-square fixed discriminant D, a reduction theory of binary quadratic 
forms with discriminant D for the action of the group Γ1 consists in giving a finite system 
R of such forms (called a system of reduced forms) and an algorithm such that:

(i) each form with discriminant D is Γ1-equivalent to some element of R by applying 
the algorithm a finite number of times;

(ii) the image by the algorithm of an element of R still belongs to R. In other words, 
the elements of R form cycles such that two elements of R are Γ1-equivalent if and only 
if they belong to the same cycle. In particular, the number of cycles is the number of 
Γ1-equivalence classes for D.
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Usually (and in all cases we consider) the reduction algorithm for binary quadratic 
forms Q = [a, b, c] (:= aX2 + bXY + cY 2) is obtained by applying a reduction algorithm 
for real numbers (usually some sort of continued fraction algorithm) to one of the roots 
of Q(X, 1) or Q(X, −1). We denote by

wQ = −b−
√
D

2a , w′
Q = −b +

√
D

2a

the two roots of Q(X, 1) (
√
D denotes the positive square root).

We use two different sets R of forms [a, b, c]:

a > 0, c > 0, b > a + c

which we call reduced (see [13] for details), and

a > 0 > c

which we call simple.
The bijection [a, b, c] �→ [−c, −b, −a] exchanges the simple forms with positive and 

negative values of a + b + c (the value 0 cannot occur for non-square D). The bijection

reduced → simple with a + b + c > 0

[a, b, c] �→ [a, b− 2a, c− b + a]

proves that there are exactly half as many reduced forms as simple forms. We denote 
by Red and Sim the sets of quadratic polynomials that correspond to the reduced and 
simple forms respectively

Red =
{
Q(X) ∈ Q

∣∣ Y 2Q(X/Y ) is reduced
}
,

Sim =
{
Q(X) ∈ Q

∣∣ Y 2Q(X/Y ) is simple
}
.

We can translate the inequalities for the coefficients of simple or reduced forms into 
inequalities for the corresponding quadratic irrationalities:

Q(X,Y ) reduced ⇐⇒ wQ < −1 < w′
Q < 0,

Q(X,Y ) simple ⇐⇒ wQ < 0 < w′
Q.

The positive and negative continued fraction of a real number x, denoted by

x = n0 + 1

n1 + 1

n2 + 1
. .

(ni ∈ Z, ni ≥ 1 ∀i ≥ 1),
.
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x = m0 −
1

m1 −
1

m2 −
1
. . .

(mi ∈ Z, mi ≥ 2 ∀i ≥ 1),

are produced by the algorithms

x0 = x, ni = 
xi�, xi+1 = 1
xi − ni

= εT−ni(xi) (i ≥ 0), (4)

x0 = x, mi = �xi�, xi+1 = 1
mi − xi

= ST−mi(xi) (i ≥ 0), (5)

where 
x� and �x� are respectively the floor and ceiling parts. The positive and negative 
continued fractions of wQ are periodic for a quadratic form Q. Moreover, the negative 
continued fraction of −wQ is purely periodic if and only if Q is reduced. Thus the cycle 
of reduced forms that are equivalent to a given form Q corresponds to the cycle of real 
quadratic irrationalities xi given by the algorithm (5) with x0 = −wQ.

In a similar way, a quadratic form Q is simple if and only if −wQ is purely periodic 
for the algorithm (see [3])

x0 = x, xi+1 =

⎧⎪⎨
⎪⎩

xi + 1 = T (xi) if xi ≤ 0,
xi

1−xi
= T−1ST−1(xi) if 0 < xi < 1,

xi − 1 = T−1(xi) if xi ≥ 1.

This gives an expansion in negative continued fraction that is slower than the usual one.
The cycle of simple forms which are equivalent to a given form Q corresponds to the 

cycle of real quadratic irrationalities xi given by the algorithm above with x0 = −wQ.
Clearly each xi in (4) is the image of x by a matrix γi = γi,x ∈ Γ , given explicitly by

γ0 := Id, γi :=
(

0 1
1 −ni−1

)
· · ·

(
0 1
1 −n0

)
(i ≥ 1)

and recursively by

γ0 = Id, γi+1 = εT−niγi (i ≥ 0).

We denote

Γ (x) := {γ1, γ2, γ3, . . .} ⊂ Γ.

There is an explicit description of Γ (x) in terms of the convergents of x. The i-th con-
vergent of x is denoted by pi

qi
= [n0, . . . , ni]. The integers pi and qi satisfy the recurrence

p−2 = 0, p−1 = 1, pi = nipi−1 + pi−2 (i ≥ 0),

q−2 = 1, q−1 = 0, qi = niqi−1 + qi−2 (i ≥ 0),
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the equation

pi+1qi − piqi+1 = (−1)i

and the inequalities

qi ≥ qi−1 ≥ 0 (i ≥ 0), qi > qi−1 > 0 (i ≥ 2), (6)

|pi| ≥ |pi−1| (i ≥ 2), |pi| > |pi−1| (i ≥ 4). (7)

The numbers δi (i ≥ −1) defined by

δi = (−1)i(pi−1 − qi−1x)

satisfy the recurrence

δ−1 = x, δ0 = 1, δi+1 = −niδi + δi−1 with ni =
⌊
δi−1

δi

⌋

and the inequalities 1 = δ0 > δ1 > . . . ≥ 0. If x is rational, then xi = pi/qi for some i and 
the recurrence stops with δi+1 = 0; if x is irrational, the δi are all positive and converge 
to 0 with exponential rapidity. With these notations, one has

γ−1
i =

(
pi−1 pi−2
qi−1 qi−2

)
, γi

(
x

1

)
=
(
δi−1
δi

)
.

Now we consider the slower version of the algorithm of reduction (4)

x0 = x, xi+1 =

⎧⎪⎨
⎪⎩

xi + 1 = T (xi) if xi ≤ 0,
1
xi

− 1 = T−1ε(xi) if 0 < xi ≤ 1,
xi − 1 = T−1(xi) if xi > 1,

(8)

such that with this algorithm the expansion of x in continued fraction is

x = ±1 ± · · · ± 1︸ ︷︷ ︸
|n0|

+ 1

1 + · · · + 1︸ ︷︷ ︸
n1

+ 1

1 + · · · + 1︸ ︷︷ ︸
n2

+ 1
. . .

where n0, n1, n2, . . . , are given in (4) and each ± equals the sign of n0.
Each xi in algorithm (8) is the image of x by a matrix γ′

i = γ′
i,x ∈ Γ given recursively 

by

γ′
0 = Id, γ′

i+1 =

⎧⎪⎨
⎪⎩

Tγ′
i if xi ≤ 0,

T−1εγ′
i if 0 < xi ≤ 1,

−1 ′
T γi if xi > 1.
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We denote

Γ (x)′ :=
{
γ′
|n0|+1, γ

′
|n0|+2, γ

′
|n0|+3, . . .

}
⊂ Γ

so in Γ (x)′ we are missing the first several γ′
i which arise from the n0 term. We note that

Γ (x)′ =
{
T−kγi, 1 ≤ k ≤ ni

}
i≥1.

The following two propositions, whose proofs are given in [1], describe the sets Γ (x)
and Γ (x)′ for any non-integer x as subsets of elements of Γ defined by certain simple 
linear inequalities:

Proposition 2.1. For any non-integer x, the set Γ (x) equals W − (W1 ∪W2), where

W =
{
γ ∈ Γ

∣∣ −1 ≤ γ(∞) ≤ 0, γ(x) > 1
}
,

W1 =
{
γ ∈ W

∣∣ γ(∞) = 0, det(γ) = 1
}

=
{(

0 −1
1 −1 − n0

)}
,

W2 =
{
γ ∈ W

∣∣ γ(∞) = −1, det(γ) = −1
}

=
{{(−1 1+n0

1 −n0

)}
if n1 ≥ 2,

∅ if n1 = 1.

Proposition 2.2. For any non-integer x, the set Γ (x)′ equals W ′ −W ′
1, where

W ′ =
{
γ ∈ Γ | γ(∞) ≤ −1, γ(x) > 0

}
and

W ′
1 =

{
γ ∈ W ′ | γ(∞) = −1, det(γ) = 1

}
=
{(

1 −n0
−1 n0 + 1

)}
.

Remark 2.3. If x ∈ Z, then Γ (x) = W −
(−1 1+x

1 −x

)
and Γ (x)′ = W ′.

Each xi in (5) is the image of x by a matrix γ̃i = γ̃i,x ∈ Γ1 defined by

γ̃0 = Id, γ̃i+1 = ST−mi γ̃i =
(
−q̃i−1 p̃i−1
−q̃i p̃i

)
(i ≥ 0), (9)

where p̃i

q̃i
is the i-th negative convergent of x. The set of matrices from (9) will be denoted 

by

Γ1(x) := {γ̃1, γ̃2, γ̃3, . . .} ⊂ Γ1.
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The integers p̃i and q̃i satisfy the recurrence

p̃−2 = 0, p̃−1 = 1, p̃i = mip̃i−1 − p̃i−2 (i ≥ 0),

q̃−2 = −1, q̃−1 = 0, q̃i = miq̃i−1 − q̃i−2 (i ≥ 0),

the equation

p̃iq̃i+1 − p̃i+1q̃i = 1,

and the inequalities

q̃i ≥ q̃i−1 ≥ 0 (i ≥ 0), q̃i > q̃i−1 > 0 (i ≥ 1), (10)

|p̃i| ≥ |p̃i−1| (i ≥ 1). (11)

In a similar way to the positive continued fraction, the numbers δ̃i (i ≥ −1) defined 
by

δ̃i = p̃i−1 − q̃i−1x

satisfy the recurrence

δ̃−1 = x, δ̃0 = 1, δ̃i+1 = miδ̃i − δ̃i−1 with mi =
⌈
δ̃i−1

δ̃i

⌉

and the inequalities 1 = δ̃0 > δ̃1 > . . . ≥ 0. If x is rational, then xi = p̃i/q̃i for some i and 
the recurrence stops with δ̃i+1 = 0; if x is irrational, the δ̃i are all positive and converge 
to 0 with exponential rapidity.

3. Combining reduction theories: proofs of the conjectures

For d ∈ 2N, the group Γ̂ acts on homogeneous polynomials of degree d by (3) or, 
equivalently, on the space of polynomials of degree ≤ d in one variable by

(P |−dγ)(x) := (tx + u)dP
(
rx + s

tx + u

) (
γ =

(
r s

t u

)
∈ Γ̂

)
.

We write

Fd =
{
P ∈ Z[X]≤d

∣∣ P has exactly 2 real roots, both irrational
}
.

Given P ∈ Fd, we denote by wP and w′
P its two real roots such that

sign
(
P (∞)

)
· wP < sign

(
P (∞)

)
· w′

P .
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If A is a Γ̂ -equivalence class in Fd, we define

ARed =
{
P ∈ A

∣∣ P (∞) > 0, P (−1) < 0 < P (0)
}

=
{
P ∈ A

∣∣ wP < −1 < w′
P < 0

}
,

ASim =
{
P ∈ A

∣∣ P (0) < 0 < P (∞)
}

=
{
P ∈ A

∣∣ wP < 0 < w′
P

}
,

A〈x〉 =
{
P ∈ A

∣∣ P (∞) < 0 < P (x)
}
.

In the special case d = 2, we have F2 = Q and

ARed = A ∩ Red, ASim = A ∩ Sim .

In this case, ARed and ASim are both finite. If A is a Γ̂ -equivalence class in Q, we define

Ak,A(x) =
∑

Q∈A〈x〉
Q(x)k−1 (x ∈ R, k ≥ 2).

Then the sum Ak,D defined in (2) is given by

Ak,D(x) =
∑

A∈QD/Γ̂

Ak,A(x). (12)

The two theorems below are stated in the general case Fd with even d ≥ 2.

Theorem 3.1. For d ∈ 2N, A a Γ -equivalence class in Fd and x ∈ R, the following 
bijection holds

{
(P, γ) ∈ ASim × Γ (x) :

P
(
γ(∞)

)
< 0 < P

(

γ(x)�

) } ∼=−→ A〈x〉

(P, γ) �→ P |γ.

Proof. We only have to check that P (
γ(x)�) > 0 implies P (γ(x)) > 0 to prove that 
the map is well defined. This follows from P (
γ(x)�) > 0 and 
γ(x)� > 0, which imply 

γ(x)� > w′

P , so γ(x) > w′
P , and thus P (γ(x)) > 0.

We now prove that the map is a bijection. Let P ∈ A satisfy P (∞) < 0 < P (x). 
For j � 0, the convergents pj

qj
of x belong to (w′

P , wP ), because x ∈ (w′
P , wP ). More-

over, if two consecutive convergents pj

qj
and pj+1

qj+1
belong to (w′

P , wP ), so do all the later 
convergents.

If 
x� /∈ (w′
P , wP ), we define i to be the unique positive integer such that pi−1

qi−1
/∈

(w′
P , wP ) but pi

qi
, pi+1
qi+1

∈ (w′
P , wP ). If 
x� ∈ (w′

P , wP ), we set i = 0. Since P (∞) < 0, in 
both cases we have

P

(
pi−1

)
< 0 < P

(
pi
)
, P

(
pi+1

)
> 0. (13)
qi−1 qi qi+1
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Put

γ =
(
qi−1 −pi−1
−qi pi

)
,

and R = P |γ−1. We have

R(0) = qdi−1P

(
pi−1

qi−1

)
< 0, R(∞) = qdi P

(
pi
qi

)
> 0.

The inequality P (pi+1
qi+1

) > 0 is equivalent to the condition R(
γ(x)�) > 0 because 

qdi+1P (pi+1
qi+1

) = R(ni+1) and ni+1 = 
γ(x)�. The condition P (∞) < 0 is equivalent 
to the condition R(γ(∞)) < 0. Thus (R, γ) belongs to the left hand set of the map in 
Theorem 3.1.

The uniqueness of the preimage (R, γ) follows from the equivalence between the con-
dition R(
γ(x)�) > 0 and the inequality P (pi+1

qi+1
) > 0, together with the uniqueness of i

satisfying (13). �
Note that we did not use the fact that Γ (x) comes from the continued fraction of x

to prove that the map above is well defined, but rather the description given by Propo-
sition 2.1. The argument for the bijectivity is in fact a “local” phenomenon: we did not 
need the whole continued fraction of x, but only three consecutive convergents. One could 
certainly prove Theorem 3.1 without using continued fractions and using the description 
for Γ (x) with linear inequalities, but the proof given here seemed to the author to be 
simple and attractive.

Remark 3.2. If we replace 
γ(x)� by γ(x) in the above definition, then the map

{
(P, γ) ∈ ASim × Γ (x) :

P
(
γ(∞)

)
< 0 < P

(
γ(x)

) } −→ A〈x〉

(P, γ) �→ P |γ

is still surjective but in general not injective.

Theorem 3.3. For d ∈ 2N, A a Γ -equivalence class in Fd and x ∈ R, the following 
bijection holds

{
(P, γ) ∈ ARed × Γ (x)′ : P

(
γ(∞)

)
< 0

} ∼=−→ A〈x〉
(P, γ) �→ P |γ.

Proof. Note that the above map can be expressed as the composition of the map from 
Theorem 3.1 together with the map ψ given by
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{
(P, γ) ∈ ARed × Γ (x)′ : P

(
γ(∞)

)
< 0

} ψ−→
{

(P, γ) ∈ ASim × Γ (x) :
P
(
γ(∞)

)
< 0 < P

(

γ(x)�

) }
(
P, T−kγi

)
�→

(
P |T−k, γi

)
.

Thus by Theorem 3.1, we need only to show that ψ is well-defined and bijective. To prove 
that ψ is well-defined we only have to check, given (P, γ) = ψ(R, ̃γ) with γ̃ = T−kγ, two 
conditions: P ∈ ASim and P (
γ(x)�) > 0. We have

wP = wR + k, w′
P = w′

R + k.

From w′
R > −1 and k ≥ 1, we deduce that w′

P > 0. The inequality R(γ̃(∞)) < 0 and 
the equality γ̃(∞) = − qi−2

qi−1
− k imply −wR > qi−2

qi−1
+ k, where each term is positive, so 

k < −wR, and thus wP < 0. Hence P ∈ ASim. The condition P (
γ(x)�) > 0 follows from

⌊
γ(x)

⌋
=
⌊
δi−1

δi

⌋
= ni ≥ k = w′

P − w′
R > w′

P .

We consider the map ϕ

{
(P, γ) ∈ ASim × Γ (x) :

P
(
γ(∞)

)
< 0 < P

(⌊
γ(x)

⌋) } ϕ−→
{

(P, γ) ∈ ARed × Γ (x)′ :
P
(
γ(∞)

)
< 0

}

(P, γi) �→
(
P |T 	w′

P 
+1, T−	w′
P 
−1γi

)
.

To prove that ϕ is well defined we check, given (R, ̃γ) = ϕ(P, γi), two conditions: R ∈
ARed and 
w′

P � + 1 ≤ ni. The condition R ∈ ARed is immediate: from the equalities

wR = wP −
⌊
w′

P

⌋
− 1, w′

R = w′
P −

⌊
w′

P

⌋
− 1

and the inequalities wP < 0 < w′
P , we deduce wR < −1 < w′

R < 0.
The condition 
w′

P � + 1 ≤ ni follows from 
γi(x)� = ni and P (
γi(x)�) > 0.
Finally ϕ is the inverse of ψ. Indeed, it is clear that ψ ◦ ϕ is the identity, and we 

deduce the same statement for ϕ ◦ψ from the equation below for (P, γi) = ψ(R, T−kγi):

−k +
⌊
w′

P

⌋
+ 1 = −k +

⌊
w′

R + k
⌋

+ 1 =
⌊
w′

R

⌋
+ 1 = 0. �

Corollary 3.4. Let x be a real number, k ≥ 2 an integer and A a Γ -equivalence class 
in Q. Then the following equalities hold

Ak,A(x) =
∑

Q∈ASim

∑
γ∈Γ (x)

Q(�γ(x)�)>0
Q(γ(∞))<0

(Q|γ)(x)k−1 =
∑

Q∈ARed

∑
γ∈Γ (x)′

Q(γ(∞))<0

(Q|γ)(x)k−1.

Corollary 3.5. For x ∈ R, the sum Ak,D(x) has exponential convergence.
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Proof. The function Ak,D(x) is the sum of the sums that appear in each side of Corol-
lary 3.4 over all the Γ -equivalence classes in QD. We can prove its exponential con-
vergence looking at the sum on ASim or on ARed. Let us look at the sum on ASim. 
On the one hand, the set of polynomials that belong to Sim with fixed positive dis-
criminant is finite. On the other hand, for an element Q(X) = aX2 + bX + c of 
Sim, Q|γi(x) = aδ2

i−1 + bδi−1δi + cδ2
i . Now the exponential convergence of the series 

δi = |pi−1 − qi−1x| to 0 proves the corollary. �
Theorem 3.6. For d ∈ 2N, B a Γ1-equivalence class in Fd and x ∈ R, the following 
bijection holds {

(P, γ) ∈ BSim × Γ1(x) :
P
(
γ(∞)

)
< 0 < P

(
γ(x)

) } ∼=−→ B〈x〉

(P, γ) �→ P |γ.

Proof. The map is well defined because of its definition. Let P ∈ B satisfy P (∞) < 0 <
P (x). For j � 0, the convergents p̃j

q̃j
of x belong to (w′

P , wP ), because x ∈ (w′
P , wP ). 

Moreover, if one convergent belongs to (w′
P , wP ), so do all the later convergents.

If �x� /∈ (w′
P , wP ), we define i to be the unique positive integer such that p̃i−1

q̃i−1
/∈

(w′
P , wP ) but p̃i

q̃i
∈ (w′

P , wP ). If �x� ∈ (w′
P , wP ), we set i = 0. Since P (∞) < 0, in both 

cases we have

P

(
p̃i−1

q̃i−1

)
< 0 < P

(
p̃i
q̃i

)
. (14)

Put

γ =
(
−q̃i−1 p̃i−1
−q̃i p̃i

)
,

and R = P |γ−1. We have

R(0) = q̃di−1P

(
p̃i−1

q̃i−1

)
< 0, R(∞) = q̃di P

(
p̃i
q̃i

)
> 0,

thus (R, γ) belongs to the left hand set of the map in Theorem 3.6. The uniqueness of 
the preimage (R, γ) follows from the uniqueness of i satisfying (14). �
Corollary 3.7. Let x be a real number, k ≥ 2 an integer and B a Γ1-equivalence class 
in Q. Then ∑

Q∈B〈x〉
Q(x)k−1 =

∑
Q∈BSim

∑
γ∈Γ1(x)

Q(γ(x))>0
Q(γ(∞))<0

(Q|γ)(x)k−1.
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4. Continued fractions and modular forms

There is a canonical choice for the Eichler integral F of a cusp form f(τ) =
∑∞

n=1 anq
n

(q = e2πiτ ) of weight 2k (k ≥ 1) for Γ1:

F (τ) =
i∞∫
τ

f(z)(τ − z)2k−2 dz =̇
∞∑

n=1

an
n2k−1 q

n (τ ∈ H)

where the symbol =̇ denotes equality with constant. The sum in the second equality 
defining F (τ) converges also for τ ∈ R, so we can expand the definition domain of F
to H ∪ R. The image F |2−2k(1 − γ) belongs to the space C[X]≤2k−2 because of Bol’s 
identity between the (k−1)st derivative of F |2−2kγ and the image by |2kγ of the (k−1)st 
derivative of F . Moreover, the map

Γ1 −→ C[X]≤2k−2

γ �→ F |(1 − γ)

is a parabolic 1-cocyle. Since Γ1 is generated by T and S, the 1-cocyle above is determined 
by T �→ 0 and

S �→ rf (X) = F |(1 − S) =
i∞∫
0

f(z)(X − z)2k−2 dz.

The polynomial rf (X) is called period polynomial of the cusp form f . More generally, 
a map Γ1 → C[X]≤2k−2 which sends T to 0 and S to a complex polynomial P (X) is a 
parabolic 1-cocyle if and only if P satisfies (see [15])

P |(1 + S) = 0, P
∣∣(1 + U + U2) = 0. (15)

We can easily check that if P = A|(1 − S), with A(x) a periodic real function, then P
satisfies (15).

The space W2k of polynomials in C[X]≤2k satisfying (15) splits into the subspaces of 
even and odd polynomials W+

2k and W−
2k. Thus rf = r+

f + r−f with r+
f (X) ∈ W+

2k−2 and 
r−f (X) ∈ W−

2k−2; such polynomials give rise to the isomorphisms

r− : S2k(Γ1) −→ W−
2k−2,

f �→ r−f (X)
r+ : S2k(Γ1) −→ W+

2k−2
/〈

X2k−2 − 1
〉

f �→ r+
f (X),

where S2k(Γ1) is the space of cusp forms of weight 2k for Γ1 (k ≥ 1).
In fact we can find the even and odd parts of rf from the even and odd parts of the 

Eichler integral of f on R:
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F+(x) =
∞∑

n=1

an
n2k−1 cos(2πnx), F−(x) =

∞∑
n=1

an
n2k−1 sin(2πnx),

r+
f = F+|(1 − S), r−f = F−|(1 − S).

Given P (X) ∈ C[X]≤2k, we denote

PΓ (x) =
∑

γ∈Γ (x)

(P |γ)(x), PΓ1(x) =
∑

γ∈Γ1(x)

(P |γ)(x) (x ∈ R).

We will see that, when P (X) ∈ W+
2k, the function PΓ (x) is the even part of the Eichler 

integral on R of a cusp form whose even part of the period polynomial is (modulo X2k−1) 
the polynomial −P (X). As a consequence, we obtain that we can drop the conditions 
Q(γ(∞)) < 0 < Q(
γ(x)�) in Corollary 3.4 and Q(γ(∞)) < 0 < Q(γ(x)) in Corollary 3.7.

For k ≥ 1 and P (X) ∈ C[X]≤2k, the theorem below gives the differences between PΓ

and its image by each generator of Γ in terms of P , P |(1 + ε) and P |(1 +U −SU2) (the 
last two vanish when P belongs to W+

2k).

Theorem 4.1. For k ≥ 1 and P (X) ∈ C[X]≤2k, we have

(i) PΓ |(1 − T ) = 0.
(ii) If we denote P1 = P |(1 + ε) and P2 = P |(1 + U − SU2)ε, then PΓ |(1 − σ) is equal 

to∑
n∈2Z

(
χ(n

2 ,n+1
2 ]

(
−P1|Tn/2+1σ + P2|T−n/2)+ χ(n+1

2 ,n+2
2 )

(
P1|T−n/2 − P2|Tn/2+1σ

))
.

(iii) If x > 0 and x �= 1, then
(
PΓ

∣∣(1 − ε)
)
(x) = χ(0,1)

(
P
∣∣(1 + ε)

)
(x) − P (x).

Proof. Statement (i) follows from the calculation

PΓ (x + 1) =
∑

γ∈Γ (x+1)

(P |γ)(x + 1)

=
∑

γ∈Γ (x)

(
P
∣∣γT−1)(x + 1) because Γ (x + 1) = Γ (x)T−1

= PΓ (x).

If x ∈ Z, then the matrices 
( 0 1

1 −x

)
and 

( 0 1
1 x

)
are the only elements in Γ (x) and Γ (−x)

respectively, so PΓ (x) = P (∞) = (PΓ |σ)(x).
Let x = [n0, n1, . . .] be a non-integer number and −x = [−n0 − 1, n′

1, . . .] its opposite. 
The inequality 0 < x − n0 ≤ 1

2 is equivalent to n1 ≥ 2. It is also equivalent to 1
2 ≤

−x + n0 + 1 < 1, so to n′
1 = 1. By Proposition 2.1, PΓ (−x) is equal to
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∑
−1≤γ(∞)≤0

γ(−x)>1

(P |γ)(−x) −
(
P
∣∣εT−n0

)
(x) −

{ (P |T−1εTn0+1σ)(x) if n1 = 1
∅ if n1 ≥ 2.

Since ∑
−1≤γ(∞)≤0

γ(−x)>1

(P |γ)(−x) =
∑

−1≤γσ(∞)≤0
γσ(x)>1

(P |γσ)(x) =
∑

−1≤γ(∞)≤0
γ(x)>1

(P |γ)(x),

by Proposition 2.1 again, we have

PΓ |(1 − σ) = P |εT−n0 − P |εTn0+1σ +
{
−P |T−1εT−n0 if n1 ≥ 2
P |T−1εTn0+1σ if n1 = 1

=
{
−P |(1 + ε)Tn0+1σ + P |(1 + U − SU2)εT−n0 if n1 ≥ 2
P |(1 + ε)T−n0 − P |(1 + U − SU2)εTn0+1σ if n1 = 1

because T−n0 = UεTn0+1σ, Tn0+1σ = UεT−n0 and SU2 = T−1. Thus statement (ii) is 
proved.

Suppose x > 1. For i ≥ 1, the i-th term of the real series (xi)i≥0 defined in (4) which 
gives the continued fraction of 1/x is equal to the (i − 1)-th term of the series which 
gives the continued fraction of x. So

Γ (1/x) = Γ (x)ε ∪
{(

0 1
1 0

)}
.

From that we get

x2kPΓ (1/x) = x2k
∑

γ∈Γ (x)

(P |γε)(1/x) + x2k(P |ε)(1/x)

= PΓ (x) + P (x).

Now suppose 0 < x < 1 and denote y = 1/x. We have

x2kPΓ (1/x) = 1
y2kP

Γ (y)

= PΓ (1/y) − 1
y2kP (y) (by the previous case)

= PΓ (x) − x2kP (1/x). �
Corollary 4.2.

(i) For k ≥ 1 and P (X) ∈ W+
2k, the function PΓ (x) is even, periodic and satisfies 

PΓ |(1 − S) = −P .
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(ii) Let f be a cusp form of weight 2k for Γ1 and P (X) be the even part of its period 
polynomial. The even part of the Eichler integral of f on R is (modulo a constant 
multiple of X2k−2 − 1) the function (−P )Γ (x).

Proof. (i) Let P (X) be an element of W+
2k. By the statement (i) of Theorem 4.1, the 

function PΓ (x) is periodic. Since 1 + U − SU2 = 1 + U + U2 − (1 + S)U2 and P (X) is 
even (so P |S = P |ε), the statement (ii) implies that PΓ (x) is even.

The statement (iii) gives us that PΓ |(1 −S)(x) = −P (x) for x �= 0, ±1. If x = 0, then 
(PΓ |(1 −S))(0) = P (∞) = −P (0) because P |(1 +S) = 0. If x = 1, then (PΓ |(1 −S))(1) =
0 = P (1) again because P |(1 + S) = 0 and P |(1 − σ) = 0.

(ii) Let f be a cusp form of weight 2k for Γ1 and P (X) be the even part of its period 
polynomial. Then P (X) belongs to W+

2k−2, so (−P )Γ is periodic and satisfies (−P )Γ |
(1 −S) = P by the statement (i) of the corollary. Hence (−P )Γ (x) is (modulo X2k−2−1) 
the even part of the Eichler integral of f for x ∈ R. �

Given an even integer k ≥ 2 and a Γ -equivalence class A of Q, we define the polynomial

Pk,A(X) =
∑

Q∈ASim

Q(X)k−1.

Kohnen and Zagier proved in [7] that, for every positive non-square discriminant D, the 
polynomial

Pk,D(X) =
∑

A∈QD/Γ

Pk,A(X)

is (up to multiplication by a constant and modulo a multiple of X2k−2−1) the even part 
of the period polynomial of the cusp form of weight 2k for the modular group Γ1

fk,D(z) =
∑

(a,b,c)∈Z3
b2−4ac=D

1
(az2 + bz + c)k (z ∈ H, k ≥ 2 even).

This function arose in [11], in the case where D is a fundamental discriminant, by con-
sidering the restriction to the diagonal z1 = z2 of a family of Hilbert modular forms 
wm(z1, z2) (m = 0, 1, 2, . . .) of weight k for the Hilbert modular group SL2(O), where O
was the ring of integers of the real quadratic field with discriminant D. The functions 
wm(z1, z2) are the Fourier coefficients of the kernel function for the Doi–Naganuma cor-
respondence between elliptic modular forms and Hilbert modular forms. They are well 
defined for all positive discriminants D and so is fk,D(z), except that when D is a square 
there is an extra term besides Pk,D in the expression of the even part of the period 
polynomial.

Kohnen and Zagier proved in [6] that the functions Dk−1/2fk,D(z) are the D-th Fourier 
coefficients of the kernel function for the Shimura–Shintani correspondence.
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Recently, Bringmann, Kane and Kohnen gave a new proof of the fact that Pk,D(X) is 
the even part of the period polynomial of fk,D(z) for positive non-square discriminants D
using new modular objects related to the theory of harmonic weak Maass forms [2].

Zagier proved that Pk,D(X) belongs to W+
2k−2 by showing that the function Ak,D(x)

is periodic and satisfies Ak,D|(1 − S) = −Pk,D. The same argument he used applies to 
Ak,A(x) if A is a Γ -equivalence class in Q, so Ak,A|(1 − S) = −Pk,A and for even k ≥ 2
the polynomial −Pk,A(X) belongs to W+

2k−2. Hence −Pk,A is (modulo X2k−2 − 1) the 
even part of a period polynomial and Ak,A(x) is the corresponding even part of the 
Eichler integral on R. Then, by Corollary 4.2, PΓ

k,A(x) = Ak,A(x) for all x ∈ R. Together 
with Theorem 3.4, we obtain

Corollary 4.3. For a Γ -equivalence class A of Q and an even integer k ≥ 2, the following 
identities hold:

Ak,A(x) =
∑

Q∈ASim

∑
γ∈Γ (x)

(Q|γ)(x)k−1 =
∑

Q∈ASim

∑
γ∈Γ (x)

Q(γ(∞))<0
Q(�γ(x)�)>0

(Q|γ)(x)k−1.

The sum Ak,A(x) is finite if and only if x ∈ Q.

Corollary 4.4. For every positive non-square discriminant D, the functions PΓ
2,D(x) and 

PΓ
4,D(x) have the respective values −5L(−1, χD) and L(−3, χD), where L(s, χD) is the 

Dirichlet L-series of the character χD(n) = (D/n) (Kronecker symbol).

Remark 4.5. We can also give a direct proof of the identity PΓ
2,D(x) = −5L(−1, χD). To 

do this, write PΓ
2,D(x) as

PΓ
2,D(x) =

∑
i≥1

∑
(a,b,c)∈Z3

a>0>c
b2−4ac=D

(
aδ2

i−1 + bδi−1δi + cδ2
i

)
.

If (a, b, c) appears in the sum, then (−c, −b, −a) appears too. Hence

PΓ
2,D(x) =

( ∞∑
i=1

(
δ2
i−1 − δ2

i

))
·
( ∑

a,b,c∈Z

a>0>c
b2−4ac=D

a

)
.

But the first sum telescopes to 1 because the δi decrease to 0 and δ0 = 1, and the second 
sum equals −5L(−1, χD) by results of [10,4,12].

If we sum over the quadratic functions now in a single Γ1-equivalence class B, we have 
to symmetrize with respect to an involution on the set QD/Γ1 to construct functions 
related to modular forms. For each Γ1-equivalence class B, and each (not necessarily 
even) integer k ≥ 2, we define
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A∗
k,B(x) = Ak,B(x) + (−1)kAk,−B(x),

Pk,B(X) =
∑

Q∈BSim

Q(X)k−1 + (−1)k
∑

Q∈(−B)Sim

Q(X)k−1,

where −B := {−Q | Q ∈ B}.
Again we can use the argument in §6 of [14] to deduce that A∗

k,B(x) is periodic and 
satisfies A∗

k,B|(1 − S) = −Pk,B for k ≥ 2. Thus

−Pk,B|γ̃i+1 =
(
A∗

k,B −A∗
k,B

∣∣TmiS
)∣∣γ̃i+1 = A∗

k,B|γ̃i+1 −A∗
k,B|γ̃i (i ≥ 0)

and so A∗
k,B(x) = PΓ1

k,B. Hence we obtain

Corollary 4.6. For a Γ1-equivalence class B of Q and an integer k ≥ 2, the following 
identities hold

A∗
k,B(x) =

∑
γ∈Γ1(x)

( ∑
Q∈BSim

(Q|γ)(x)k−1 + (−1)k
∑

Q∈(−B)Sim

(Q|γ)(x)k−1
)

=
∑

γ∈Γ1(x)

( ∑
Q∈BSim

Q(γ(∞))<0
Q(γ(x))>0

(Q|γ)(x)k−1 + (−1)k
∑

Q∈(−B)Sim
Q(γ(∞))<0
Q(γ(x))>0

(Q|γ)(x)k−1
)
.

5. Remarks on the quartic case

We could try to give a similar construction to the function Ak,D(x) for sums taken over 
quartic polynomials. Quartic polynomials can have 0, 2 or 4 real roots; in the second case 
the discriminant is negative, otherwise it is positive. The analogous case to the quadratic 
construction is to consider polynomials with at least two real roots, because for such a 
polynomial Q satisfying Q(∞) < 0, the set of real numbers x on which Q(x) ≥ 0 is 
compact, as for the quadratic case.

The discriminant can be written in terms of the two Γ1-invariants I and J associated 
to a quartic polynomial aX4 + bX3 + cX2 + dX + e:

I = 12ae− 3bd + c2,

J = 72ace + 9bcd− 27ad2 − 27eb2 − 2c3,

D = 1
27
(
4I3 − J2).

A naive generalization of the function Ak,D(x) would be taking the sum over the 
k − 1-st powers of quartic polynomials with integer coefficients, fixed I and J , that are 
negative at ∞ and positive at x. But this sum diverges. In fact by Theorems 3.1 and 3.3, 
for a Γ -equivalence class A in F4 and an even integer k ≥ 1,
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∑
P∈A〈x〉

P (x)k−1 =
∑

P∈ASim

∑
γ∈Γ (x)

P (�γ(x)�)>0
P (γ(∞))<0

(P |γ)(x)k−1 =
∑

P∈ARed

∑
γ∈Γ (x)′

P (γ(∞))<0

(P |γ)(x)k−1

where neither the set ASim nor ARed is finite.
We could try to modify the naive generalization modifying the left or the right hand 

side of the equation above. On the right hand side, we should replace ASim by a finite 
set AFin of polynomials in A such that 

∑
P∈AFin P (X)k−1 is the even part of a period 

polynomial. If we look at the left hand side, we should add some linear inequalities for the 
coefficients of the polynomials P (X) to make the sum converge. But any linear inequality 
involving other coefficients of P (X) than P (∞) would probably break the invariance by 
T of the sum, because the only invariants by T for a quartic P (X) are P (∞), I, J and 
P (X) itself. So the new sum would not be the even part of an Eichler integral anymore.
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