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In this paper we start a classification of certain global 
integrals. First, we use the language of unipotent orbits to 
write down a family of global integrals. We then classify all 
those integrals which satisfy the dimension equation we set. 
After doing so, we check which of these integrals are global 
unipotent integrals. We do all this for groups of type An, and 
using all this we derive a certain interesting conjecture about 
the length of these integrals.
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1. Introduction

In this paper we begin a classification of what we refer to as global unipotent integrals. 
Constructing global integrals is one of the ways in which one can study the Langlands 
conjectures related to L functions. In this method, one constructs a global integral which 
depends on a complex variable s, and the goal is to determine if this integral is Eulerian. 
To do so one carries out the process of unfolding, which consists mainly of a series 
of Fourier expansions. At the end we obtain an integral which involves an integration 
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over a quotient of the type N(A)\G(A) where N and G are two groups. The integral 
involves a set of functionals or bi-linear forms etc. Then the task is to determine if this 
integral is factorizable. This is the case if, for example, the functional or the bi-linear 
forms etc. which appear in the integral satisfies some uniqueness properties. Maybe the 
most difficult part in this program is to determine a way of how to actually construct 
the initial global integral. In [G1] we describe a way using the language of unipotent 
orbits to construct such global integrals. One of the most general constructions is given 
by integral (2) which appears in the next section. However, as mentioned at the end of 
that section, this is not the most general construction. Nevertheless, the vast majority 
of global Eulerian integrals which appear in the literature are of the type of integral (2).

Thus, one of the main problems is to determine all global integrals (2) which, for 
Re(s) large, after the unfolding process, unfold to the global integral (4). We refer to 
such integrals as global unipotent integrals. As mentioned above, the process of unfolding 
involves mainly certain Fourier expansions. Therefore, a good knowledge of the Fourier 
coefficients of the representations in question is crucial. In our context, for a represen-
tation π, this is captured by the set of unipotent orbits O(π). This notion is defined in 
[G2], Definition 2.1. This, in turn, leads to the definition of the dimension of the rep-
resentation π, and to the definition of what we refer to as the dimension equation of a 
global integral. See equation (5). Roughly speaking, this equation states that the sum 
of the dimensions of the representations involved in the integral is equal to the sum of 
the dimensions of the groups which are involved in the integration. There are several 
reasons which motivate to set up this dimension equation. Maybe the main reason is 
simply because all known integrals which unfold to integrals involving the Whittaker 
coefficient of at least some of the representations do satisfy this equation. See [G1] and 
[G3].

To summarize, a main aspect of this theory is to classify all nonzero global unipotent 
integrals which are given by integral (2), and which satisfies the dimension equation (5).

In this paper we consider this classification for the group G = GLm. We do not do it 
for the most general case, but rather restrict things to the case where the embedding of 
the group G inside the groups Gj , see section 2, is such that the center of G coincides 
with the center of Gj . In section 3 we list all possible Fourier coefficients, defined on an 
arbitrary reductive group H, such that the stabilizer of this coefficient inside some Levi 
part of a certain parabolic subgroup is the group G embedded in H as mentioned above. 
Once we classify all such Fourier coefficients, we obtain a list of global integrals defined 
by integral (2). The first step is to write down the dimension equation for these integrals, 
and to study it. This is done in section 4. There are two main consequences which arise 
from the study of this equation. The first one is a list of global integrals which, in the 
cases of m = 2, 3, is a complete list of all possible integrals. For m = 2 this list is given 
in Tables 1 and 2, and for m = 3 it is given in Tables 3–7. When m ≥ 4 we only get 
a partial list, given in Table 8. We emphasize that these tables list global integrals of 
the type of integral (2) which satisfies the dimension equation (5). It does not guarantee 
that these integrals are nonzero, and if nonzero that they are a global unipotent integral.
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An interesting result regarding what we define as the length of the integral follows 
from these tables. Given a global integral of the type of integral (2), we define its length 
to be the number of representations involved in the integral. Conjecture 1 states that 
for all m ≥ 2, if a global integral is a nonzero global unipotent integral with G = GLm, 
then its length is at most three. In section 4 we prove this conjecture for m = 2, 3 and 
preliminary computations indicate that this conjecture is true for all m. We hope to 
study this problem in the near future. We should mention that while this conjecture is 
obvious for m = 2, for m = 3 it requires a nontrivial result about cuspidal representations 
of the exceptional group E6. This result is stated in Lemma 1 and proved in the last 
section of the paper.

Sections 5, 6 and 7 consist of unfolding the global integrals for the case when m = 2. 
As mentioned above, the lists we obtain in section 4 do not guarantee that the global 
integral in question is nonzero, or if it is a global unipotent integral. For that we need 
the process of the unfolding. After some preparations which are done in sections 5 and 
6, in section 7 we prove two theorems, summarized in Theorem 1, which state in which 
cases the global integral is actually a nonzero global unipotent integral. For that we 
define the notion of an odd Eisenstein series, see Definition 2, and prove in Theorems 2
and 3 that a global integral which appears in Tables 1 or 2 is a nonzero global unipotent 
integral if and only if at least one of the representations involved in the integral is an 
odd Eisenstein series.

2. The basic setup

Let A be the ring of adeles of a global field F . Let ψ denote a nontrivial additive 
character of F\A. For basic facts and notation about unipotent orbits we refer to [C]
and [C-M].

We first recall some basic facts about unipotent orbits. As explained in [G2], section 2, 
given a reductive group H, and a unipotent orbit O of H, one can associate with this orbit 
a set of Fourier coefficients. Thus, to O, we can associate a certain unipotent subgroup 
U(O) of H, and a character ψU(O) of U(O)(F )\U(O)(A). It is possible that to a given 
unipotent orbit there will correspond infinite number of Fourier coefficients. Hence the 
choice of the character ψU(O) is not always unique.

Given an irreducible automorphic representation π of H(A), one can associate with 
it a set of unipotent orbits of H, which we denote by OH(π). This set is defined in [G2]
Definition 2.1. As mentioned in that reference, it is conjectured that this set consists of a 
unique unipotent orbit. Henceforth, we shall assume that this is the case. Another notion 
we need is the notion of the dimension of π. We define dim π = 1

2dim OH(π). Notice 
that this notion is well defined only if we assume that OH(π) consists of one unipotent 
orbit.

For 1 ≤ i ≤ l, let Gi denote l reductive groups. For 1 ≤ j ≤ l, let πj denote an 
automorphic representation defined on Gj(A). Let OGi

denote a unipotent orbit of the 
group Gi. As explained above, we let U(OGi

) denote the corresponding unipotent group, 
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and we choose a corresponding character ψU(OGi
) of U(OGi

)(F )\U(OGi
)(A). Assume, 

that the stabilizer of ψU(OGi
) inside a suitable Levi subgroup of Gi contains the same

reductive group G. Then we can form the global integral

∫
Z(A)G(F )\G(A)

ϕ
U1,ψU1
π1 (g)ϕU2,ψU2

π2 (g) . . . ϕ
Ul−1,ψUl−1
πl−1 (g)ϕUl,ψUl

πl (g)dg (1)

Here Z is the center of G, and we assume that the embedding of G is such that we can 
divide by Z. For each i we have

ϕ
Ui,ψUi
πi (g) =

∫
U(OGi

)(F )\U(OGi
)(A)

ϕπi
(ug)ψU(OGi

)(u)du

Allowing the vectors ϕπi
to vary in the space of the representation πi, the above set of 

Fourier coefficients defines an automorphic representation σi of G(A). Henceforth, we will 
assume that for all i, the representation σi is not a one dimensional representation.

We assume that the representations πj are such that the integral (1) converges. This 
will be the case if we assume that one of the representations πi is an irreducible cuspidal 
representation. After reordering, we may assume that π1 is cuspidal. We also want the 
above integral to depend on a complex variable s. To do so, we assume that πl = Eτ is 
an Eisenstein series defined on the group Gl(A). Thus, the global integral we study is 
given by

∫
Z(A)G(F )\G(A)

ϕ
U1,ψU1
π1 (g)ϕU2,ψU2

π2 (g) . . . ϕ
Ul−1,ψUl−1
πl−1 (g)EUl,ψUl

τ (g, s)dg (2)

As mentioned above, and as defined in [G2], to each representation πj, one can asso-
ciate a unipotent orbit OGj

(πj). Similarly, we define the set OGl
(Eτ (·, s)). See [G2]

section 5. Thus, for 1 ≤ j ≤ l − 1, we may associate with each representation πj , 
a unipotent subgroup of Gj, which we shall denote by Vj(πj), and a character ψVj(πj) of 
Vj(πj)(F )\Vj(πj)(A) such that the Fourier coefficient

Lπi
(gi) =

∫
Vi(πi)(F )\Vi(πi)(A)

ϕπi
(vigi)ψVi(πi)(vi)dvi (3)

is not zero for some choice of data. Similarly, for the Eisenstein series Eτ (·, s) we can 
associate an integral Lτ which is defined in a similar way as above.

Suppose that for Re(s) large, after unfolding integral (2), we obtain the integral

∫
LR1
π1

(g)LR2
π2

(g) · · ·LRl−1
πl−1

(g)f
L

Rl
τ

(w0g)dg (4)

Z(A)M(A)\G(A)



D. Ginzburg / Journal of Number Theory 165 (2016) 169–202 173
Here, M is a certain subgroup of G, and

LRi
πi

(g) =
∫

Ri(A)

Lπi
(rg)ψRi

(r)dr

where Ri is a certain unipotent subgroup of Gi, and ψRi
is an additive character defined 

on this group.
To make things clear we give an example. Consider the integral which represents 

the exterior square L function defined on a cuspidal representation π1 of GL4(A). This 
integral was introduced in [J-S]. Here G = GL2, and integral (2) is given by

∫
Z(A)GL2(F )\GL2(A)

ϕ
U1,ψU1
π1 (g)EU2,ψU2 (g, s)dg

Here U1 is the subgroup of GL4 consisting of all unipotent matrices of the form (
I2 X

I2

)
, and ψU1 is the character given by ψ(trX). Also, E(g, s) is the standard 

Eisenstein series defined on the group GL2(A), and U2 is the trivial group. Unfolding 
this integral one obtains

∫
Z(A)N(A)\GL2(A)

LR1
π1

(g)f(g, s)dg

where

LR1
π1

(g1) =
∫
A

Wπ1(k(r1)g1)dr1

Here Wπ1 is the Whittaker coefficient of π1, and k(r1) = I4 + r1e3,2 where e3,2 is the 
matrix of size four which has one at the (3, 2) entry and zero elsewhere.

Definition 1. In the above notations, if, for Re(s) large, after an unfolding process, in-
tegral (2) is equal to integral (4), then we refer to integral (2) as to a unipotent global 
integral. The number l is the length of the integral, and if all the functionals LRi

πi
and 

LRl
τ are factorizable, then we say that integral (2) is an Eulerian unipotent integral.

The motivation to referring to such an integral as an unipotent global integral follows 
from the fact that each functional Lπi

(gi), defined in (3), is defined by an integration 
over a unipotent group only. There are many cases when a given global integral unfolds 
to functionals which involves integration over reductive groups. In this paper we will not 
consider these cases.

In [G1] we give a general overview about the motivation for the above construction 
and definition. We also motivate some of the discussions below. As explained in [G1] and 
also in [G3], we are mainly interested in Eulerian unipotent integrals which satisfy the 
dimension equation
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l∑
i=1

(dim πi − dim U(OGi
)) = dim G− dim Z (5)

where we write πl for the Eisenstein series Eτ . Our goal is to study the following

Problem 1. Classify all Eulerian unipotent integrals which satisfy the dimension equa-
tion (5).

In this paper we study the above problem for the group G = GLm. Moreover, we con-
sider those cases where the center Z of GLm coincides with the center of each of the 
groups Gi. This restricts the choice of the groups Gi, and also the relevant unipotent 
orbits OGi

. We classify these cases in the next section.
Thus, for these cases we study the following

Conjecture 1. Assume that G = GLm. Suppose that the integral (2) is a nonzero Eu-
lerian unipotent integral which satisfies the dimension equation (5). Assume that the 
representations σi generated by the Fourier coefficient ϕUi,ψUi

πi (g) are not a one dimen-
sional representation of G(A). Then the length l of the integral (2) is less than or equal 
to three.

The motivation for this Conjecture is the fact that in the literature there is not a 
single example of a nonzero Eulerian unipotent integral which satisfies the dimension 
equation (5), and such that l > 3.

It is easy to construct examples with l = 3. The Rankin product integral given by
∫

Z(A)G(F )\G(A)

ϕπ1(g)ϕπ2(g)E(g, s)dg

is an Eulerian unipotent integral. Here πi are irreducible cuspidal representations of 
G(A), and E(g, s) is a suitable Eisenstein series defined on this group. We also mention 
that in [G3] there is a classification of all integrals as above, when now π2 is an arbitrary 
automorphic representation, and E(g, s) is an arbitrary degenerate Eisenstein series.

Notice that since the group G = GLm contains a nontrivial unipotent subgroup, 
then dim πi > dim U(OGi

). This follows from our assumption about the groups σi. 
Indeed, since we assume that πi has a nonzero Fourier coefficient corresponding to the 
unipotent orbit OGi

, then clearly dim πi ≥ dim U(OGi
). If there is an equality, then 

we have OGi
(πi) = OGi

. This means that the representation σi is a one dimensional 
representation of the group G(A). To see this, let xα(r) denote the one dimensional 
unipotent subgroup of G = GLm which corresponds to some simple root of this group. 
Then we consider the integral

∫
ϕ
Ui,ψUi
πi (xα(r)g)ψ(r)dr
F\A
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It is not hard to show that this Fourier coefficient corresponds to a unipotent orbit which 
is strictly greater than OGi

. In section 7 we will prove this when m = 2. The general 
case is similar. So, if we assume that OGi

(πi) = OGi
, then we conclude that the above 

integral must be zero for all choice of data. But then, if we consider the group SL2 which 
is generated by x±α, we deduce that ϕUi,ψUi

πi (mg) = ϕ
Ui,ψUi
πi (g) for all m ∈ SL2(A). This 

implies that as a representation of GLm(A), the representation σi is a one dimensional 
representation. Since, see Conjecture 1, we assume that this is not the case, we deduce 
that dim πi > dim U(OGi

).
Notice that this proves that Conjecture 1 holds when G is a group of type A1. Indeed, 

in this case dim G − dim Z = 3 and hence l ≤ 3.
A few general remarks. First, consider the case when l = 1. Since we want the global 

integral to depend on a complex variable then, excluding the simple cases of Hecke type 
integrals, we assume that the only representation appearing in integral (2) is an Eisen-
stein series. Since we require that the integral converges, then we must take G to be 
trivial. Hence integral (2) reduces to the Fourier coefficient EUl,ψUl

τ (gl, s). These types
of integrals were studied in various references, see [S], and are known as the Langlands–
Shahidi type integrals. Henceforth, we consider integrals as integral (2) such that l ≥ 2.

As a second remark, we mention that the integrals of the form (2) are not the only 
known Eulerian unipotent integrals. An extension of these integrals is when the unipotent 
groups are defined by a diagonal embedding. For example it is not hard to show that for 
a suitable Eisenstein series on GL4(A), the integral

∫
ϕσ(h)Eτ1

((
I X

I

)(
h

h

)
, s1

)
Eτ2

((
I X

I

)(
h

h

)
, s2

)
ψ(trX)dXdh

is an Eulerian unipotent integral. Here σ is an irreducible cuspidal representation of 
GL2(A). This issue is discussed in [G1].

3. The relevant unipotent orbits

In this section we classify the relevant unipotent orbits whose stabilizer is the group 
GLm. We only consider those unipotent orbits such that the center Z of GLm coincides 
with the center of Gi. We describe the orbits, the corresponding unipotent groups, and 
their characters. We also collect some information needed later.

1) Consider the group GLkm with k, m ≥ 2, and denote O = (km). The corresponding 
unipotent groups are

Uk,m(O) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

I X1 ∗ ∗ ∗
I X2 ∗ ∗

I ∗ ∗
. . . Xk−1

⎞
⎟⎟⎟⎟⎠ , Xj ∈ Matm×m

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
I
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The character is given by

ψUk,m(O)(u) = ψ(tr(X1 + X2 + · · · + Xk−1))

The stabilizer of ψUk,m(O) inside the group GLm × · · · × GLm, counted k times, is the 
diagonal embedding of GLm which we denote by GLΔ

m. Notice that the center of the 
stabilizer coincides with the center of GLkm.

For the classical groups, it follows from [C-M] page 88, and for the exceptional groups 
it follows from [C] page 400, that if m ≥ 4, then the above cases are the only cases where 
the stabilizer is GLm whose center Z is the center of the group Gi.

2) In case when m = 3, beside the cases discussed in 1) there is another case in the 
exceptional groups. Let GE6 denote the similitude group of the exceptional group E6. 
We can realize this group as a subgroup of E8. We will use the notations from [G4]. 
It follows from [C] page 402 that for the unipotent orbit whose label is D4, its stabilizer 
inside a suitable Levi subgroup is the group of type A2. In [G4] page 106, one defines the 
unipotent group U with character ψU whose stabilizer is the group GL3. As explained 
in that reference the embedding of GL3 is such that its center Z is the center of GE6.

3) Finally we consider the case of m = 2, that is the group GL2. Beside the cases in 1)
we have other cases in other groups. Let GSp2(2n+1) denote the similitude group of the 

symplectic group Sp2(2n+1). In matrices we take the symplectic form 
(

J2n+1
−J2n+1

)

where J2n+1 is the 2n + 1 matrix with ones on the other diagonal and zeros elsewhere. 
Let O = ((2n + 1)2), and let Un(O) denote the standard unipotent radical subgroup 
of the parabolic subgroup of GSp2(2n+1), whose Levi part is GL2 × · · · × GL2 counted 
n times. We take Un(O) to consist of upper unipotent matrices. Identify the quotient 
Un(O)/[Un(O), Un(O)] with L = Mat2 ⊕ · · · ⊕ Mat2, counted n times. Then the group 
GL2×· · ·×GL2 acts on Un(O)/[Un(O), Un(O)] by conjugation, and there is an open orbit 
for this action. For (X1, X2, . . . , Xn) ∈ L define the character ψ(tr (X1 +X2 + · · ·+Xn)), 
and extend it trivially to a character ψUn(O) of Un(O)(F )\Un(O)(A). The stabilizer of 
ψUn(O) inside GL2 × · · · × GL2 is GL2 embedded diagonally. Its not hard to check that 
the center of GL2 coincides with the center of GSp2(2n+1).

A similar situation occurs in the similitude group GSO4n. Let O = ((2n)2). Let 
Un(O) denote the standard unipotent radical of the parabolic subgroup whose Levi part 
is GL2 × · · · × GL2 counted n times. Identify Un(O)/[Un(O), Un(O)] with L = Mat2 ⊕
· · · ⊕ Mat2 ⊕ Mat02, where Mat2 appears n times and Mat02 = {

(
y

−y

)
: y ∈ A}. 

Then the group GL2 × · · · × GL2 acts on Un(O)/[Un(O), Un(O)] by conjugation, and 
there is an open orbit for this action. For (X1, X2, . . . , Xn−1, y) ∈ L define the character 
ψ(tr (X1 + X2 + · · · + Xn−1) + y), and extend it trivially to a character ψUn(O) of 
Un(O)(F )\Un(O)(A). The stabilizer of ψUn(O) inside GL2 ×· · ·×GL2 is GL2 embedded 
diagonally.

Finally, consider the similitude group GE7. We use the notations as in [G4]. In the 
notations of [C], let O = E6. Let U(O) denote the unipotent radical subgroup of the 
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parabolic subgroup whose Levi part contains the group GL2 ×GL2 ×GL2 embedded in 
GE7 as follows. In terms of the roots of E7, the group GL2×GL2×GL2 contains the group 
SL2 × SL2 × SL2 generated by x±0100000; x±0000100; x±0000001. Thus dim U(O) = 60. 
Define a character ψU(O) of the group U(O)(F )\U(O)(A) as follows. For u ∈ U(O) write

u = x1000000(r1)x0010000(r2)x0101000(r3)x0001100(r4)x0000110(r5)x0000011(r6)u′

Here u′ is an element of U(O) which is a product of one parameter unipotent subgroups 
none of which are among the above six roots. Define ψU(O)(u) = ψ(r1 + r2 + · · · + r6). 
Then the stabilizer of ψU(O) inside GL2×GL2×GL2 is the diagonal group GL2. It follows 
from [G4] that the center of this copy of GL2 is the center of GE7.

4. On some global integrals

In this section we study global integrals of the type (2) which we assume to satisfy the 
dimension equation (5). The result we obtain in this section is a set of integrals which 
satisfies the dimension equation. We emphasize that the global integrals we obtain are 
not necessarily nonzero or that they are an Eulerian unipotent integrals. We consider 
these issues for some cases, in the next sections. We can summarize the content of this 
section in the following

Proposition 1. Consider an integral of type (2) such that G = GLm, and assume that it 
satisfies the dimension equation (5). If m = 2, 3, then Conjecture 1 holds. In this case 
the unipotent orbits attached to the various representations involved in the integral are 
given in Tables 1–7. When m ≥ 4 then k = 1, 2. See Subsection 4.3 for details.

We recall from section 2 that we assume that the representation π1 is an irreducible 
cuspidal representation of the group G1(A), and that the representation πl is an Eisen-
stein series. From section 3 we deduce that the group G1 is one of the following groups. 
First, G1 = GLk1m with k1 ≥ 1 and m ≥ 2. In addition, if m = 3, then we can also have 
G1 = GE6, and if m = 2, then we also have that G1 is one of the groups GSp2(n+1), 
GSO4n or GE7. In the first case we will write k for k1. Also, we denote G = GLm, and 
by Z the center of G. In the first subsection we deal with the group G = GL2, then with 
G = GL3 and in the last subsection we consider the group G = GLm for m ≥ 4.

4.1. The case when G = GL2

Assume that G = GL2. The dimension equation is then

l∑
(dim πi − dim U(OGi

)) = 3

i=1
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Table 1
The l = 2 case.

O(π1) (4)GL (2)GL
((2n + 4)(2n − 2))GSp ((2n + 2)(2n))GSp
((2n + 3)(2n − 3))GSO ((2n + 1)(2n − 1))GSO
E7(a1) E7(a2)

O(Eτ ) ((p + 1)(p − 1))GL ((p + 2)(p − 2))GL
((2p + 2)(2p))GSp ((2p + 4)(2p − 2))GSp
((2p + 1)(2p − 1))GSO ((2p + 3)(2p − 3))GSO
E7(a2) E7(a1)

It follows from the dimension equation that we have l = 2, 3. We will use the notation 
λH for the partition λ of the classical group H.

In Table 1 we consider all integrals (2) with l = 2. There are two cases to consider. 
In the first case we have dim π1 − dim U(OG1) = 2 and dim Eτ − dim U(OG2) = 1, and 
in the second case we have dim π1 − dim U(OG1) = 1 and dim Eτ − dim U(OG2) = 2. 
The first case is listed in the second column of Table 1, and the second case in the third 
column of Table 1.

Consider the first case. If π1 is defined on GL2k(A), then we have

2 = dim π1 − dim U(OG1) = 1
2(dim OGL(π1) − dim(k2)GL)

The only partition that satisfies this equation is OGL(π1) = ((k+2)(k−2))GL. But π1 is 
cuspidal, and hence generic. The only cuspidal representation π1 such that OGL(π1) =
((k + 2)(k− 2))GL is when k = 2, and we obtain OGL(π1) = (4)GL. As another example 
from this case, assume that π1 is defined on GSp2(2n+1)(A). In this case the only partition 
which satisfies

2 = dim π1 − dim U(OG1) = 1
2(dim OGSp(π1) − dim((2n + 1)2)GSp)

is the partition OGSp(π1) = ((2n + 4)(2n − 2))GSp. In contrast to the case when π1 was 
defined on GL2k, in this case cuspidal representations of GSp2(2n+1)(A) which satisfy 
O(π1) = ((2n +4)(2n −2))GSp do exist. These are some CAP representations, which can 
be constructed, for example, using the method described in [G5]. The other two cases, 
which appear in the second column of Table 1 are constructed in a similar way.

As for the Eisenstein series, the situation is similar. In this case we have dim Eτ −
dim U(OG2) = 1. If, for example, Eτ is defined on the group GSO4p(A), then the only 
partition that satisfies this last equation is ((2p +1)(2p −1)). This explains the last entry 
in the second column of Table 1.

When l = 3 we have

dim π1 − dim U(OG1) = dim π2 − dim U(OG2) = dim Eτ − dim U(OG3) = 1

In Table 2 we list all relevant possible cases.
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Table 2
The l = 3 case.

O(π1) (2)GL
((2n + 2)(2n))GSp
((2n + 1)(2n − 1))GSO
E7(a2)

O(π2) ((q + 1)(q − 1))GL
((2q + 2)(2q))GSp
((2q + 1)(2q − 1))GSO
E7(a2)

O(Eτ ) ((p + 1)(p − 1))GL
((2p + 2)(2p))GSp
((2p + 1)(2p − 1))GSO
E7(a2)

As an example, consider the case when all three representations are defined on the 
exceptional group E7(A). Since, see [C-M], E7(a2) is the only unipotent orbit which 
satisfies

1 = dim π1 − dim U(OG1) = 1
2(dim OGE7(π1) − dimE6)

this explains the relevant entry in the second table. The entries for π2 and Eτ are the 
same. Thus, for a corresponding integral to exist, we need to prove that there is a 
cuspidal representation π1, and an Eisenstein series Eτ , both defined on GE7(A) such 
that O(π1) = O(Eτ ) = E7(a2).

We emphasize that the entries in each table are independent. For example, in Table 2
there are 43 = 64 cases to consider. This means that using the data from Table 2, we can 
construct 64 types of integrals, as defined by integral (2). Clearly, we still need to check 
which of these integral is well defined, and which is a nonzero Eulerian unipotent integral.

4.2. The case when G = GL3

Assume that G = GL3. In this section all partitions are partitions of the group GL. 
It follows from section 3 that π1 is defined on GL3k for some k ≥ 1, or defined on the 
group GE6(A).

In this case, the dimension equation is given by

l∑
i=1

(dim πi − dim U(OGi
)) = 8

First, we claim that for any irreducible representation π of the group H = GL3k(A)
such that O(π) > (k3), or for the group H = GE6(A) such that O(π) > E6, we have 
dim π − dim U(OH)) ≥ 2. Indeed, if H = GL3k, then dim π − dim U(OH) = 1

2 (O(π) −
dim (k3)). The first partition which is strictly greater than (k3) is ((k + 1)k(k − 1)). 
Hence dim π − dim U(OH) ≥ 1 (dim (k + 1)k(k − 1)) − dim (k3)) = 2, and the claim 
2
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Table 3
The l = 2 case.

O(π1) (6)

O(Eτ ) ((p + 1)p(p − 1))
D5(a1)

Table 4
The l = 2 case.

O(π1) (3)

O(Eτ ) ((p + 2)(p + 1)(p − 3))
((p + 3)(p − 1)(p − 2))
E6(a1)

follows. In the case of H = GE6, we note that the first partition which is strictly greater 
than D4 is D5(a1), and it satisfies 1

2(dim D5(a1) − dim D4) = 2. See [C-M].
We need the following result which we shall prove in the last section.

Lemma 1. There are no irreducible nonzero cuspidal representations π defined on 
GE6(A), such that OGE6(π) is equal to D5, or to D5(a1).

Next we claim that if π is an irreducible cuspidal representation of H = GL3k(A) or of 
the group H = GE6(A) such that O(π) > E6, then we have dim π−dim U(OH) ≥ 3. For 
the exceptional group this claim follows from Lemma 1. For the group GL3k, it follows 
from the fact that every cuspidal representation is generic.

Returning to the global integral (2) which satisfies the dimension equation, we as-
sume first that π1 is a cuspidal representation of the group GL3k(A). It follows from 
Proposition 3, which we state and prove in the next subsection, that k = 1, 2. As-
sume first that k = 2. Then π1 is defined on GL6(A), and hence O(π1) = (6). Hence 
dim π1 − dim U(OG1) = 6. Thus, we deduce that l = 2, and dim Eτ − dim U(OG2) = 2. 
From this we obtain Table 3.

Next consider the case when k = 1. This means that π1 is a cuspidal representation 
of GL3(A). Hence its dimension is 3, and we obtain

l∑
i=2

(dim πi − dim U(OGi
)) = 5

Since we proved that for any representation π as above dim π − dim U(OH) ≥ 2 then 
l = 2, 3. If l = 2, then dim Eτ − dim U(OG2) = 5. We then obtain Table 4.

Assume that l = 3. Thus dim Eτ − dim U(OG3) = 2, 3. Assume first that it is 
equal to three. Then Eτ is defined either on GL3p(A) for some p ≥ 1, and satisfies 
O(Eτ ) = ((p + 1)2(p − 2)), ((p + 2)(p − 1)2), or Eτ is defined on GE6(A) and satisfies 
O(Eτ ) = E6(a3). Since l = 3, then we have a third representation, denoted by π2
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Table 5
The l = 3 case.

O(π1) (3) (3)

O(π2) ((q + 1)q(q − 1)) ((q + 1)2(q − 2))
D5(a1) ((q + 2)(q − 1)2)

E6(a3)

O(Eτ ) ((p + 1)2(p − 2)) ((p + 1)p(p − 1))
((p + 2)(p − 1)2) D5(a1)
E6(a3)

Table 6
The l = 2 case.

O(π1) E6 E6(a1) E6(a3)

O(Eτ ) ((p + 1)p(p − 1)) ((p + 1)2(p − 2)) ((p + 2)(p + 1)(p − 3))
D5(a1) ((p + 2)(p − 1)2) ((p + 3)(p − 1)(p − 2))

E6(a3) E6(a1)

which satisfies dim π2 − dim U(OG2) = 2. Hence, the representation is defined either on 
GL3q(A) for some q ≥ 1, and satisfies O(π2) = ((q + 1)q(q − 1)) or defined on GE6(A)
and satisfies O(π2) = D5(a1). From this we obtain the second column of Table 5.

The last column in Table 5 is obtained by interchanging the roles of the represen-
tations π2 and Eτ . Thus, the third column corresponds to the case when dim Eτ −
dim U(OG3) = 2.

The final case to consider in this subsection is when π1 defines an irreducible cuspidal 
representation of GE6(A). Since ϕ

U1,ψU1
π1 (g) is not zero, it follows from section 3 that 

OGE6(π1) > D4. Hence, the possibilities for OGE6(π1) are E6, E6(a1), D5, E6(a3) or 
D5(a1). However, the representation π1 is cuspidal. Hence, from Lemma 1 it follows that 
OGE6(π1) = E6, E6(a1) or E6(a3).

In all cases we have that dim U(OG1) = 30. Hence, it follows from [C-M] page 129 
that dim π1 −dim U(OG1) = 6, 5, 3. Thus, we have the corresponding three possibilities

l∑
i=2

(dim πi − dim U(OGi
)) = 2, 3, 5

From the fact that dim πi−dim U(OGi
) ≥ 2 we deduce that when OGE6(π1) = E6 then 

we have l = 2 and in the other two cases we have l = 2, 3. We summarize all possible 
cases in Tables 6 and 7.

For example, the last column in Table 6 corresponds to the case when l = 2 and 
O(π1) = E6(a3). In this case we have dim π1 − dim U(OG1) = 3, and since l = 2, 
we deduce that dim Eτ − dim U(OG2) = 5. If Eτ is defined on GL3p(A) for some p ≥ 1, 
then the only options are O(Eτ ) = ((p +2)(p +1)(p −3)) or O(Eτ ) = ((p +3)(p −1)(p −2)). 
If Eτ is defined on GE6(A), then the only possibility is O(Eτ ) = E6(a1).
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Table 7
The l = 3 case.

O(π1) E6(a3) E6(a3)

O(π2) ((q + 1)q(q − 1)) ((q + 1)2(q − 2))
D5(a1) ((q + 2)(q − 1)2)

E6(a3)

O(Eτ ) ((p + 1)2(p − 2)) ((p + 1)p(p − 1))
((p + 2)(p − 1)2) D5(a1)
E6(a3)

This completes the case when G = GL3. Notice that we proved

Proposition 2. Given a global integral of the form (2), where G = GL3, which satisfies 
the dimension equation (5), then l ≤ 3.

4.3. The case when G = GLm with m ≥ 4

Let G = GLm with m ≥ 4. It follows from section 3 that we may assume that every 
automorphic representation πi which appears in integral (2) is defined on GLkim(A) for 
some ki ≥ 1. As before, we assume that π1 is an irreducible cuspidal representation of 
GLkm where we write k for k1.

The following proposition is valid for all m ≥ 2.

Proposition 3. Suppose that m ≥ 2. Then k = 1, 2.

Proof. From the dimension equation (5) we obtain

l∑
i=2

(dim πi − dim U(OGi
)) + dim π1 − dim U(OG1) = dim G− dim Z

Since π1 is cuspidal, then it is generic and dim π1 = 1
2dim (km) = 1

2km(km −1). We also 
have dim Uk,m(O) = 1

2k(k − 1)m2. Hence the dimension equation is

l∑
i=2

(dim πi − dim U(OGi
)) + 1

2km(km− 1) − 1
2k(k − 1)m2 = m2 − 1

This is the same as

l∑
i=2

(dim πi − dim U(OGi
)) + (1

2km−m− 1)(m− 1) = 0

If k ≥ 3 then the left hand side is a positive number. Hence, we must have k = 1, 2. �
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Table 8
The l = 2 case.

O(π1) (2m)
O(Eτ ) ((p + 1)pm−2(p − 1))

Assume first that k = 2. Then the above equation becomes

l∑
i=2

(dim πi − dim U(OGi
)) = m− 1 (6)

Next consider the Fourier coefficient EUl,ψUl
τ (g, s) which appears in integral (2). This 

Eisenstein series is defined on the group Gl(A). Assume that Gl = GLpm for some 
p ≥ 1. The unipotent orbit attached to the Fourier coefficient of the Eisenstein series is 
(pm), hence OGLpm

(Eτ ) > (pm), or OGLpm
(Eτ ) ≥ ((p + 1)pm−2(p − 1)). Thus, from the 

formula for the dimension of a partition, see [C-M], we obtain

dim Eτ − dim Up,m(O) = 1
2(dim OGLpm

(Eτ ) − dim(pm)) ≥

≥ 1
2(dim ((p + 1)pm−2(p− 1)) − dim (pm)) = m− 1

Combining this with equation (6), we deduce that when k = 2, we also have l = 2.
Thus, the case when π1 is an irreducible cuspidal representation of GL2m(A) produces 

Table 8.
Assume that k = 1. In this case π1 is a cuspidal representation of GLm(A). Assuming 

that integral (2) satisfies the dimension equation, does not by itself limit the possibilities 
as in the previous cases. In some more details, it follows from the proof of Proposition 3
that the dimension equation is

l∑
i=2

(dim πi − dim U(OGi
)) = (1

2m + 1)(m− 1)

It is not hard to produce examples of representations which satisfy this equation. For 
example, when m = 4, the right hand side of the above equation is equal to 9. It is not 
hard to construct an Eisenstein series Eτ on GL4(A) such that dim Eτ = 3. Indeed, let τ
be the trivial representation and assume that Eτ is the Eisenstein series associated with 
the induced representation IndGL4(A)

P (A) δsP . Here P is the maximal parabolic subgroup of 
GL4 whose Levi part is GL3 × GL1. Hence, the integral

∫
Z(A)GL4(F )\GL4(A)

ϕπ1(g)Eτ (g, s1)Eτ (g, s2)Eτ (g, s3)dg

satisfies the dimension equation. Notice that this does not necessarily mean that Conjec-
ture 1 is not true for m ≥ 4, since in that conjecture we assume that the global integral 
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is nonzero. And indeed this is what happens in the above integral. A simple unfolding 
implies that it is identically zero.

5. On some Eisenstein series

In this section we study some Eisenstein series needed to construct integrals of the 
type (2). More precisely, the tables produced in the previous section assume the existence 
of certain Eisenstein series with certain Fourier coefficients. In this section we indicate 
how to construct such Eisenstein series.

Given a reductive classical group H, it follows from [C-M] that unipotent orbits of 
H are parameterized by certain partitions. Given such a partition λ, we emphasize the 
dependence on H by writing λH instead of λ. Given two partitions b1 = (k1k2 . . . kp) and 
b2 = (m1m2 . . .mq) of the numbers n and r, we set b1 + b2 = ((k1 + m1)(k2 + m2) . . .). 
We also write 2b = b + b.

Let H denote a reductive group, and let P = MU denote a maximal parabolic sub-
group of H. Let τ denote an automorphic representation of M(A), and denote by Eτ(·, s)
the Eisenstein series associated with the induced representation IndH(A)

P (A) τδ
s
P . Notice that 

by induction of stages, this covers all possible Eisenstein series. We are interested in the 
set OH(Eτ (·, s)) for Re(s) large. By that we mean in the domain where the Eisenstein 
series is defined by a convergent series. For the classical groups we have the following

Proposition 4. With the above notations, for Re(s) large, we have
1) For H = GLn, assume that M = GLa × GLn−a, and τ = τ1 ⊗ τ2. Then we have

OGLn
(Eτ (·, s)) = OGLa

(τ1) + OGLn−a
(τ2)

2) For H = GSp2n, assume that M = GLa × GSp2(n−a), and τ = τ1 ⊗ τ2. Then we 
have

OGSp2n(Eτ (·, s)) = 2OGLa
(τ1) + OGSp2(n−a)(τ2)

3) For H = GSO2n, assume that M = GLa × GSO2(n−a), and τ = τ1 ⊗ τ2. Then we 
have

OGSO2n(Eτ (·, s)) = 2OGLa(τ1) + OGSO2(n−a)(τ2)

In particular, if H is one of the above classical groups, then dim OH(Eτ (·, s)) =
dim τ + dim U .

Proof. The proof of this proposition is a straightforward computation of the relevant 
unipotent orbit, which is done by unfolding the Eisenstein series. The computations in 
general are very similar to the computations done in [G3] Proposition 1. We omit the 
details.

The last equation in the statement of the proposition follows from the fact that 
from the above parts 1)–3), we deduce that OH(Eτ (·, s)) is the induced orbit as de-
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fined in [C-M] section 7. Then the statement about the dimension follows from [C-M]
lemma 7.2.5. �

Since we are mainly interested in the case when m = 2, we work out the relevant 
Eisenstein series in this case only. In other words, the Eisenstein series which appear in 
Tables 1 and 2. From the above proposition we deduce:

Lemma 2. Let Eτ (·, s) denote the Eisenstein series which was defined right before Propo-
sition 4. Assume this Eisenstein series appears in Table 1 or 2. Then the unipotent 
orbits of the representations τi appearing in the induction data, see also Proposition 4, 
are described as follows.

A) For the group GL2p we have the following cases:
1) Suppose that O(Eτ (·, s)) = ((p + 1)(p − 1)). Then, there is 0 ≤ i ≤ 2 such 

that M = GL2(a−1)+i × GL2(p−a+1)−i; O(τ1) = (a(a − 2 + i)) and O(τ2) =
((p − a + 1)(p − a + 1 − i)).

2) Suppose that O(Eτ (·, s)) = ((p + 2)(p − 2)). Then, there is 0 ≤ i ≤ 4 such 
that M = GL2(a−2)+i × GL2(p−a+2)−i; O(τ1) = (a(a − 4 + i)) and O(τ2) =
((p − a + 2)(p − a + 2 − i)).

B) For the group GSp4p+2 we have the following cases:
3) Suppose that O(Eτ (·, s)) = ((2p +2)(2p)). Then, there is 0 ≤ i ≤ 1 such that M =

GL2a−i × GSp2(2p−2a+i+1); O(τ1) = (a(a − i)) and O(τ2) = ((2p− 2a + 2)(2p −
2a + 2i)).

4) Suppose that O(Eτ (·, s)) = ((2p + 4)(2p − 2)). Then, there is 0 ≤ i ≤ 3
such that M = GL2a−i × GSp2(2p−2a+i+1); O(τ1) = (a(a − i)) and O(τ2) =
((2p− 2a + 4)(2p − 2a + 2i − 2)).

C) For the group GSO4p we have the following cases:
5) Suppose that O(Eτ (·, s)) = ((2p + 1)(2p − 1)). Then, there is 0 ≤ i ≤ 1 such that 

M = GL2a−i×GSO2(2p−2a+i); O(τ1) = (a(a −i)) and O(τ2) = ((2p −2a +1)(2p −
2a + 2i − 1)).

6) Suppose that O(Eτ (·, s)) = ((2p + 3)(2p − 3)). Then, there is 0 ≤ i ≤ 3 such that 
M = GL2a−i×GSO2(2p−2a+i); O(τ1) = (a(a −i)) and O(τ2) = ((2p −2a +3)(2p −
2a + 2i − 3)).

Proof. The proof follows immediately from Proposition 4. We give some details about 
the first case.

Assume that O(Eτ (·, s)) = ((p + 1)(p − 1)). Assume that O(τ1) = (α1β1) and that 
O(τ2) = (α1β2) then it follows from Proposition 4 that α1+α2 = p +1 and β1+β2 = p −1. 
Assume that τ1 is an automorphic representation of GL2(a−1)+i(A) for some a and 
i = 1, 2. Then τ2 is an automorphic representation of GL2(p−a+1)−i(A). This means that 
α1+β1 = 2a +i −2 and that α2+β2 = 2p −2a −i +2. Also, we have α1 ≥ β1 and α2 ≥ β2. 
From these six relations the claim follows. Indeed, we obtain the relations α1 = p +1 −α2, 
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then β1 = 2a + i − p +α2 − 3 and β2 = 2p − 2a − i −α2 +2. The relation α1 ≥ β1 implies 
2p + 4 ≥ 2a + i + 2α2, and the second inequality implies 2a + i + 2α2 ≥ 2p + 2. Hence, 
2a + i + 2α2 = 2p + 2, 2p + 3, 2p + 4. If i = 1 then we must have 2a + i + 2α2 = 2p + 3
from which it follows that α1 = a. From this the claim follows. Similar result happens 
when i = 2. We omit the details. �

For the exceptional groups we proceed as follows. We use the following lemma which 
is a version of proposition 5.16 in [G2].

Lemma 3. Let H denote an exceptional group, and let Eτ (·, s) denote an Eisenstein 
series attached to IndH(A)

P (A) τδ
s
P . Here P is a maximal parabolic subgroup of H with Levi 

decomposition P = MU. Let τ denote an automorphic representation of M(A). Then, 
for Re(s) large, we have dim OH(Eτ (·, s)) = dim τ + dim U .

6. On some Fourier expansions

Let π denote an automorphic representation of the group H(A), where H is one of the 
groups GL2k, GSp2(2k+1), GSO4k, or GE7. Let V be any one of the unipotent subgroups 
defined in section 3 part 1) with m = 2, or part 3). Let ψV denote the character of 
V (F )\V (A) defined in that section in each case. Then the stabilizer of ψV contains the 
group GL2.

For g ∈ GL2, define

f(g) =
∫

V (F )\V (A)

ϕπ(vg)ψV (v)dv

In this section we compute the following integral
∫

F\A

f

((
1 y

1

)
g

)
ψ(ay)dy (7)

where a = 0, 1.

Lemma 4. a) When a = 1, integral (7) corresponds to the Fourier coefficient of π asso-
ciated with the unipotent orbit
1) ((k + 1)(k − 1)) if H = GL2k.
2) ((2k + 2)(2k)) if H = GSp2(2k+1).
3) ((2k + 1)(2k − 1)) if H = GSO4k.
4) E7(a2) if H = GE7.
b) When a = 0, the constant term of f(g) corresponds to a sum of Fourier coefficients 
associated with every unipotent orbit of H which is strictly greater than the unipotent 
orbit written in part a), and a certain Fourier coefficient which contains the constant 
term specified below, as an inner integration.
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Proof. We work out the details for the case where H = GL2k. The other cases are 
similar. We compute the integral

∫
F\A

∫
V (F )\V (A)

ϕπ(vμ(y))ψV (v)ψ(ay)dydv

where

μ(y) = I2k + ye1,2 + ye3,4 + · · · + ye2k−1,2k

Here, we denote by ei,j the matrix of order 2k with one at the (i, j) entry and zero 
elsewhere. Expand the above integral along the subgroup

V1 = {v1(r2, r3, . . . , rk) = I2n + r2e3,4 + r3e5,6 + · · · + rke2k−1,2k : ri ∈ A}

Then the above integral is equal to

∫ ∑
ξi∈F

∫
ϕπ(v1(r2, r3, . . . , rk)vμ(y))ψV (v)ψ(ay +

k∑
i=2

ξiri)dydvdri

Let

L1 = {l1(z2, z3, . . . , zk) = I2k + z2e2,3 + z3e4,5 + · · · + zke2k−2,2k−1}

Then L1 is a subgroup of V . Since ϕπ is an automorphic function, then we have ϕπ(m) =
ϕπ(l1(ξ2, ξ3, . . . , ξk)m). Conjugating this discrete matrix from left to right, collapsing 
summation with integration, the last integral is equal to

∫
L1(A)

∫
V2(F )\V2(A)

ϕπ(vl1)ψa,V2(v)dvdl1

Here

V2 = {u ∈ U : ui,i+1 = 0; i = 2, 4, . . . , 2k − 2}

where U is the maximal standard unipotent subgroup of GL2k. Also, for v ∈ V2 we have

ψa,V2(v) = ψ(av1,2 + v1,3 + v2,4 + v3,5 + · · · + v2k−2,2k)

Assume that a = 1. Then, using the correspondence between unipotent orbits and 
Fourier coefficients as described in [G2] section 2, we deduce that the integration over 
V2 in the above integral, is a Fourier coefficient associated with the unipotent orbit 
((k + 1)(k − 1)).

Next, assume a = 0. For this section let U denote the standard maximal unipotent 
subgroup of GL2k. Let w denote the Weyl element of GL2k defined as follows. For all 
1 ≤ i ≤ k set wi,2i−1 = wk+i,2i = 1, and all other entries of w are zeros. Since w is a 
discrete element, then ϕπ is left invariant by it. Conjugating w from left to right, the 
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above integral is equal to
∫

L1(A)

∫
L2(F )\L2(A)

∫
V3(F )\V3(A)

ϕπ(vl2wl1)ψV3(v)dvdl2dl1

Here V3 is the subgroup of U defined by

V3 = {v ∈ U : ui,j = 0; 2 ≤ i ≤ k and k ≤ j ≤ 2k − 1}

and L2 is the group of all lower unipotent matrices defined by

L2 = {l2 =
(
Ik
X Ik

)
: Xi,j = 0; j ≤ i + 1}

Also, the character ψV3 is defined as follows

ψV3(v) = ψ(v1,2 + v2,3 + · · · + vk−1,k + vk+1,k+2 + vk+2,k+3 + · · · + v2k−1,2k) (8)

Let L3 denote the subgroup of U defined by

L3 = {l3 =
(
Ik Y

Ik

)
: Yi,j = 0; i ≤ j and i = k}

Next we expand the above integral along the group L3(F )\L3(A). Carrying out a similar 
process as in the previous expansion in this section, and doing it one variable at the time, 
we obtain that the above integral is equal to

∫
L1(A)

∫
L2(A)

∫
V4(F )\V4(A)

ϕπ(vl2wl1)ψV4(v)dvdl2dl1 (9)

Here V4 is the subgroup of U defined by

V4 = {u ∈ U : uk,j = 0; k ≤ j ≤ 2k − 1}

The character ψV4 is the trivial extension of ψV3 to ψV4 .
Next, consider the expansion of the above integral along the one parameter unipotent 

subgroup of U consisting of all matrices of the form xα(r) = I2k + rek,2k−1. First con-
sider the contribution from the nontrivial orbit. It is a sum over ξ ∈ F ∗ of the Fourier 
coefficients ∫

L1(A)

∫
L2(A)

∫
F\A

∫
V4(F )\V4(A)

ϕπ(xα(r)vl2wl1)ψV4(v)ψ(ξr)drdvdl2dl1

Using the corresponding between unipotent orbits and Fourier coefficients, as described in 
[G2] section 2, we deduce that the above Fourier coefficient corresponds to the unipotent 
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orbit ((k + 2)(k− 2)). The second contribution to integral (9) from the above expansion 
is from the constant term, and it is equal to

∫
L1(A)

∫
L2(A)

∫
V5(F )\V5(A)

ϕπ(vl2wl1)ψV5(v)dvdl2dl1

where

V5 = {u ∈ U : uk,j = 0; k ≤ j ≤ 2k − 2}

We further expand this integral along xα(r) = I2k + rek,2k−2. Again we get two contri-
butions. The first, from the nontrivial orbit, contributes a sum of Fourier coefficients, 
each corresponds to the unipotent orbit ((k + 3)(k − 3)). The second is the constant 
term. Arguing by induction we eventually expand along the group xα(r) = I2k +rek,k+1. 
The contribution from the nontrivial orbit will produce a sum of Fourier coefficients
which corresponds to the unipotent orbit (2k), and the trivial orbit will produce the 
integral ∫

L1(A)

∫
L2(A)

∫
U(F )\U(A)

ϕπ(ul2wl1)ψU (v)dudl2dl1

where ψU is the character defined by (8) extended trivially to U . Notice that this 
last integral contains the constant term of π along the unipotent radical of the 
maximal parabolic group whose Levi part is GLk × GLk. To summarize, we ex-
pressed integral (7) as a sum of Fourier coefficients which corresponds to unipo-
tent orbits which are greater than (k + 1)(k − 1)), and an integral containing a 
constant term as an inner integration. This is the statement in part b) of the 
lemma.

We finish the proof of the lemma with the description of the constant term which is ob-
tained in the other cases. First, in the classical groups. In the case when H = GSp2(2k+1)
we obtain the constant term along the unipotent radical of the maximal parabolic sub-
group whose Levi part is GL2k+1. When H = GSO4k we get the unipotent radical of 
the maximal parabolic subgroup whose Levi subgroup is GL2k. Finally, when H = GE7

we obtain the unipotent radical of the maximal parabolic subgroup whose Levi part 
is E6. �
7. Unfolding global integrals with G = GL2

It follows from Tables 1 and 2 that there are two cases to consider for the group 
G = GL2. First, if l = 2 the global integral (2) is

∫
ϕ
U1,ψU1
π1 (g)EU2,ψU2

τ (g, s)dg (10)

Z(A)G(F )\G(A)
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and second, if l = 3 we have,

∫
Z(A)G(F )\G(A)

ϕ
U1,ψU1
π1 (g)ϕU2,ψU2

π2 (g)EU3,ψU3
τ (g, s)dg (11)

For 1 ≤ j ≤ 3, let Gj denote one of the groups GL2p, GSp2(2p+1), GSO4p or GE7. 
In integrals (10) and (11), we assume that π1 is a cuspidal representation. For j = 1, 2, 
the sets OGj

(πj) are listed in Tables 1 and 2, and similarly for j = 2, 3 for OGj
(Eτ ). As in 

Section 5, the Eisenstein series Eτ (·, s) is associated with the induced representation 
IndH(A)

P (A) τδ
s
P . Here H = G2 when we consider integral (10), and H = G3 when we 

consider integral (11). We also assume that P is a maximal parabolic subgroup of H. 
The representation τ is an automorphic representation of M(A) where M is the Levi 
part of P .

In this section we determine which of the above integrals, assuming that the repre-
sentations involved in it satisfy the requirements of Tables 1 and 2, is a nonzero global 
unipotent integral. To do that we carry out the unfolding process. As it turns out not all 
the integrals we consider are unipotent global integrals. To describe which of the above 
integrals are unipotent global integrals we start with

Definition 2. We say that Eτ (·, s), defined on GL2p, is an odd Eisenstein series, if, using 
induction by stages, there is a maximal parabolic subgroup such that Eτ (·, s) is induced 
from that parabolic subgroup, and the value of i as appears in Lemma 2 is an odd 
number.

Similarly, in the other classical groups H, we define Eτ (·, s) to be odd if we can induce 
from a maximal parabolic subgroup whose Levi part is GLα × L where α is an odd 
number. Here L is a classical group of the same type of H. In the case of the exceptional 
groups, we define the notion of an odd Eisenstein series right before Theorem 3.

We can now state the main result of this paper,

Theorem 1. Assume that G = GL2. Then the global integrals (10) and (11) are nonzero 
global unipotent integrals if and only if at least one of the Eisenstein series appearing in 
Tables 1 or 2 is an odd Eisenstein series.

We start with the unfolding of the Eisenstein series. Let V = U2 or V = U3 be 
one of the unipotent groups introduced in section 3 with m = 2. Thus, for the group 
H = GL2p, then V = Up,2(O), and for the other classical groups we let V = Un(O). 
For H = GE7 this group was denoted in section 3 by U(O). By ψV we denote the 
corresponding character which was defined in section 3.

Denote by U(P ) the unipotent radical of P . We denote by U the unipotent maximal 
subgroup of GL2p consisting of upper triangular matrices. We have
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EV,ψV
τ (h, s) =

∫
V (F )\V (A)

∑
γ∈P (F )\H(F )

fτ (γvh, s)ψV (v)dv =

=
∑

γ∈P (F )\H(F )/V (F )

∫
V γ(F )\V (A)

fτ (γvh, s)ψV (v)dv (12)

where V γ = V ∩ γ−1Pγ.
We call an element γ ∈ P (F )\H(F )/V (F ) not admissible, if there exists an element 

v ∈ V such that γvγ−1 ∈ U(P ), and such that ψV (v) 	= 1. Otherwise we say that γ
is admissible. From the definition it follows that a non-admissible element contributes 
zero to the above summation. Our goal is to characterize all the admissible elements. 
We shall write all details for the group H = GL2p. For the other classical groups and for 
GE7 the process is similar.

It follows from the Bruhuat decomposition that every element in P (F )\H(F )/V (F )
can be written as γ = wvw. Here w is a Weyl element of GL2p, and vw = I2p + z1e1,2 +
z2e3,4 + · · · + zpe2p−1,2p where zi ∈ F and ei,j is the matrix of size 2p with one at the 
(i, j) entry, and zero elsewhere. We claim that if w is not admissible, then wvw is also not 
admissible. This follows from the action by conjugation of vw on the group V . Indeed, 
if there is a v ∈ V such that wvw−1 ∈ U(P ), and ψV (v) 	= 1, then we can find an element 
v′ ∈ V such that ψV (v′) 	= 1, and that vwv′v−1

w = v. From this the claim follows.
Assume that the Levi part of P is GLr×GL2p−r with p ≤ r. Then 2p −r ≤ r. Assume 

that w is admissible. We shall write w[i, j] for its (i, j) entry. Thus w[i, j] = 0, 1. By a 
suitable multiplication from the left by an element of GLr × GL2p−r, we may assume 
that there is a maximal number q′ such that 0 ≤ q′ ≤ 2p − r and such that w[r+ i, i] = 1
for all 1 ≤ i ≤ q′. From the maximality of q′ we obtain that w[j, q′ + 1] = 0 for all 
r + 1 ≤ j ≤ 2p. Hence, adjusting by an element of GLr ×GL2p−r, we may assume that 
w[1, q′ + 1] = 1. It is convenient to consider the cases q′ even or odd separately. Assume 
that q′ = 2q. Then w[1, 2q + 1] = 1. Consider v = I2p + ze2q+1,2q+3. Then ψV (v) 	= 1. 
Consider the matrix wvw−1. A simple matrix multiplication implies that if w[j, 2q+3] = 1
for some r + 1 ≤ j ≤ 2p, then wvw−1 ∈ U(P ) and hence w is not admissible. Thus, 
we have w[j′, 2q + 3] = 1 for some 2 ≤ j′ ≤ r. By a suitable multiplication from the 
left by elements in GLr × GL2p−r, we may assume that w[2, 2q + 3] = 1. The process is 
inductive, namely using the same argument we deduce that w[3, 2q + 5] = 1, and so on 
until w[p − q, 2p − 1] = 1. Thus we have determined the first p − q rows of w.

Consider the next r − p + q rows. Multiplication from the left by elements in GLr ×
GL2p−r, we let q0 be the smallest positive number such that w[p − q + 1, 2(q + q0)] = 1. 
Then arguing as above we deduce that w is admissible if and only if, after a suitable 
multiplication by GLr ×GL2p−r, we have w[p − q + 2, 2(q + q0 + 1)] = 1, and so on. Let 
q1 be such that w[r, 2(q+ q1)] = 1. Using the same argument, w is admissible if and only 
if 2(q + q1) = 2p. In other words, w is admissible if and only if

w[r, 2p] = w[r − 1, 2(p− 1)] = . . . = w[p− q + 1, 2(2p− r − q + 1)] = 1
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Thus, so far we determined the first r + 2q rows of w. But, up to multiplication by 
GLr × GL2p−r, this determines also the last 2p − 2q − r rows. In other words we have 
w[r + 2q + 1, 2q + 2] = w[r + 2q + 2, 2q + 4] = . . . = w[2p, 2(2p − q − r)] = 1.

A similar construction holds when q′ = 2q + 1. Writing q for q′, we can parameterize 
the admissible Weyl elements by the elements wq with 0 ≤ q ≤ 2p − r, where

wq =

⎛
⎜⎝

L′
q

I2(r−p)+q

Iq
L′′
q

⎞
⎟⎠

Here Ik is the identity matrix of size k, and

L′
q = {x ∈ Mat(2p−r−q)×2(2p−r−q) : xi,2i−1 = 1 for 1 ≤ i ≤ 2p− r − q

and xi,j = 0 elsewhere}
L′′
q = {y ∈ Mat(2p−r−q)×2(2p−r−q) : yi,2i = 1 for 1 ≤ i ≤ 2p− r − q

and yi,j = 0 elsewhere}

Notice that

w2p−r =
(

Ir
I2p−r

)

From all this we conclude that we may consider those double cosets whose representatives 
are of the form wqz(r1, r2, . . . , rp) where ri ∈ F and

z(r1, r2, . . . , rp) = I2p + r1e1,2 + r2e3,4 + · · · + rpe2p−1,2p

To eliminate more double cosets, we specify the Eisenstein series as in Lemma 2 part A. 
Thus we assume that O(Eτ (·, s)) is equal to ((p + 1)(p − 1)) or ((p + 2)(p − 2)). Also, 
we use our assumption that the Eisenstein series is odd. See Definition 2. In other 
words, we assume that, using induction by stages, there is a number a and an odd 
number i such that Eτ (·, s) is induced from that parabolic subgroup. Thus, we have 
three cases. First, if O(Eτ (·, s)) = ((p + 1)(p − 1)) then we assume that M = GL2a−1 ×
GL2(p−a)+1 and O(τ1) = (a(a − 1)) and O(τ2) = ((p − a + 1)(p − a)). In the second 
case O(Eτ (·, s)) = ((p + 2)(p − 2)) and there are two possible induction data. The 
first possibility is M = GL2a−3 × GL2(p−a)+3 and O(τ1) = (a(a − 3)) and O(τ2) =
((p − a + 2)(p − a + 1)). The second possibility is M = GL2a−1 × GL2(p−a)+1 and 
O(τ1) = (a(a − 1)) and O(τ2) = ((p − a +2)(p − a − 1)). However, changing a in the first 
possibility with p − a + 2 gives us the second possibility.

To summarize, if O(Eτ (·, s)) = ((p + 1)(p − 1)) then the induction data is O(τ1) =
(a(a − 1)) and O(τ2) = ((p − a + 1)(p − a)). If O(Eτ (·, s)) = ((p + 2)(p − 2)), then the 
induction data is O(τ1) = (a(a − 1)) and O(τ2) = ((p − a + 2)(p − a − 1)).

We return to the computation of EV,ψV
τ (h, s). Suppose that V contains a subgroup 

V1 such that γ−1V1γ ⊂ M . Then the right most integral in identity (12) contains the 
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integral
∫

V1(F )\V1(A)

fτ (γ−1v1γh
′)ψV (v1)dv1

as inner integration. This integral defines certain Fourier coefficients of the automorphic 
functions ϕτ1 and ϕτ2 . If, for some γ the unipotent orbit corresponding to one of these 
Fourier coefficients is strictly greater than O(τ1) or O(τ2), then the above integral is 
zero, and hence the contribution to (12) from this representative is zero.

Let γ = wqz(r1, r2, . . . , rp). To handle the elements z(r1, r2, . . . , rp), we consider the 
subgroup V ′ of V defined by V ′ = {v ∈ V : v2j,2j−1 = 0; 1 ≤ j ≤ p − 1}. Notice 
that z(r1, r2, . . . , rp) normalizes V ′, and if by restriction, we consider the character ψV

as a character of V ′, then ψV (z(r1, r2, . . . , rp)−1v′z(r1, r2, . . . , rp)) = ψV (v′). Therefore, 
if we replace V by V ′ and take V1 to be a subgroup of V ′, then we may ignore the 
unipotent part of γ. Recall that i, as defined in Lemma 2 is odd. This means that both 
numbers r and 2p − r are odd. We recall that GLr × GL2p−r is the Levi part of P , 
the parabolic subgroup we used to construct the Eisenstein series. The Weyl elements 
which we still need to consider are given by wq where we take q = 2t, 2t + 1 with 
0 ≤ t ≤ 2p−r−1

2 . It follows from matrix multiplication that after conjugating by w2t and 
by w2t+1 we obtain on ϕτ1 the Fourier coefficient corresponding to the unipotent orbit 
((p − t)(r − p + t)), and on ϕτ2 the Fourier coefficient corresponding to the unipotent 
orbit ((2p − r − t)t).

Because of the induction data of the Eisenstein series, as given in Lemma 2, these 
unipotent orbits must satisfy ((2p −r−t)t) ≤ (a(a −1)) or ((p −t)(r−p +t)) ≤ (a(a −1)). 
For otherwise, the above integral will be zero. But (a(a − 1)) is the smallest unipotent 
orbit of GL2p of the form (n1n2), and hence either ((2p − r − t)t) = (a(a − 1)) or 
((p − t)(r − p + t)) = (a(a − 1)). In both cases we obtain t = 2p−r−1

2 . Thus, in the 
factorization of (12) we are left with two possible nonzero contributions corresponding 
to the Weyl elements w2p−r−1 and w2p−r.

To continue we now unfold the global integrals (10) and (11). First, unfolding the 
Eisenstein series, we notice that we need to consider representatives of the space of 
double cosets P\H/V · G. Using the above discussion, we only need to consider two 
types of representatives. They are w2p−r−1z(r1, r2, . . . , rp) and w2p−rz(r1, r2, . . . , rp). 
However, it is not hard to check that all of these representatives, which were distinct 
when we considered P\H/V , are now reduced to one element, which we choose to be 
w2p−r−1. We denote this element by w0.

Thus, for Re(s) large, integral (10) is equal to

∫
ϕ
U1,ψU1
π1 (g)

∫
w

f
V w0 ,ψw0
τ (w0vg, s)ψV (v)dvdg (13)
Z(A)B(F )\G(A) V 0 (A)\V (A)
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and integral (11) is equal to

∫
Z(A)B(F )\G(A)

ϕ
U1,ψU1
π1 (g)ϕU2,ψU2

π2 (g)
∫

V w0 (A)\V (A)

f
V w0 ,ψw0
τ (w0vg, s)ψV (v)dvdg (14)

Here B is the Borel subgroup of G = GL2 which consists of all upper unipotent matrices, 
and

f
V w0 ,ψw0
τ (h, s) =

∫
V w0 (F )\V w0 (A)

fτ (v0h, s)ψw0(v0)dv0

If the Levi part of P is GL2a−1 × GL2(p−a)+1, then this Fourier coefficient corresponds 
to the unipotent orbit (a(a − 1)) of GL2a−1, and corresponds to the unipotent orbit 
((p − a + 1)(p − a)) of GL2(p−a)+1.

Let U(B) denote the unipotent radical of the Borel group B. Consider first the case 
when O(Eτ (·, s)) = ((p + 1)(p − 1)). Then the induction data is O(τ1) = (a(a − 1))
and O(τ2) = ((p − a + 1)(p − a)). Arguing in a similar way as in the proof of the first 
part of Lemma 4, we deduce that for all u ∈ U(B)(A) we have f

V w0 ,ψw0
τ (w−1

0 uw0h, s) =
f
V w0 ,ψw0
τ (h, s). Thus, integrals (13) and (14) are equal to

∫
Z(A)T (F )U(B)(A)\G(A)

∫
U(B)(F )\U(B)(A)

ϕ
U1,ψU1
π1 (ug)Rτ (g)dudg (15)

and
∫

Z(A)T (F )U(B)(A)\G(A)

∫
U(B)(F )\U(B)(A)

ϕ
U1,ψU1
π1 (ug)ϕU2,ψU2

π2 (ug)Rτ (g)dudg (16)

Here

Rτ (g) =
∫

V w0 (A)\V (A)

f
V w0 ,ψw0
τ (w0vg, s)ψV (v)dv

and T is defined as all matrices of the form T = {diag(c, 1) : c ∈ F ∗}. Consider first 
integral (15). We apply Lemma 4 part b) to obtain that the integral

∫
U(B)(F )\U(B)(A)

ϕ
U1,ψU1
π1 (ug)du

is a sum of terms which are related to all unipotent orbits which are strictly greater than 
the ones listed in that lemma part a), and to a certain constant term. By cuspidality of 
π1 we may ignore the summand with the constant term. Also, the case we consider now 
corresponds to the first column in Table 1. Thus OG1(π1) consists of the unipotent orbit 
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specified in the first row of that table. From this, and from the computations done in 
the proof of Lemma 4, we obtain

∫
U(B)(F )\U(B)(A)

ϕ
U1,ψU1
π1 (ug)du =

∑
t∈T (F )

LR1
π1

(tg)

Here Lπ1 is defined in the beginning of section 2 and is given by

Lπi
(gi) =

∫
Vi(πi)(F )\Vi(πi)(A)

ϕπi
(vigi)ψVi(πi)(vi)dvi

where this Fourier coefficient corresponds to the unipotent orbit as specified in the first 
row in the second column of Table 1. Plugging the above identity into integral (15), 
collapsing summation with integration, we deduce that in this case, integral (2) is a 
global unipotent integral.

Next consider integral (16). Expand the function ϕ
U1,ψU1
π1 (ug) along the unipotent 

group U(B). By Lemma 4 part b), and by the cuspidality of π1, we may ignore the 
contribution from the constant term. From part a) of that lemma we obtain

ϕ
U1,ψU1
π1 (ug) =

∑
t∈T (F )

∫
U(B)(F )\U(B)(A)

ϕ
U1,ψU1
π1 (u1tug)ψU(B)(u1)du1du (17)

Plug this into integral (16). Use the fact that π2 and fτ are left invariant by T (F ) to 
collapse summation and integration. Thus we obtain

∫
Z(A)U(B)(A)\G(A)

∫
U(B)(F )\U(B)(A)

LR1
π1

(ug)ϕU2,ψU2
π2 (ug)Rτ (g)dudg (18)

From the above expansion we deduce that LR1
π1

(ug) = ψU(B)(u1)LR1
π1

(g) Thus, using 
Lemma 4 part a), integral (18) is equal to

∫
Z(A)U(B)(A)\G(A)

LR1
π1

(g)LR2
π2

(g)Rτ (g)dudg (19)

where LRj
πj is defined as above and corresponds to the unipotent orbits appearing in the 

first and second row of Table 2. Thus, we deduce that also in this case integral (2) is a 
global unipotent integral.

Finally, we consider integral (10) when O(Eτ (·, s)) = ((p + 2)(p − 2)). Then the 
induction data is O(τ1) = (a(a − 1)) and O(τ2) = ((p − a + 2)(p − a − 1)). Starting with 
integral (13), we obtain

∫ ∫
ϕ
U1,ψU1
π1 (ug)Rτ (ug)dudg
Z(A)T (F )U(B)(A)\G(A) U(B)(F )\U(B)(A)
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Notice that in this case the function Rτ (g) is not left invariant under U(B)(A). Now 
we consider the expansion given by identity (17). Using cuspidality of π1 we may ignore 
the contribution from the constant term, and collapsing summation with integration, 
we obtain

∫
Z(A)U(B)(A)\G(A)

∫
U(B)(F )\U(B)(A)

LR1
π1

(ug)Rτ (ug)dudg

As before, we have LR1
π1

(ug) = ψU(B)(u1)LR1
π1

(g), and hence we obtain
∫

Z(A)U(B)(A)\G(A)

∫
U(B)(F )\U(B)(A)

LR1
π1

(g)RU(B),ψU(B)
τ (g)dg

Using a variation of Lemma 4 part a), we obtain that RU(B),ψU(B)
τ (g) is a Fourier co-

efficient of the representation τ1 which corresponds to the unipotent orbit (a(a − 1))
of GL2a−1, and a Fourier coefficient of τ2 which corresponds to the unipotent orbit 
((p − a + 2)(p − a − 1)) of GL2(p−a)+1. Hence, in this case, integral (2) is also a global 
unipotent integral.

To complete the proof we will consider the Classical groups case first,

Theorem 2. Assume that G = GL2, and that all the groups Gj are classical groups. Then 
the global integral (2) is a nonzero global unipotent integral if and only if one of the 
representations appearing in Table 1 or 2 is an odd Eisenstein series.

Proof. The case when one of the Eisenstein series is odd was considered above. Hence, 
we may assume that none of the Eisenstein series appearing in integral (2) is odd. 
As before we treat the case where the Eisenstein series is defined on H = GL2p. Assume 
that Eτ (·, s) is associated with the induced representation IndH(A)

P (A) τδ
s
P , where P is the 

maximal parabolic subgroup whose Levi part is GL2r × GL2(p−r). Consider the Weyl 
element

w0 =
(

I2(p−r)
I2r

)

Unfolding the Eisenstein series, we consider the contribution to integral (2) from the 
double coset representative w0. A simple matrix conjugation implies that, as an inner 
integration, we obtain an integral which involves the period integral

∫
Z(A)G(F )\G(A)

ϕ
U1,ψU1
π1 (g)ϕU2,ψU2

π2 (g) . . . ϕ
Ul−1,ψUl−1
πl−1 (g)ϕUr,ψUr

τ1 (g)ϕ
Up−r,ψUp−r
τ2 (g)dg

(20)

Here, Ur = U2r,2, the unipotent subgroup which was defined in section 3, and ψUr
is 

the character of this group as defined in that section. Similarly for Up−r. This process is 
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inductive. Namely, if any other representation is an Eisenstein series, then by assumption 
it is not an odd Eisenstein series, and we can further unfold it. Taking the right double 
coset representative, similar to w0, we obtain as inner integration which is similar to 
the one given by integral (20). From this we conclude that eventually we will obtain a 
global integral which involves a period integral of the type given by integral (20) where 
none of the representations is an Eisenstein series. This integral, if not zero, involves also 
integration over a reductive group. Therefore, in this case, integral (2) is not a global 
unipotent integral. �

To complete the classification for the group G = GL2, we need to consider inte-
grals (10) and (11) where the Eisenstein series Eτ (·, s) is defined on the exceptional 
group GE7(A). We say that Eτ (·, s) is an odd Eisenstein series if the Levi part M of 
the parabolic subgroup from which we form the Eisenstein series does not contain all 
three roots α2, α5 and α7. In other words, Eτ (·, s) is odd if M contains a subgroup of 
the type E6 or A6 or A4 ×A2. Here we label the roots of GE7 as in [G4]. Thus, Eτ (·, s)
is odd if M does not contain the diagonal copy of GL2 which stabilizes the character 
ψU(O) as defined in section 3. Indeed, from the definition of this character, it follows 
that this copy of GL2, contains the group SL2 generated by xα2(r)xα5(−r)xα7(r) and 
x−α2(r)x−α5(−r)x−α7(r). We prove a similar result to Theorem 2. We have

Theorem 3. Assume that G = GL2, and that the Eisenstein series Eτ (·, s) is defined on 
the exceptional group GE7(A). Then the global integral (2) is a nonzero global unipotent 
integral if and only if the Eisenstein series appearing in Table 1 or 2 is an odd Eisenstein 
series.

Proof. The idea is the same as in the classical groups. First, if the Eisenstein series is 
not odd, then a similar argument as in the classical groups proves that the integral (2)
is not a global unipotent integral. More precisely, assume that none of the Eisenstein 
series appearing in integral (2) is odd, either on the classical groups or on GE7. Then, 
it is not hard to produce a Weyl element, which can be taken as a representative of the 
double cosets P\H/V ·GL2, such that we obtain an integral of the type of integral (20), 
as inner integration. Thus we conclude that integral (2) is not a nonzero global unipotent 
integral.

Next we consider the case where the Eisenstein series Eτ (·, s) is an odd Eisenstein 
series defined on GE7(A). Thus there are three cases to consider. In each of them, we first 
write a certain Weyl element w0, which will be the only double coset representative of 
P\H/V · GL2 which will contribute a nonzero term in the unfolding process. For that 
element we also write down the group w−1

0 (V ·GL2)w0 ∩M . To obtain w0, we first write 
down w1 which is the shortest Weyl element in M\GE7. Then we consider the Weyl 
element w1w[257] where w[257] is the unique reflection in the group GL2 as embedded 
above in GE7. Let w0 denote the shortest Weyl element which is in the same coset 
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M\GE7 as w1w[257]. Thus, ignoring the contributions to integral (2) from the other 
terms, we then consider the integral

∫
Z(A)B(F )\G(A)

ϕ
U1,ψU1
π1 (g)ϕU2,ψU2

π2 (g)
∫

V w0 (A)\V (A)

f
V w0 ,ψw0
τ (w0vg, s)ψV (v)dvdg (21)

Here B is the Borel subgroup of G = GL2 which consists of all upper unipotent matrices, 
and

f
V w0 ,ψw0
τ (h, s) =

∫
V w0 (F )\V w0 (A)

fτ (v0h, s)ψw0(v0)dv0

Integral (21) corresponds to the case of integral (11). However, if we assume that 
ϕ
U2,ψU2
π2 (g) is one for all g, then it covers also the case of integral (10). Notice that 

this is exactly as in integral (14) where we considered the classical groups. To com-
plete the study of these cases, we need to determine the groups V w0 ∩M and the sets 
OM (τ). Then, using Lemma 4, we argue in a similar way as in the case of the clas-
sical groups. To determine the unipotent orbit OM (τ) we use the dimension identity 
dim Eτ = dim τ + dim U(P ) established in Lemma 3. Here U(P ) is the unipotent 
radical of P . It follows from Tables 1 and 2 that OGE7(Eτ ) is E7(a2) or E7(a1). Hence, 
dim Eτ = 61, 62. From this it is easy to determine dim τ , and hence to determine OM (τ). 
There are three types of odd Eisenstein series, and we consider each one of them.

1) Suppose that M is of type A6. Then dim U(P ) = 42, and hence dim τ = 19 if 
OGE7(Eτ ) = E7(a2) and dim τ = 20 if OGE7(Eτ ) = E7(a1). Hence OM (τ) = (52) in the 
first case and OM (τ) = (61) in the second case. As for the group V w0 ∩M in this case, 
it is defined as follows. Let U denote the maximal unipotent subgroup of GL7. Then 
V w0 ∩M = {u ∈ U : u1,2 = u3,4 = 0}. The character ψw0 is defined as

ψw0(v) = ψ(v1,3 + v2,4 + v4,5 + v5,6 + v6,7)

The corresponding Fourier coefficient is associated with the unipotent orbit (52) of GL7.
2) Suppose that M is of type E6. In this case we have dim τ = 34, 35, and hence 

OM (τ) = D5, E6(a1). The group V w0 ∩M in this case is defined as follows. Let Q denote 
the parabolic subgroup of GE7 whose Levi part is T (GE7) · (SL2×SL2) where the group 
SL2 × SL2 is generated by x±α2 and x±α3 . Also, T (GE7) is the maximal torus of GE7. 
Let U(Q) denote the unipotent radical of Q. Then V w0 ∩M = U(Q). The character ψw0

in the case is defined as follows. For u ∈ U(Q), write

u = xα1(r1)xα3+α4(r2)xα2+α4(r3)xα5(r4)xα6(r5)u′

Here u′ is an element in U(Q) which is a product of one dimensional unipotent subgroups 
of U(Q) corresponding to positive roots of E7 and does not include any one of the above 
five roots. Then, we define ψw0(u) = ψ(r1 + r2 + · · · + r5). It is not hard to check that 
the corresponding Fourier coefficient fV w0 ,ψw0

τ is associated to the unipotent orbit D5
of E7.
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3) Suppose that M is of type A4 × A2. In this case dim τ = 11, 12. The unipotent 
group V w0 ∩ M , viewed as a subgroup of GL5 × GL3 is defined as follows. Let U5
denote the standard maximal unipotent subgroup of GL5, and similarly define U3. Define 
V5 = {v ∈ U5 : u1,2 = 0} and V3 = {v ∈ U3 : u1,2 = 0}. Then we have V w0∩M = V5×V3. 
The character ψw0 is then a product of ψw0,5 and ψw0,3 defined on the groups V5 and V3. 
Here, ψw0,5(v) = ψ(v2,3 + v3,4 + v4,5) and ψw0,3(v) = ψ(v2,3). Thus, on GL5 this Fourier 
coefficient corresponds to the unipotent orbit (41), and on GL3 it corresponds to the 
orbit (21). From this we can determine the sets O(τi). If dim τ = 11, then the only 
option is O(τ1) = (41) and O(τ2) = (21). There are other cases with dim τ = 11
which we ignore since at least one of the sets O(τi) does not support fV w0 ,ψw0

τ . When 
dim τ = 12 there are two options. The first option is O(τ1) = (5) and O(τ2) = (21), and 
the second option is O(τ1) = (41) and O(τ2) = (3).

Next we proceed as in the case of the classical groups. Assume first that OGE7(Eτ ) =
E7(a2). Then we obtain that fV w0 ,ψw0

τ (uh, s) = f
V w0 ,ψw0
τ (h, s) for all u ∈ U(B)(A), 

and now we proceed exactly as in integrals (15) and (16). In the second case, when 
OGE7(Eτ ) = E7(a1) we proceed exactly as with the case of O(Eτ (·, s)) = ((p +2)(p −2))
in the classical groups. See right after integral (19).

Finally, we need to analyze the contribution to the unfolding process from other double 
cosets representatives of P\H/V ·GL2. We need to show that all of them contribute zero 
to the global integral. The process of doing it is similar to the one carried out in details 
for H = GL2p. We omit the details of this computation. �
8. Proof of Lemma 1

In this section we prove Lemma 1. We will consider the case of D5 in details. The 
case of D5(a1) is similar. Let π denote an irreducible cuspidal representation of GE6(A). 
We assume that O(π) = D5 and derive a contradiction. We describe the Fourier coeffi-
cient associated with this unipotent orbit. Let P = MU denote the parabolic subgroup 
of GE6 whose Levi part is M = T ·(SL2×SL2). Here T is the maximal torus of GE6 and 
the two copies of SL2 are generated by x±001000; x±000010. Consider the group U/[U, U ]. 
As coset representatives we may choose the one parameter subgroups xα where α is one 
of the following nine roots

(100000); (101000); (000001); (000011); (000100); (001100); (000110);

(001110); (010000)

The group M acts on these representatives as follows. On the first two it acts, up to a 
power of the determinant, as the standard representation of GL2 which contains the SL2

generated by x±001000. On the next two representatives it acts similarly, but this time the 
GL2 contains the group generated by x±000010. On the next four M acts as the tensor 
product of GL2 × GL2, and on the last representatives, it acts as a one dimensional 
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representation. From this we can define the corresponding Fourier coefficient. Given 
u ∈ U write

u = x100000(r1)x001100(r2)x000110(r3)x000011(r4)x010000(r5)u′

Here u′ ∈ U is any product of one parameter subgroups associated with positive roots 
of E6 which do not include the above five roots. Denote ψU (u) = ψ(r1 + r2 + · · · + r5)
and define the Fourier coefficient associated with the unipotent orbit D5 by

∫
U(F )\U(A)

ϕπ(u)ψU (u)du (22)

The assumption that O(π) = D5 asserts that this Fourier coefficient is not zero for some 
choice of data, but any Fourier coefficient of π associated with the unipotent orbits E6

or E6(a1) is zero for all choice of data.
For 1 ≤ i ≤ 6, let wi denote the simple reflection associated with the root αi. Let 

w0 = w6w5w4w3w2w4w5w1w3. We have

w0α1 = α2; w0(001100) = α4; w0(000110) = α1; w0(000011) = α5; w0α2 = α3

Conjugating by w0, the above Fourier coefficient is equal to
∫

V −(F )\V −(A)

∫
V +(F )\V +(A)

∫
U(D5)(F )\U(D5)(A)

ϕπ(uv+v−w0)ψU(D5)(u)dudv+dv−

where the notations are as follows. First, the group U(D5) is the maximal unipotent 
subgroup of type D5 generated by the simple roots αi for 1 ≤ i ≤ 5. The character 
ψU(D5) is the Whittaker coefficient defined on U(D5). The group V + consists of all 
unipotent elements xα where α is one of the roots

(111211); (011221); (112211); (111221); (112221); (112321); (122321)

Similarly, the group V − is defined by all x−α where α is one of the roots

(101111); (011111); (001111); (010111); (000111); (000011); (000001)

Thus, by definition, the above integral is not zero for some choice of data.
We expand the above integral along the one parameter subgroup x111111(r). Thus, 

the above integral is equal to
∫ ∑

ξ∈F

∫ ∫
ϕπ(ux111111(r)v+v−w0)ψU(D5)(u)ψ(ξr)dudrdv+dv−
F\A
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Conjugate from left to right by the element x−(101111)(−ξ). Changing variables, first in 
U(D5) and then in V + we obtain that the integral

∫

V −
1 (F )\V −

1 (A)

∫

V +
1 (F )\V +

1 (A)

∫
U(D5)(F )\U(D5)(A)

ϕπ(uv+v−)ψU(D5)(u)dudv+dv−

is not zero for some choice of data. Here V +
1 consists of all elements xα in V + including 

x111111. The group V −
1 consists of all xα in V − without the root −(101111). Thus 

dim V +
1 = dim V + + 1 and dim V −

1 = dim V − − 1.
Proceed with this expansion four more times. First expand along x011211 and use the 

element x−(011111). Then expand along x101111 and use x−(001111), then expand along 
x011111 and use x−(010111), and finally expand along x001111 and use x−(000111). We deduce 
that the integral

∫

V −
2 (F )\V −

2 (A)

∫

V +
2 (F )\V +

2 (A)

∫
U(D5)(F )\U(D5)(A)

ϕπ(uv+v−)ψU(D5)(u)dudv+dv−

is not zero for some choice of data. To describe the notations in the above integral, let R
denote the unipotent radical of the maximal parabolic subgroup of E6 whose Levi part 
contains Spin10 which contains the group U(D5). Thus R is the abelian group generated 
by all xα such that α =

∑5
i=1 niαi + α6. Then V +

2 consists of all xα ∈ R not including 
the roots (000001); (000011); (000111); (010111). Thus dim V +

2 = dim R−4 = 12. The 
group V −

2 consists of all x−α such that α is one of the two roots (000011); (000001).
Next we expand the above integral along the unipotent subgroup x010111(r). Consider 

first the contribution from the nontrivial character. We claim that it contributes zero to 
the expansion. Indeed, in this case after a conjugation by the Weyl element w5w6 it is 
not hard to check that we obtain the Fourier coefficient of π which is associated with the 
unipotent orbit E6(a1). By the assumption that O(π) = D5, we deduce that this Fourier 
coefficient is zero. Thus, we are left with the contribution from the trivial character, and 
we obtain that the integral

∫

V −
2 (F )\V −

2 (A)

∫

V +
3 (F )\V +

3 (A)

∫
U(D5)(F )\U(D5)(A)

ϕπ(uv+v−)ψU(D5)(u)dudv+dv−

is not zero for some choice of data. Here V +
3 is the group generated by V +

2 and x010111. 
Now we expand along x000111 and as before we use the element x−(000011) and then 
expand along x000011 and use x−(000001). Thus we obtain that the integral

∫

V +
4 (F )\V +

4 (A)

∫
U(D5)(F )\U(D5)(A)

ϕπ(uv+)ψU(D5)(u)dudv+

is not zero for some choice of data. Here V +
4 is the group generated by V +

3 and x000111
and x000011. Finally, we expand along x000001. The contribution from the nontrivial orbit 
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gives zero. Indeed, in this case we obtain the Fourier coefficient of π associated with 
the unipotent orbit E6. As argued above, it is zero. The contribution from the trivial 
orbit also contributes zero. Indeed, in this case we obtain as an inner integration, the 
constant term along the unipotent radical R. By cuspidality of π it is zero. Thus the 
above integral is zero and we derived a contradiction.

The case when O(π) = D5(a1) is similar. We give some details. Let U ′ denote the 
unipotent radical of the parabolic subgroup of E6 whose Levi part is T · SL2 where the 
SL2 is generated by x±α4 . Thus dim U ′ = 35. Let U be the subgroup of U ′ where we 
omit the 3 unipotent elements x001100; x000010; x000110. Thus dim U = 32. Given u ∈ U

write

u = x010000(r1)x101100(r2)x000011(r3)x000111(r4)x001110(r5)u′

where u′ ∈ U is an element generated by all xα such that α is not one of the above 
five roots. Define ψU (u) = ψ(r1 + r2 + · · · + r5). Then we can form the corresponding 
Fourier coefficient given by the integral (22). Let w0 = w6w5w4w3w2w4w5w1. We have 
w0(010000) = α3; w0(010100) = (001100); w0(101100) = (010100); w0(000011) = α5; 
w0(001110) = α1. The next step is to expand the integral, and use the fact O(π) =
D5(a1). Eventually, we obtain as inner integration, a constant term along a certain 
unipotent radical, which is zero by cuspidality. We omit the details.

References

[C] R. Carter, Finite Groups of Lie Type, John Wiley and Sons, 1985.
[C-M] D. Collingwood, W. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand 

Reinhold Math. Ser., Van Nostrand Reinhold Co., New York, 1993.
[G4] D. Ginzburg, On standard L-functions for E6 and E7, J. Reine Angew. Math. 465 (1995) 101–131.
[G2] D. Ginzburg, Certain conjectures relating unipotent orbits to automorphic representations, Israel 

J. Math. 151 (2006) 323–356.
[G3] D. Ginzburg, Eulerian integrals for GLn, in: Multiple Dirichlet Series, Automorphic Forms, and 

Analytic Number Theory, in: Proc. Sympos. Pure Math., vol. 75, 2006, pp. 203–224.
[G5] D. Ginzburg, Constructing automorphic representations in split classical groups, Electron. Res. 

Announc. Math. Sci. 19 (2012) 18–32.
[G1] D. Ginzburg, Towards a classification of towards a classification of global integral constructions 

and functorial liftings using the small representations method, Adv. Math. 254 (2014) 157–186.
[J-S] H. Jacquet, J. Shalika, Exterior square L-functions, in: Automorphic Forms, Shimura Varieties, 

and L-Functions, Vol. II, Ann Arbor, MI, 1988, in: Perspect. Math., vol. 11, Academic Press, 
Boston, MA, 1990, pp. 143–226.

[S] F. Shahidi, Eisenstein Series and Automorphic L-Functions, Amer. Math. Soc. Colloq. Publ., 
vol. 58, American Mathematical Society, Providence, RI, 2010, vi+210 pp.

http://refhub.elsevier.com/S0022-314X(16)00069-X/bib43s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib432D4Ds1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib432D4Ds1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4734s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4732s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4732s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4733s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4733s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4735s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4735s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4731s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4731s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4A2D53s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4A2D53s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib4A2D53s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib53s1
http://refhub.elsevier.com/S0022-314X(16)00069-X/bib53s1

	Classiﬁcation of some Global Integrals related to groups of type An
	1 Introduction
	2 The basic setup
	3 The relevant unipotent orbits
	4 On some global integrals
	4.1 The case when G=GL2
	4.2 The case when G=GL3
	4.3 The case when G=GLm with m>=4

	5 On some Eisenstein series
	6 On some Fourier expansions
	7 Unfolding global integrals with G=GL2
	8 Proof of Lemma 1
	References


