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Abstract
The Riemann zeta identity at even integers of Lettington, along with his

other Bernoulli and zeta relations, are generalized. Other corresponding recur-
rences and determinant relations are illustrated. Another consequence is the
application to sums of double zeta values. A set of identities for the Ramanujan
and generalized Ramanujan polynomials is presented. An alternative proof of
Lettington’s identity is provided, together with its generalizations to the Hur-
witz and Lerch zeta functions, hence to Dirichlet L series, to Eisenstein series,
and to general Mellin transforms.

The Hurwitz numbers H̃n occur in the Laurent expansion about the origin
of a certain Weierstrass ℘ function for a square lattice, and are highly analogous
to the Bernoulli numbers. An integral representation of the Laurent coefficients
about the origin for general ℘ functions, and for these numbers in particular,
is presented. As a Corollary, the asymptotic form of the Hurwitz numbers
is determined. In addition, a series representation of the Hurwitz numbers is
given, as well as a new recurrence. Other results concern the Matter numbers
of the equianharmonic case of the ℘ function.
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1. Introduction and statement of results

Let ζ(s) denote the Riemann zeta function and Bn(x) the nth degree Bernoulli

polynomial [15, 26], such that Bn = Bn(0) = (−1)n−1nζ(1 − n) is the nth Bernoulli

number (e.g., [8, 20]). This relation is extended, for instance when n is even, to

Bn(x) = −nζ(1−n, x) where ζ(s, x) =
∑∞

n=0(n+x)−s (Re s > 1) is the Hurwitz zeta

function. There is the well known relation (explicit evaluation)

ζ(2m) =
(−1)m+1

(2m)!
22m−1π2mB2m. (1.1)

The Bernoulli numbers have the well known exponential generating function

x

ex − 1
=

∑
n≥0

Bn

n!
xn, |x| < 2π,

while the ordinary generating series β(x) =
∑

n≥0 Bnx
n = 1− x/2 + x2/6− x4/30 +

x6/42 + . . . is divergent. However the continued fractions for the generating series∑
n≥1 B2n(4x)

n, β(x),
∑

n≥1(2n + 1)B2nx
n, and

∑
n≥1(4

n − 2n)|Bn|x2n−1/n are con-

vergent [14].

In Lettington [22] was presented an identity previously known by Song [28] for

the Riemann zeta function at even integers,

ζ(2j) = (−1)j+1

[
jπ2j

(2j + 1)!
+

j−1∑
k=1

(−1)kπ2j−2k

(2j − 2k + 1)!
ζ(2k)

]
. (1.2)

This is hardly an isolated identity, and we show how to systematically derive many

related ones. Other very recent interest in the subject of zeta function-value recur-

rences is evidenced by [25], which extends work of Song [28]. The very recent paper

of Merca [25] uses a standard generating function of the Bernoulli polynomials, while

Song used a Fourier series approach. All such identities may be further generalized

using the methods of this paper. As a quick example, an application of Theorem 9

of Section 3 of this paper generalizes Corollary 2.2 of [25] in terms of values of the

Hurwitz zeta function.
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As an initial illustration of our results, we have the identities given in the following.

Theorem 1. (a)

(31−2j−1)ζ(2j) =
(−1)jj(2π)2j

(2j)!32j−1
+(−1)j+1(2π)2j

j∑
m=0

(−1)m+1

(2j − 2m)!22m−132j−2mπ2m
ζ(2m),

(b)

(41−2j−21−2j)ζ(2j) =
(−1)jj(2π)2j

(2j)!42j−1
+(−1)j+1(2π)2j

j∑
m=0

(−1)m+1

(2j − 2m)!22m−142j−2mπ2m
ζ(2m),

(c)

(61−2j−31−2j−21−2j+1)ζ(2j) =
(−1)jj(2π)2j

(2j)!62j−1
+(−1)j+1(2π)2j

j∑
m=0

(−1)m+1

(2j − 2m)!22m−162j−2mπ2m
ζ(2m),

(d)

− j

122j−1
(1 + 72j−1) +

j∑
m=0

(2j)!

(2j − 2m)!

(−1)m+1

22m−1π2m
(1 + 72j−2m)

ζ(2m)

122j−2m

=
(61−2j − 31−2j − 21−2j + 1)(2j)!(−1)j+1

24j−1π2j
ζ(2j),

and (e)

− j

82j−1
(1+52j−1)+

j∑
m=0

(2j)!

(2j − 2m)!

(−1)m+1

22m−1π2m
(1+52j−2m)

ζ(2m)

82j−2m
=

(41−2j − 21−2j)(2j)!(−1)j+1

24j−1π2j
ζ(2j).

Moreover, in a separate section we give an alternative proof of (1.2), and its extensions

to ζ(s, a) and so to Dirichlet L-functions.

Now define functions

φj(s) =
ζ(s)

js
, θ3(s) =

(
1− 1

3s−1

)
ζ(s),

θ4(s) =

(
1

2s−1
− 1

4s−1

)
ζ(s), θ6(s) =

(
−1 +

1

2s−1
+

1

3s−1
− 1

6s−1

)
ζ(s). (1.3)

Theorem 1 and similar results have numerous implications for these and other func-

tions. In particular, Theorem 1(a) leads to Theorem 2(b).

Theorem 2. (a)

4
j2s

22s
φj(2s) =

π2s(2s− 1)

(2s+ 1)!
+

s−1∑
n=1

(−1)s−nπ2n

(2n+ 1)!
4
j2(s−n)

22(s−n)
φj(2s− 2n),
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(b)

θ3(2j) = (−1)jπ2j 2
2j

32j
(1− 3j)

(2j)!
+2

j−1∑
m=0

(−1)m−1

(2m)!

(
2π

3

)2m(
1− 3

32(j−m)

)−1

θ3(2j−2m),

(c)

θ4(2j) = (−1)jπ2j 1

22j
(1− 4j)

(2j)!
+2

j−1∑
m=0

(−1)m−1

(2m)!

(π
2

)2m
(

2

22(j−m)
− 4

42(j−m)

)−1

θ4(2j−2m),

and (d)

θ6(2j) = (−1)jπ2j 1

32j
(1− 6j)

(2j)!
+2

j−1∑
m=0

(−1)m−1

(2m)!

(π
3

)2m
(
−1 +

2

22(j−m)
+

3

32(j−m)
− 6

42(j−m)

)−1

× θ6(2j − 2m).

We next recall from [22, 23] the definition of a half-weighted minor corner layered

determinant Ψs(�h, �H), using the vectors �h = (h1, h2, h3, . . .) and �H = (H1, H2, H3, . . .):

Ψs(�h, �H) = (−1)s

∣∣∣∣∣∣∣∣∣∣∣∣∣

H1 1 0 0 . . . 0
H2 h1 1 0 . . . 0
H3 h2 h1 1 . . . 0
...

...
...

...
. . .

...
Hs−1 hs−2 hs−3 hs−4 . . . 1
Hs hs−1 hs−2 hs−3 . . . h1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Theorem 3. (a) Define vectors �u and �U2 with entries us = 1/(2s + 1)! and

U2s = (2s− 1)/(2s+ 1)!. Then

4
j2s

22s
φj(2s) = (−1)sπ2sΨs(�u, �U2).

(b) Define vectors �U3 and �H3 with entries U3s = 1/(2s)! and

H3s = −
[
1− 3s

(2s)!
+ θ3(2s)(−1)s−1

(
2π

3

)−2s
]
.

Then

(−1)s
(
2π

3

)2s

Ψs(�U3, �H3) = 2θ3(2s)

(
1− 3

32s

)−1

.
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Let
(

t
d1,d2,...,ds

)
denote the multinomial coefficient, the coefficient of the expansion

of the sum of s terms to the tth power. 1 2

Corollary 1.

4φj(2s) =
(2π)2s

j2s
1

(22s−1 − 1)

s∑
t=1

∑
di≥0

(
t

d1, d2, . . . , ds

)
(−1)t+s

3!d15!d2 · · · (2s+ 1)!ds
,

and

4θ3(2s) =

(
1− 1

32s−1

)
(2π)2s

(22s−1 − 1)

s∑
t=1

∑
di≥0

(
t

d1, d2, . . . , ds

)
(−1)t+s

3!d15!d2 · · · (2s+ 1)!ds
.

Here the sums are such that d1 + d2 + . . .+ ds = t and d1 + 2d2 + . . .+ sds = s.

In fact, the minor corner layered determinants of [22, 23] are very special cases of

lower Hessenberg determinants. Following the proof of Theorem 3, we recall a much

more general determinantal result.

Define, for integers a ≥ 2 and b ≥ 1, the double zeta values

ζ(a, b) =
∞∑
n=1

n−1∑
m=1

1

namb
.

From manipulating series, it follows that

ζ(a, b) + ζ(b, a) = ζ(a)ζ(b)− ζ(a+ b).

More broadly, multiple zeta values have found applications in knot theory and quan-

tum field theory (e.g., [6]). We note that any recurrence of Riemann zeta values (or

of Bernoulli numbers) of the form
∑

j f(s, j)ζ(2j)ζ(2s− 2j) for some function f then

leads to a sum formula for double zeta values. For we have, for instance,

∑
j

f(s, j)[ζ(2j, 2s−2j)+ζ(2s−2j, 2j)] =
∑
j

f(s, j)ζ(2j)ζ(2s−2j)−ζ(2s)
∑
j

f(s, j).

1On pp. 22 and 23 of [23], the following typographical errors occur. The upper index for the
multinomial coefficient for the summations for η(2s), φ(2s), and θ(2s) in Lemma 3.3 should be t. In
the display equation for the proof of Theorem 1.3, an “=” should be inserted after x2s−2.

2On p. 17 of [23], (−1)k should be (−1)s−k in the summand on the right side of the second display
equation, and vice versa for the summand of the right side of the third display equation. At the
bottom of p. 8, Ψ should read Ψn (twice).
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As an illustration of how Bernoulli relations of this article carry over to double

zeta series, we have the following.

Theorem 4. For integers s > 1,

s−1∑
k=1

1

22(s−k)

(
1− 1

22k

)
[ζ(2k, 2s− 2k) + ζ(2s− 2k, 2k)] =

2−2s−1

3
(4s + 6s− 1)ζ(2s).

Let En(x) =
∑n

k=0

(
n
k

)
Ek

2k

(
x− 1

2

)n−k
, with E2n+1 = 0 and Ek = 2kEk(1/2) denote

the Euler polynomial. It has a well known exponential generating function

2ext

et + 1
=

∞∑
n=0

En(x)
tn

n!
, |t| < π. (1.4)

We recall a connection with the alternating zeta function

η(s) =
∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s).

We have the evaluation η(−j) = (−1)jEj(0)/2 for j ≥ 0. The values En(0) =

(−1)nEn(1) are 0 for n ≥ 2 and E0(0) = 1, while otherwise ([1], p. 805) En(0) =

−2(n + 1)−1(2n+1 − 1)Bn+1 for n ≥ 1. Many results analogous to Theorem 1 are

possible, and the following provides a brief example.

Theorem 5. For integers n > 0,

− 1

2n
(1− 31−2n)(22n − 1)B2n =

n−1∑
m=0

(
2n− 1

2m

)
E2m

(2m)!

(
−1

6

)2(n−m)−1

.

Theorem 6. For integers j ≥ 0,

2

j∑
m=0

(1− 21−2m)(1− 22(m−j)+1)ζ(2m)ζ(2j − 2m) = −(1− 2j)ζ(2j).

Theorem 1.3 of [23] gives equivalent forms of the recurrence

ζ(2s+ 2) =
2

22s+2 − 1

s−1∑
k=0

(22k+2 − 1)ζ(2s− 2k)ζ(2k + 2). (1.5)

Hence, if we introduce functions θ̃j(s) = (1− j−s)ζ(s), we may write

(22s+2 − 1)

(1− j−(2s+2))
θ̃j(2s+ 2) = 2j2(s+1)

s−1∑
k=0

(22k+2 − 1)

(j2(k+1) − 1)
φj(2s− 2k)θ̃j(2k + 2).
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In fact, (1.5) is proved in [3] (p. 406) as Theorem 3.4. In addition, we may note that

besides the well known relation (e.g., [29, 32])

ζ(2n) =
2

2n+ 1

n−1∑
k=1

ζ(2k)ζ(2n− 2k), (1.6)

Williams [32] some time ago proved

n∑
k=1

L(2k − 1)L(2n− 2k + 1) =

(
n− 1

2

)
(1− 2−2n)ζ(2n),

where L is the function

L(s) =
∞∑
k=0

(−1)k

(2k + 1)s
= 2−sΦ

(
−1, s,

1

2

)
= 4−s

[
ζ

(
s,

1

4

)
− ζ

(
s,

3

4

)]
,

and Φ is the Lerch zeta function (see Theorem 10).

We point out that each part of Theorem 1 permits the identification of candidate

pseudo-characteristic polynomials for the Riemann zeta and other related functions.

For instance, if we separate the m = 0 and m = j terms of the sum of the right side

of Theorem 1(a), we obtain

3(3−2j − 1)ζ(2j) = (−1)j
(3j − 1)

(2j)!

(
2π

3

)2j

+

j−1∑
m=1

(−1)m22m+1π2mζ(2j − 2m)

(2m)!32m
.

We then put

p
(3)
j (x) =

1

3(3−2j − 1)

j−1∑
m=1

(−1)m22m+1π2m

(2m)!32m
x2m

and

z
(3)
j (x) = (−1)j

(3j − 1)

(2j)!3(3−2j − 1)

(
2π

3

)2j

+ p
(3)
j (x).

We recognize that

p
(3)
j (x) =

2

3(3−2j − 1)

[
−1 + cos

(
2π

3
x

)
−

∞∑
m=j

(−1)m

(2m)!

(
2π

3
x

)2m
]
.

It then appears that inequalities of the following sort hold, where k is either 2s or

2s− 1.

Conjecture 1. For integers s ≥ 4,

ζ(k)− {ζ(k)}2 ≤ z(3)s (ζ(k)) ≤ ζ(k) + {ζ(k)}.
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Here {x} = x− [x] denotes the fractional part of x.

We provide new identities for the Ramanujan R2s+1(z) and generalized Ramanu-

jan R2s(z) polynomials, and for other functions. For this we require the following

definitions. Let the numbers B∗
s for s ≥ 2 be given by

B∗
s = − 1

s+ 1

s−1∑
k=0

(
s+ 1

k

)
2k−sBk,

which are then such that B∗
2s = B2s and B∗

2s−1 = (1 − 2−2s)2B2s/s. To these values

are prepended the initial values B∗
0 = 1 and B∗

1 = 1/4. The Ramanujan polynomials

are given by

R2s+1(z) =
s+1∑
k=0

B2kB2s+2−2k

(2k)!(2s+ 2− 2k)!
z2k,

while the generalized Ramanujan polynomials Qr(z) [23] are given by

Qr(z) =

[(r+1)/2]∑
k=0

B∗
r+1−2kB

∗
2k

(r + 1− 2k)!(2k)!
z2k.

The Pochhammer symbol (a)j = Γ(a+j)/Γ(a), with Γ denoting the Gamma function,

ψ(z) = Γ′(z)/Γ(z) denotes the digamma function, and Hn =
∑n

k=1 1/k the nth

harmonic number.

Theorem 7. (a) The Ramanujan polynomials satisfy the identities

[1− (−1)n]R
(n)
2s+1(1) +

n−1∑
j=1

(
n

j

)[
(n− 1)!

(j − 1)!
− (−1)j(2s+ 2)n−j

]
R

(j)
2s+1(1)

= (2s+ 2)nR2s+1(1),

and (b), with R2s(z) = Q2s(z), these generalized Ramanujan polynomials satisfy the

identities

[1− (−1)n]

[
R

(n)
2s (1)−

1

2n
R

(n)
2s

(
1

2

)]

+
n−1∑
j=1

(
n

j

)[
(n− 1)!

(j − 1)!
− (−1)j(2s+ 2)n−j

] [
R

(j)
2s (1)−

1

2j
R

(j)
2s

(
1

2

)]

= (2s+ 2)n

[
R2s(1)−R2s

(
1

2

)]
.
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(c) Suppose the following functional equation, as appears in Grosswald’s generaliza-

tion [16] of Ramanujan’s formula pertaining to the Riemann zeta function at odd

integer argument ([17], p. 945). For analytic functions F and S,

F

(
−1

z

)
− (−1)δ

(z
i

)r

F (z) = S
(z
i

)
,

where z is in the upper half plane and r is real. Then

[(−1)n − (−1)δ]F (n)(i)− (−1)δ(−r)ni
nF (i)

+
n−1∑
j=1

(
n

j

)[
(−1)n

(n− 1)!

(j − 1)!
− (−1)δ(−1)n−j(−r)n−j

]
ij−nF (j)(i) =

1

in
S(n)(1).

(d) Let F be Zagier’s function [33] (p. 164)

F (x) =
∞∑
n=1

1

n
[ψ(nx)− ln(nx)] =

∫ ∞

0

(
1

1− e−t
− 1

t

)
ln(1− e−xt)dt.

Then

F ′(x)− 1

x2
F

(
1

x

)
= −π2

6
+

π2

6x2
+

lnx

x
,

and for n ≥ 2

[1+(−1)n]F (n)(1)+(−1)n
n−1∑
j=1

(
n

j

)
(n− 1)!

(j − 1)!
F (j)(1) = (−1)n−1(n−1)!

[
π2

6
n−Hn−1

]
.

The form of the expressions in (a) and (b) shows that no new information is

included from the even order derivative relations, while the form of (d) shows that no

new information is included for odd n. Explicitly in terms of Bernoulli summations,

the n = 1 case of (a) is the equality of

(s+ 1)R2s+1(1) = (s+ 1)
s+1∑
k=0

B2kB2s+2−2k

(2k)!(2s+ 2− 2k)!

and

R′
2s+1(1) =

s+1∑
k=1

B2kB2s+2−2k

(2k − 1)!(2s+ 2− 2k)!
.

The following theorem provides a vast generalization of (1.2). Not only is a much

broader class of functions f applicable, but part (b) shows that arguments f(mk) for

9



integer m may be summed in place of just f(2k).

Theorem 8. (General Mellin transform result.) Suppose that an analytic function

f has an integral representation

f(s) =
1

Γ(s)

∫ ∞

0

ts−1g(t)dt, Re s > 1,

for some function g. (a) Putting

cMj (b) =

√
b

2(2j)!

∫ ∞

0

g(t)[(
√
bt− 1)2j − (

√
bt+ 1)2j]dt,

we have

bjf(2j) = −cMj (b)−
j−1∑
k=1

bk

(2j − 2k + 1)!
f(2k).

Section 3 provides important cases of this result. (b) Let m ≥ 2 be an integer. Then

there are constants cm,m−1
j (b) such that

bjf(mj) = cm,m−1
j (b)−

j−1∑
k=1

bk

(mj −mk + 1)!
f(mk).

In partial sum, we have generalized the zeta identity of [22, 28], and the Bernoulli

and zeta relations of [23]. We have noted the relevance of a subset of these results

for obtaining summation formulas for double zeta values. Additionally in this paper,

beginning with Section 3, we give an alternative proof of (1.2) and several other

generalizations by using integral representations. Lettington and Song’s identity may

then be viewed as a very special case of a recurrence among values of polygamma

functions, and beyond this context, among values of Dirichlet L series, values of the

Lerch zeta function, or values of lattice Dirichlet series.

2. Proof of Theorems

Theorem 1. (a) We recall the expression for Bernoulli polynomials Bs(x) =∑s
k=0

(
s
k

)
Bs−kx

k, so that

Bj(x) =

j∑
k=0

(
j

k

)
Bkx

j−k.

10



For n = 2j even we have the relation Bn(1/3) = Bn(2/3) = (31−n − 1)Bn/2 and

obtain

1

2
(31−2j − 1)B2j =

2j∑
k=0

(
2j

k

)
Bk

1

32j−k

=
B0

32j
+ 2j

B1

32j−1
+

2j∑
k=2

(
2j

k

)
Bk

1

32j−k

=
1

32j
− j

32j−1
+

j∑
m=1

(
2j

2m

)
B2m

1

32(j−m)

= − j

32j−1
+

j∑
m=0

(
2j

2m

)
B2m

1

32(j−m)
.

The relation (1.1) is then applied.

(b) is based upon the relation, for n = 2j even, Bn(1/4) = Bn(3/4) = (41−n −
21−n)Bn/2, so that

1

2
(41−2j − 21−2j)B2j = − j

42j−1
+

j∑
m=0

(
2j

2m

)
B2m

1

42(j−m)
.

Then relation (1.1) is again used.

(c) is based upon the relation for n = 2j even

Bn

(
1

6

)
= Bn

(
5

6

)
=

1

2
(61−n − 31−n − 21−n + 1)Bn.

(d) is based upon the relation

Bn

(
1

12

)
+ Bn

(
7

12

)
= 21−nBn

(
1

6

)
= 2−n(61−n − 31−n − 21−n + 1)Bn.

(e) is based upon the relation

Bn

(
1

8

)
+ Bn

(
5

8

)
= 21−nBn

(
1

4

)
= 2−n(41−n − 21−n)Bn.

Remark. The relations that we have employed follow from the symmetry Bn(1−
x) = (−1)nBn(x) and the multiplication formula Bn(mx) = mn−1

∑m−1
k=0 Bn(x+k/m).

Hence many more identities may be developed.
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Theorem 2. (a) We recall the recurrence for Bernoulli numbers

Bs = − 1

s+ 1

s−1∑
k=0

(
s+ 1

k

)
Bk.

Then

φj(2s) =
1

j2s
ζ(2s) =

(−1)s+122s−1π2s

j2s(2s)!
B2s

= − 1

j2s
(−1)s+122s−1π2s

(2s)!(2s+ 1)

2s−1∑
k=0

(
2s+ 1

k

)
Bk

=
1

j2s
(−1)s(2π)2s

2(2s+ 1)!

[(
2s+ 1

1

)
B1 +

2s−2∑
k=0

(
2s+ 1

k

)
Bk

]

=
1

j2s
(−1)s(2π)2s

2(2s+ 1)!

[
(2s+ 1)B1 +

s−1∑
n=0

(
2s+ 1

2n

)
B2n

]

=
1

j2s
(−1)s(2π)2s

2

[
− 1

2(2s)!
+

s−1∑
n=0

1

(2s− 2n+ 1)!

B2n

(2n)!

]
.

The relation (1.1) is used so that

φj(2s) =
(−1)s+122s

2j2s

[
π2s

2(2s)!
+

s∑
n=1

(−1)s−n

(2n+ 1)!

π2n

22(s−n)−1
ζ(2s− 2n)

]

=
(−1)s+122s

2j2s

[
π2s

2(2s)!
+

s∑
n=1

(−1)s−n

(2n+ 1)!

π2nj2(s−n)

22(s−n)−1
φj(2s− 2n)

]

=
(−1)s+122s

2j2s

[
π2s(2s− 1)

2(2s+ 1)!
+

s−1∑
n=1

(−1)s−n

(2n+ 1)!

π2nj2(s−n)

22(s−n)−1
φj(2s− 2n)

]
.

(b) Theorem 1(a) and relation (1.1) are first used so that

−θ3(2j)
(2j)!(−1)j+1

(2π)2j
= − j

32j−1
+

1

32j
+

j∑
m=1

(
2j

2m

)
(−1)m+1(2m)!

π2m32(j−m)22m−1
ζ(2m)

= − j

32j−1
+

1

32j
+

j−1∑
m=0

(
2j

2m

)
(−1)j−m+1[2(j −m)]!

π2(j−m)32m22(j−m)−1
ζ(2j − 2m).

The relation ζ(2s) = (1− 3/32s)−1θ3(2s) is then employed.

(c) and (d) follow similarly from Theorem 1(b) and 1(c) and relation (1.1).
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Theorem 3. This follows from Theorem 2(a) and (b) and the result that Ψs satisfies

the recurrence ([23], Lemma 3.1)

Ψs(�h, �H) = −Hs −
s−1∑
k=1

hs−kΨk(�h, �H).

Corollary 1 follows from the multinomial expression for ζ(2s) of [23], Lemma

3.3.

A lower Hessenberg determinant has entries aij = 0 for j − i > 1,

An =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 0 0 . . . 0
a21 a22 a23 0 . . . 0
a31 a32 a33 a34 . . . 0
...

...
...

...
. . .

...
an−1,1 an−1,2 an−1,3 an−1,4 . . . an−1,n

an,1 an,2 an,3 an,4 . . . an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

With |A0| = 1 and |A1| = a11, these determinants satisfy the recurrence (e.g., [7])

det(An) = an,ndet(An−1) +
n−1∑
r=1

[
(−1)n−ran,rdet(Ar−1)

n−1∏
j=r

aj,j+1

]
.

The minor corner layered determinants of [22, 23] with superdiagonal of all 1’s and

comprised of at most 3 vectors are obviously special cases. Any time that a recurrence

can be made to take the form just above, a determinant expression may then be

written.

The s× s minor corner layered determinant of [22, 23] is given by

Δs(�h) = (−1)s

∣∣∣∣∣∣∣∣∣∣∣∣∣

h1 1 0 0 . . . 0
h2 h1 1 0 . . . 0
h3 h2 h1 1 . . . 0
...

...
...

...
. . .

...
hs−1 hs−2 hs−3 hs−4 . . . 1
hs hs−1 hs−2 hs−3 . . . h1

∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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and we may note that it inverts symmetrically as

hs(�Δ) = (−1)s

∣∣∣∣∣∣∣∣∣∣∣∣∣

Δ1 1 0 0 . . . 0
Δ2 Δ1 1 0 . . . 0
Δ3 Δ2 Δ1 1 . . . 0
...

...
...

...
. . .

...
Δs−1 Δs−2 Δs−3 Δs−4 . . . 1
Δs Δs−1 Δs−2 Δs−3 . . . Δ1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The recurrence for Δs(�h),

Δs(�h) = −
s−1∑
k=0

hs−kΔk(�h),

is of a standard convolution form. Indeed, if we let N(t) =
∑∞

j=0 Δjt
j, with Δ0 = 1,

d(t) = 1 + h1t+ h2t
2 + . . .+ hnt

n ≡
n∑

j=0

hjt
j,

with h0 = 1, such that N(t)d(t) = 1, then we have

N(t)d(t) =
∞∑

m=0

m∑
j=0

Δjhm−jt
m.

This implies the set of equations for m ≥ 0

m∑
j=0

Δjhm−j = δm0,

wherein δjk is the Kronecker delta symbol. Rewriting this equation, we obtain

Δm = −
m−1∑
j=0

Δjhm−j + δm0.

Thus for m ≥ 1,

Δm = −
m−1∑
j=0

Δjhm−j,

just as in [23], and we next make the connection with the multinomial expansion.

Let �j = (j1, j2, . . . , jn), |�j| = j1 + j2 + . . . + jn, and p(�j) = j1 + 2j2 + . . . + njn.

Then, by the use of geometric series and multinomial expansion,

1

d(t)
=

∞∑
k=0

(−1)k(h1t+ h2t
2 + · · ·+ hnt

n)k

14



=
∞∑
k=0

(−1)k
∑
|�j|=k

(
k

j1, j2, . . . , jk

)
hj1
1 h

j2
2 · · ·hjn

n tp(
�j)

=
∞∑
�=0

∑
p(�j)=�

( |�j|
j1, j2, . . . , jk

)
(−1)|�j|hj1

1 h
j2
2 · · ·hjn

n t�.

Additionally, we note that the recurrence for Δm may be written in terms of the

companion matrix

Cd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0 −hn

1 0 0 0 . . . 0 −hn−1

0 1 0 0 . . . 0 −hn−2
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 −h2

0 0 0 0 . . . 1 −h1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Theorem 4. This follows by writing (1.32) of [23] in the form

1

2

(
1− 1

22s

)
ζ(2s) =

s−1∑
k=1

1

22(s−k)

(
1− 1

22k

)
ζ(2s− 2k)ζ(2k).

Theorem 5. We apply the relation

E2n−1

(
1

3

)
= −E2n−1

(
2

3

)
= − 1

2n
(1− 31−2n)(22n − 1)B2n,

so that

E2n−1

(
1

3

)
= − 1

2n
(1− 31−2n)(22n − 1)B2n

=
2n−1∑
k=0

(
2n− 1

k

)
Ek

2k

(
−1

6

)2n−k−1

=
n−1∑
m=0

(
2n− 1

2m

)
E2m

(2m)!

(
−1

6

)2(n−m)−1

.

Remark. Similarly, for instance, we could apply the relation

E2n

(
1

6

)
= E2n

(
5

6

)
=

(1 + 3−2n)

22n + 1
E2n.
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Theorem 6. The result follows from relation (1.1) and an identity attributed to

Gosper,
n∑

i=0

(1− 21−i)(1− 2i−n+1)

(n− i)!i!
Bn−iBi =

(1− n)

n!
Bn.

In order to keep this paper self contained, we provide a proof of this identity. We use

the exponential generating function of Bernoulli polynomials,

text

et − 1
=

∑
n≥0

Bn(x)

n!
tn, |t| < 2π, (2.1)

so that

tet/2

et − 1
=

∑
n≥0

Bn

(
1

2

)
tn

n!
,

and recall that Bn(1/2) = (21−n − 1)Bn. Then

t2et

(et − 1)2
=

∞∑
n=0

∞∑
m=0

Bn

(
1

2

)
Bm

(
1

2

)
tn+m

n!m!

=
∞∑
j=0

j∑
n=0

Bn

(
1

2

)
Bj−n

(
1

2

)
tj

n!(j − n)!
.

We also have

t2et

(et − 1)2
=

2t

et − 1
− d

dt

t2

(et − 1)

= 2
∞∑
n=0

Bn
tn

n!
− d

dt

∞∑
n=0

Bn
tn+1

n!

=
∞∑
n=0

[2Bn − (n+ 1)Bn]
tn

n!
,

and we conclude that

j∑
n=0

Bn

(
1
2

)
Bj−n

(
1
2

)
n!(j − n)!

= (1− j)
Bj

j!
.

Gosper’s identity then follows.

Remark. Using the value ζ(0) = −1/2, the m = 0 term of the left side of Theorem

6 may be separated and moved to the right side. The result is then seen to correspond
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with a case presented at the top of p. 406 of [3]. We have given a distinct method of

proof.

Theorem 7. The Ramanujan and generalized Ramanujan polynomials respectively

satisfy the functional equations

R2s+1(z) = z2s+2R2s+1

(
1

z

)

and

R2s(z)−R2s

(z
2

)
= z2s+2

[
R2s

(
1

z

)
−R2s

(
1

2z

)]
.

We then follow the procedure of [11], noting the relation (d/dz)jzr = (−1)j(−r)jz
r−j,

using the product rule for differentiation and the derivative of a composition of func-

tions. We arrive at, for instance for part (a),

(−1)n

zn

n∑
j=1

(
n

j

)
(n− 1)!

(j − 1)!

1

zj
R

(j)
2s+1

(
1

z

)

=
n∑

j=0

(
n

j

)
(−1)j(2s+ 2)jz

−2s−j−2R
(n−j)
2s+1 (z).

We then set z = 1, shift the summation index on the right side as j → n − j, and

separate the j = 0 and j = n terms. (b) proceeds similarly.

For (c) we apply the specified functional equation, follow similar steps, and then

evaluate at z = i.

(d) One of the functional equations satisfied by F is [33] (p. 171)

F (x) + F

(
1

x

)
= −π2

6
x− π2

6x
+

1

2
ln2 x+ C1,

where C1 = π2/3 + 2F (1) is a constant involving the first Stieltjes constant γ1 (e.g.,

[12]), as F (1) = −γ2/2− π2/12− γ1, γ = −ψ(1) being the Euler constant. We again

use the derivatives of a composite function and the product rule, and then evaluate
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at x = 1. In the process the relation 3

(
d

dx

)j

ln2 x = 2(ln x−Hj−1)(−1)j−1 (j − 1)!

xj

is employed.

Remarks. We note that part (c) of the Theorem suffices to write the set of identities

implied by (2.3) of [23], wherein [16]

Fs(z) =
∞∑
n=1

σ−s(n)e
2πinz =

∞∑
n=1

σs(n)

ns
e2πinz = −ζ(s)− Fs(−z),

with σ the sum of divisors function.

δ takes only the values 0 and 1 in [17], but that is not necessary in part (c) of the

Theorem.

We could write highly related identities at other special points, including z = −1

in parts (a) and (b) and z = −i in part (c).

Identities other than Theorem 7(d) could be developed for Zagier’s functions

P (x, y), a(x), A(x, s), and R(x, y).

We may mention the work of Leopoldt [21], who generalized the Bernoulli num-

bers to include weightings by Dirichlet characters and proved a von Staudt-Clausen

theorem.

Theorem 8. (a) Is immediate upon applying the integral representation. (b) is

similar, and we note that cm,m−1
j (b) depends upon the integration of a certain function

tm−1
mFm−1[(−1)mbtm] for 0 ≤ t < ∞:

cm,m−1
j (b) =

1

(m− 1)!

b

[mj − (m− 1)]!

×
∫ ∞

0

g(t)tm−1
mFm−1

[
m− 1

m
− j, 1− j,

m+ 1

m
− j,

m+ 2

m
− j, . . . ,

2(m− 1)

m
− j;

m+ 1

m
,
m+ 2

m
, . . . ,

2m− 1

m
; (−1)mbtm

]
dt.

3We may recognize the constants s(n, 2) = (−1)n(n − 1)!Hn−1 as a special case of the Stirling
numbers s(n, k) of the first kind.
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Let Ks(y) be the modified Bessel function of the second kind.

Corollary 2. Define the function for b �= 0 and Re y > 0

cMj (b, y) =

√
b

4(2j)!

∫ ∞

0

exp

[
−y

2

(
t+

1

t

)]
[(
√
bt− 1)2j − (

√
bt+ 1)2j]dt.

Then

bj

(2j − 1)!
K2j(y) = −cMj (b, y)−

j−1∑
k=1

bk

(2j − 2k + 1)!

K2k(y)

(2k − 1)!
.

Proof. This follows from the representation for Re y > 0 and s ∈ C

1

Γ(s)
Ks(y) =

1

2Γ(s)

∫ ∞

0

exp

[
−y

2

(
t+

1

t

)]
ts−1dt.

Corollary 3. Define the function for b �= 0 and Re a > 2j,

cMj (b, a) =

√
b

2(2j)!

∫ ∞

0

(1 + t)−a[(
√
bt− 1)2j − (

√
bt+ 1)2j]dt.

Then for Re a > 2j,

bjΓ(a− 2j) = −Γ(a)cMj (b, a)−
j−1∑
k=1

bkΓ(a− 2k)

(2j − 2k + 1)!
.

In fact, this is an identity for a 3F2(b) hypergeometric function, and we have

cMj (b, a) = − b

(2j − 1)!

Γ(a− 2)

Γ(a)
3F2

(
1,

1

2
− j, 1− j;

3− a

2
, 2− a

2
; b

)
.

Proof. We use a representation for a case of the Beta function B(x, y),

∫ ∞

0

tx−1

(1 + t)a
dt =

Γ(x)Γ(a− x)

Γ(a)
= B(x, a− x),

valid for 0 < Re x < a, such conditions resulting from maintaining convergence at

the lower and upper limits of integration, respectively. We then apply Theorem 8 and

multiply through by Γ(a).
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The hypergeometric form for the sum on k may be obtained by shifting the sum-

mation index k → k + 1, and then using the duplication formula for Pochhammer

symbols, further details being omitted.

Remarks. We may note that a similar result follows for the derivatives with respect

to s of the function Ks(y)/Γ(s).

For Re z > 0 and Re x > 0,

x−z =
1

Γ(z)

∫ ∞

0

e−xttz−1dt.

There follows the identity

bjx−2j = −cMj (b, x)−
j−1∑
k=1

bkx−2k

(2j − 2k + 1)!
,

where

cMj (b, x) =

√
b

2(2j)!

∫ ∞

0

e−xt[(
√
bt− 1)2j − (

√
bt+ 1)2j]dt.

Upon evaluating cMj using binomial expansion,

cMj (b, x) = − 1

(2j)!

j∑
n=1

(
2j

2n− 1

)
(2n− 1)!

bn

x2n
,

this identity is explicitly verified. As such, putting x → 1/x and summing with various

coefficients, this relation becomes a generating identity of, for example, families of

polynomials.

3. Another proof of the identity (1.2), and other generalizations

In giving a different proof of Lettington’s identity (1.2), we make use of a standard

integral representation of the Riemann zeta function,

ζ(s) =
1

Γ(s)

∫ ∞

0

ts−1

et − 1
dt, Re s > 1, (3.1)

where Γ denotes the Gamma function, and Hermite’s formula for the Hurwitz zeta

function

ζ(s, a) =
a−s

2
+

a1−s

s− 1
+ 2

∫ ∞

0

(a2 + y2)−s/2 sin[s tan−1(y/a)]
dy

e2πy − 1
,
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holding for all complex s �= 1.

Lemma 1. For integers j ≥ 0,

∫ ∞

0

(π2 + t2)j

et − 1
sin

(
2j tan−1

(
t

π

))
dt =

jπ2j+1

2j + 1
.

Proof. The j = 0 case is obvious, and in the following we take j ≥ 1. With

v = 2πy and s = −2j in Hermite’s formula we obtain

∫ ∞

0

(
4a2 +

v2

π2

)j

sin
(
2j tan−1 v

2πa

) dv

ev − 1
= π4j

[
a2j

2
− a2j+1

2j + 1
− ζ(−2j, a)

]
.

For a = 1/2, ζ(−2j, 1/2) = (2−2j − 1)ζ(−2j) = 0 owing to the trivial zeros of the

Riemann zeta function. We then find that

∫ ∞

0

(
1 +

v2

π2

)j

sin
(
2j tan−1 v

π

) dv

ev − 1
=

πj

2j + 1
,

and the Lemma follows. 4

Proof of (1.2). We first note the following sum, based upon manipulation of

binomial expansions,

j∑
k=1

(−1)kπ2j−2kt2k−1

(2j − 2k + 1)!(2k − 1)!
=

π2j−1

(2j)!

j∑
k=1

(−1)k
(

2j

2k − 1

)(
t

π

)2k−1

= − i[(π − it)2j − (π + it)2j]

2π(2j)!
.

Also as a prelude, with y = a tan−1 x,

sin y =
1

2i

[(
1 + ix

1− ix

)a/2

−
(
1 + ix

1− ix

)−a/2
]
.

We now use the integral representation (3.1) so that

j−1∑
k=1

(−1)kπ2j−2k

(2j − 2k + 1)!
ζ(2k) =

j−1∑
k=1

(−1)kπ2j−2k

(2j − 2k + 1)!(2k − 1)!

∫ ∞

0

t2k−1

et − 1
dt

= −
∫ ∞

0

[
2(−1)jjπt2j + t(π2 + t2)j sin(2j tan−1(t/π))

πt(2j)!

]
dt

et − 1
.

4The reader is invited to provide an alternative proof of Lemma 1 using induction.
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The first term on the right side evaluates to (−1)j−1ζ(2j) according to (3.1), while

the second term is evaluated by Lemma 1, and (1.2) is shown.

Remarks. Following steps similar to the proof of Lemma 1, we also find for integers

j ≥ 0

−
∫ ∞

0

(π2 + t2)−j

et − 1
sin

(
2j tan−1

(
t

π

))
dt = π

[
1

2
− 1

2

1

(1− 2j)
− (1− 2−2j)ζ(2j)

]
.

The method of this section may also be applied to the sums of Theorem 1.

Theorem 9. (a) For Re a > 0, define

cj(a) =
1

π(2j)!

∫ ∞

0

(π2 + t2)j sin(2j tan−1(t/π))
e−(a−1)tdt

et − 1
.

Then

ζ(2j, a) = (−1)j−1

[
cj(a) +

j−1∑
k=1

(−1)kπ2j−2k

(2j − 2k + 1)!
ζ(2k, a)

]
.

(b) Define for Re a > 0 and b �= 0

cj(a, b) =

√
b

π(2j)!

∫ ∞

0

(π2 + bt2)j sin

(
2j tan−1

(√
bt

π

))
e−(a−1)tdt

et − 1
.

Then

bjζ(2j, a) = (−1)j−1

[
cj(a, b) +

j−1∑
k=1

(−1)kπ2j−2kbk

(2j − 2k + 1)!
ζ(2k, a)

]
.

Proof. We use the integral representation for Re a > 0

ζ(s, a) =
1

Γ(s)

∫ ∞

0

ts−1e−(a−1)t

et − 1
dt, Re s > 1,

and follow steps similar to the above in reproving (1.2).

Remark. We suspect that the constants cj(a = 1/2) may be evaluated explicitly.

We now introduce Dirichlet L-functions L(s, χ) (e.g., [19], Ch. 16), that are known

to be expressible as linear combinations of Hurwitz zeta functions. We let χk be a

Dirichlet character modulo k, and have

L(s, χ) =
∞∑
n=1

χk(n)

ns
, Re s > 1.
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This equation holds for at least Re s > 1. If χk is a nonprincipal character, then

convergence obtains for Re s > 0. The L functions are extendable to the whole

complex plane, satisfy functional equations, and have integral representations.

Corollary 4. Define the constants

b
(k)
j =

1

ks

k∑
m=1

χk(m)cj

(m
k

)
.

Then for L functions of characters modulo k,

L(2j, χ) = (−1)j−1

[
b
(k)
j +

j−1∑
�=1

(−1)kπ2j−2�

(2j − 2�+ 1)!
L(2�, χ)

]
.

Proof. This follows from Theorem 7(a) and the relation

L(s, χ) =
1

ks

k∑
m=1

χk(m)ζ
(
s,

m

k

)
.

We may now emphasize the Lettington relation (1.2) as a recurrence among special

values of polygamma functions ψ(j). 5 For we have the relation

ζ(2j, a) =
1

(2j − 1)!
ψ2j−1(a),

and the example evaluations for j > 0

ψ(j)(1) = (−1)j(j − 1)!ζ(j)

and

ψ(j)

(
1

2

)
= (−1)j(j − 1)!(2j − 1)ζ(j).

The Lerch zeta function is given by (e.g., [15] p. 1075)

Φ(z, s, a) =
∞∑
n=0

zn

(n+ a)s
.

5We recall the definitions ψ(z) = Γ′(z)/Γ(z) and ψ(j)(z) = (dj/dzj)ψ(z), and the functional
equation ψ(j)(x+ 1) = (−1)jj!/xj+1 + ψ(j)(x).
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This series converges for a ∈ C not a negative integer and all s ∈ C when |z| < 1, and

for Re s > 1 when |z| = 1 and has the integral representation generalizing Hermite’s

formula

Φ(z, s, a) =
a−s

2
+

∫ ∞

0

zt

(t+ a)s
dt−2

∫ ∞

0

(a2+y2)−s/2 sin[y ln z−s tan−1(y/a)]
dy

e2πy − 1
,

for Re a > 0. It satisfies the functional equation

Φ(z, s, a) = znΦ(z, s, n+ a) +
n−1∑
k=0

zk

(k + a)s
.

Theorem 10. Define for Re a > 0 and b �= 0

cj(a, b, z) =

√
b

π(2j)!

∫ ∞

0

(π2 + bt2)j sin

(
2j tan−1

(√
bt

π

))
e−(a−1)tdt

et − z
.

Then

bjΦ(z, 2j, a) = (−1)j−1

[
cj(a, b, z) +

j−1∑
k=1

(−1)kπ2j−2kbk

(2j − 2k + 1)!
Φ(z, 2k, a)

]
.

Proof. We use the integral representation for Re a > 0

Φ(z, s, a) =
1

Γ(s)

∫ ∞

0

ts−1e−(a−1)t

et − z
dt, Re s > 1.

We let pFq be the generalized hypergeometric function and

Lis(z) =
∞∑
k=1

zk

ks
= zΦ(z, s, 1),

for s ∈ C and |z| < 1 or Re s > 1 and |z| = 1 be the polylogarithm function.

Corollary 5. (a) For Re a > 0 and b �= 0,

bja−2j
2j+1F2j(1, a, . . . , a; a+ 1, . . . , a+ 1; z) = (−1)j−1 [cj(a, b, z)

+

j−1∑
k=1

(−1)kπ2j−2kbk

(2j − 2k + 1)!
a−2k

2k+1F2k(1, a, . . . , a; a+ 1, . . . , a+ 1; z)

]
,
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and (b) for |z| ≤ 1,

bjLi2j(z) = (−1)j−1

[
zcj(1, b, z) +

j−1∑
k=1

(−1)kπ2j−2kbk

(2j − 2k + 1)!
Li2k(z)

]
.

Proof. (a) follows from the relation for integers k ≥ 1

Φ(z, k, a) = a−k
k+1Fk(1, a, . . . , a; a+ 1, . . . , a+ 1; z)

and (b) follows from Φ(z, 2j, 1) = Li2j(z)/z.

Other functions will have a recurrence similar to, and in several cases again gen-

eralizing, (1.2), and we conclude this section noting that this applies to Eisenstein

series. Let

f1(τ, t) =
cosh2(τt/2)

1− 2e−t cosh(τt) + e−2t
, (3.2a)

f2(τ, t) =
cos2(t/2)

1− 2eiτt cos t+ e2iτt
, (3.2b)

and

Ẽs = lim
K→∞

∑
|m|,|n|≤K

1

(mμ+ nν)s
, (3.3)

where μ, ν ∈ C and τ = ν/μ /∈ R. Then there is a recurrence for values Ẽ2j, owing to

the integral representation ([13], Theorem 5, μ = 1, ν = τ)

Ẽs(τ) = cos
(π
2
s
) 4

Γ(s)

∫ ∞

0

ts−1[e−isπ/2e−tf1(τ, t) + eiτtf2(τ, t)]dt, Re s > 2. (3.4)

Here the ratio τ is in the fundamental region −1/2 < Re τ ≤ 1/2, Im τ > 0, |τ | ≥ 1,

and if |τ | = 1, then Re τ ≥ 0. By Corollary 6 of [13], the summatory conditionally

convergent case of s = 2 is also given by this integral. Walker [30] found a remarkable

formula for Ẽ2(τ) in terms of the Dedekind η(τ) = eiπτ/12
∏∞

n=1(1− e2πiτn) function,

when summing over increasing disks.

Omitting further details, we arrive at:

Theorem 11. Define the function, for τ in the fundamental region in the upper half
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plane, and b �= 0,

CE
j (b, τ) =

4
√
b

π(2j)!

∫ ∞

0

[
(π2 + bt2)j sin

(
2j tan−1

(√
bt

π

))
e−tf1(τ, t)

+ i(π2 − bt2)j sin

(
2j tan−1

(√−bt

π

))
eitτf2(τ, t)

]
dt.

Then for τ in the fundamental region,

bjẼ2j(τ) = (−1)j−1

[
CE

j (b, τ) +

j−1∑
k=1

(−1)kπ2j−2kbk

(2j − 2k + 1)!
Ẽ2k(τ)

]
.

Remarks. It appears that a generalized Hermite formula for Ẽs should exist, and

we may guess that it contains a half-line integral term something like

∫ ∞

0

[(π2+t2)−s/2 sin(s tan−1(t/π))e−tf1(τ, t)+i(π2−t2)−s/2 sin(s tan−1(t/π))eitτf2(τ, t)]dt.

In fact, such a formula should follow from the contour integral representation of

Theorem 7 of [13], and as a precursor we have the following result for the Hurwitz zeta

function. Hermite-type formulas are usually found via Plana summation. However,

the following shows that this is not necessary.

Theorem 12. For Re s > 1, Re a > 0, and 0 < c < 1,

ζ(s, a) = −
∫ ∞

0

[
cos

(
s tan−1

(
t

c+ a− 1

))
cosπc sin πc

− sinh πt cosh πt sin

(
s tan−1

(
t

c+ a− 1

))]

× [
(c+ a− 1)2 + t2]s/2

(
cosh2 πt− cos2 πt

)]−1
dt.

Proof. We recall the partial fractions form of the cotangent function,

cot z =
∞∑

n=−∞

1

z − nπ
.

Then for Re s > 1, we have

ζ(s, a) = π

∞∑
k=0

Res (t+ a)−s cot πt
∣∣
t=k

.
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Closing a semicircular contour encompassing the positive integers along the real-t axis

leads to

ζ(s, a) =
i

2

∫ c+i∞

c−i∞
(t+ a− 1)−s cot πt dt

= −1

2

∫ ∞

−∞
(c+ a− 1 + it)−s cot[π(c+ it)]dt.

The contributions for negative and positive t are then combined, using for instance

cot π(c− it) =
cosπc cosh πt− i sin πc sinh πt

cosh πt sin πc+ i cosπc sinh πt
.

We may similarly consider certain lattice Dirichlet series (Kronecker series)

G(s, χ) =
∑

ω∈Λ\{0}

χ(ω)

|ω|2s , χ(ω) = ei(mμα+nνβ),

with α and β real and Λ ∈ C a lattice. Letting

|ωm,n|2 = |mμ+ nν|2 = Q(m,n),

there is the integral representation [13]

G(s, χ) =
1

Γ(s)

∫ ∞

0

ts−1
∑

ω∈Λ\{0}
χ(ω)e−tQ(m,n)dt,

leading to the following result, whose proof is omitted.

Theorem 13. Define for b �= 0

CG
j (b, χ) =

√
b

π(2j)!

∑
ω∈Λ\{0}

χ(ω)

∫ ∞

0

(π2 + bt2)j sin

(
2j tan−1

(√
bt

π

))
e−tQ(m,n)dt.

Then

bjG(2j, χ) = (−1)j−1

[
CG

j (b, χ) +

j−1∑
k=1

(−1)kπ2j−2kbk

(2j − 2k + 1)!
G(2k, χ)

]
.

Let σk(n) be the sum of divisors function, the sum of the powers dk of the pos-

itive divisors of n, i.e., σk(n) =
∑

d|n d
k. With nome q = eiπτ , there are the series

representations

Ẽ2k(τ) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)q
n
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= 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
n=1

n2k−1qn

1− qn
.

These series provide another means by which to establish the equivalent of Theorem

11, and of the various generalizations of Theorem 1 for Ẽ2k(τ).

4. Integral and series representations for the Hurwitz numbers H̃n

The Hurwitz numbers H̃n [9, 18] occur in the Laurent expansion of a certain

Weierstrass ℘ function about the origin, and are highly analogous to the Bernoulli

numbers. The ℘ function in question has periods ω̃ and ω̃i, where ω̃ is the Beta

function value

ω̃ = 2

∫ 1

0

dx√
1− x4

=
1

2
B

(
1

4
,
1

2

)
=

√
π

2

Γ(1/4)

Γ(3/4)
,

and satisfies the nonlinear differential equations

℘′(z)2 = 4℘(z)3 − 4℘(z), ℘′′(z) = 6℘(z)2 − 2.

Then this ℘ function expands about z = 0 as

℘(z) =
1

z2
+

∞∑
n=2

2nH̃n

n

zn−2

(n− 2)!
. (4.1)

From the property ℘(iz) = −℘(z), and the evenness of ℘(z), it follows that H̃n = 0

unless n is a multiple of 4, the first few values being H̃4 = 1/10, H̃8 = 3/10, and

H̃12 = 567/130. The analogous expansion for Bernoulli numbers is

1

sin2 x
=

1

x2
+

∞∑
n=2

(−1)n/2−12nBn

n

xn−2

(n− 2)!
. (4.2)

The analogy between B2n and H̃4n is furthered by comparing the Riemann zeta

function values ∑
r∈Z+

1

r2n
= (−1)n−1 (2π)

2n

(2n)!
B2n, n ≥ 1,

with the sum over Gaussian integers

∑
λ∈Z+iZ\(0,0)

1

λ4n
=

(2ω̃)4n

(4n)!
H̃4n.
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In addition, Hurwitz [18] proved a Clausen-von Staudt type theorem for H̃n.

An integral representation for H̃n would have many applications, including the

development of various recurrences, again in analogy to the previous sections of this

paper. Therefore, we present the following.

Theorem 14. For k ≥ 1 and the function f1 defined in (3.2a) of the previous section,

H̃2k+2 =
2(k + 1)

4kω̃2k+2
[1 + (−1)k+1]

∫ ∞

0

e−tf1(i, t)t
2k+1dt.

Proof. We make use of Theorem 10 of [13], such that 6

℘(z, τ) =
1

z2
+ 8

∫ ∞

0

t

[
e−t sinh2

(
zt

2

)
f1(τ, t) + eitτ sin2

(
zt

2

)
f2(τ, t)

]
dt,

with τ in the fundamental region and z in a domain containing the origin. With the

Maclaurin series

sin2 x =
1

2
(1− cos 2x) =

∞∑
k=1

(−1)k+12
2k−1x2k

(2k)!
,

and

sinh2 x =
1

2
(cosh 2x− 1) =

∞∑
k=1

22k−1x2k

(2k)!
,

we may write

℘(z)− 1

z2
= 4

∞∑
k=1

z2k

(2k)!

∫ ∞

0

[e−tf1(τ, t) + eitτ (−1)k+1f2(τ, t)]t
2k+1dt. (4.3)

For the square lattice with τ = i, f1(i, t) = f2(i, t). We then equate like powers of

z with those of the expansion (4.1) and apply the scaling ℘(x|μ, ν) = ℘(x/μ|1, τ)/μ2

[13] (p. 145).

Corollary 6. Define the constants

c
(k)
�,j =

∫ ∞

0

e−�tt4k−1 cos�−(2j+1) t dt.

6Note that in (33) and (34) of [13], the τ and λ arguments of the functions f1 and f2 need to be
reversed.
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Then

H̃4k =
k

42(k−1)

1

ω̃4k

∞∑
�=1

(�−1)/2∑
j=0

2�−(2j+1)

(
�− j − 1

j

)
(−1)j(c

(k)
�,j + c

(k)
�+1,j).

Proof. In the integral representation for H̃4n, we may note the simplified product

e−tf1(i, t) =
cos t+ 1

4(cosh t− cos t)
.

From the identity
∞∑
k=1

e−kt sin kx =
sin x

2(cosh t− cos x)
,

we have

H̃4k =
k

42(k−1)

1

ω̃4k

∞∑
�=1

∫ ∞

0

(cos t+ 1)

sin t
e−�tt4k−1 sin �t dt.

We then apply the identity

sinnx = sinx

(n−1)/2∑
j=0

(−1)j
(

n

2j + 1

)
cosn−(2j+1) x sin2j x

= sinx

(n−1)/2∑
j=0

(−1)j2n−(2j+1)

(
n− j − 1

j

)
cosn−(2j+1) x.

Remarks. The form of Theorem 14 verifies that H̃4j+2 = 0 and H̃4n �= 0. The

recurrence relation for H̃4n obtained from the differential equation for ℘(z) for the

square lattice is

(2n− 3)(4n− 1)(4n+ 1)H̃4n = 3
n−1∑
j=1

(4j − 1)(4n− 4j − 1)

(
4n

4j

)
H̃4jH̃4(n−j).

By rewriting the result of Theorem 14, we have

H̃4k =
8k

42k−1ω̃4k

∫ ∞

0

e−tf1(i, t)t
4k−1dt,

and this highly suggests the study of sums of the form

n−1∑
k=1

(
4n+ p

4k

)
42k−1

8k
H̃4k,
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with p = 0, 1, 2, 3. Indeed, we obtain the following.

Theorem 15. Define the constants

CH
n =

∫ ∞

0

1

t
e−tf1(i, t)

[
−1 + 4F3

(
1

4
− n,

1

2
− n,

3

4
− n,−n;

1

4
,
1

2
,
3

4
;
t4

ω̃4

)]
dt.

Then

42n−1

8n
H̃4n = CH

n −
n−1∑
k=1

(
4n

4k

)
42k−1

8k
H̃4k.

Proof. We apply the integral representation of Theorem 14 to obtain:,

n−1∑
k=1

(
4n

4k

)
42k−1

8k
H̃4k =

n−1∑
k=1

(
4n

4k

)
1

ω̃4k

∫ ∞

0

e−tf1(i, t)t
4k−1dt,

with (
4n

4k

)
=

(−4n)4k
(4k)!

.

In order to reach hypergeometric form, we then apply the quadriplication formulas

for the Pochhammer symbol and Gamma function, so that

(−4n)4k = 44k(−n)k

(
−n+

1

4

)
k

(
−n+

1

2

)
k

(
−n+

3

4

)
k

,

and

(4k)! = Γ(4k + 1) = (2π)−3/244k+1/2Γ

(
k +

1

4

)
Γ

(
k +

1

2

)
Γ

(
k +

3

4

)
k!

= 44k
(
1

4

)
k

(
1

2

)
k

(
3

4

)
k

k!.

Another very useful application of an integral representation can be in developing

asymptotic relations. Indeed, we have the following. This result and an asymptotic

formula given later (Theorem 19) for the Matter numbers make use of the Γ function

integral, for Re μ > 0, Re β > |Im δ|, ([15], p. 490)
∫ ∞

0

xμ−1e−βx cos δx dx = (δ2 + β2)−μ/2 cos

(
μ tan−1 δ

β

)
. (4.4)
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Corollary 7. As n → ∞,

H̃4n ∼ 4
(4n)!

(2ω̃)4n
,

with the refinement

H̃4n ∼ 4
(4n)!

26nω̃4n
[(−1)k + 22n].

Proof. We have

H̃4k ∼ 8k

42k−1ω̃4k

∫ ∞

0

e−t cos2(t/2)t4k−1dt

=
4k

42k−1ω̃4k

∫ ∞

0

e−t(cos t+ 1)t4k−1dt

=
8k

42k−1ω̃4k

1

42k+1
[(1− i)4k + (1 + i)4k + 24k+1]Γ(4k)

=
(4k)!

42k−122kω̃4k
[(−1)k + 22k].

The following collects various integral representations for lattice sums Sr(Λ) =∑
ω∈Λ\(0,0) 1/ω

r and the g2 and g3 invariants of the Weierstrass ℘ function.

Corollary 8. Let the functions f1 and f2 be defined as in the previous section. Then

(a)

S2k(Λ) =
4

(2k + 1)!

∫ ∞

0

[e−tf1(τ, t) + (−1)k+1eiτtf2(τ, t)]t
2k+1dt,

(b)

g2 =
40

μ4

∫ ∞

0

[e−tf1(τ, t) + eiτtf2(τ, t)]t
3dt,

and (c)

g3 =
14

3μ6

∫ ∞

0

[e−tf1(τ, t)− eiτtf2(τ, t)]t
5dt.

The discriminant of the polynomial 4x3−g2x−g3 is given by Δ(Λ) = g2(Λ)
3−27g3(Λ)

2

and the j-invariant of the lattice Λ is j(Λ) = 1728g2(Λ)
3/Δ(Λ).
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Proof. (a) follows from the work in proving Theorem 14. We have S4 = g2/60 and

S6 = g3/140 (e.g., [2], p. 166), so that ℘(z,Λ) − 1/z2 = g2z
2/20 + g3z

4/28 + O(z6).

Then for (b), (
℘(z,Λ)− 1

z2

)′′

z=0

=
g2
10

,

while for (c), (
℘(z,Λ)− 1

z2

)(iv)

z=0

=
6g3
7

.

Remarks. For the square lattice with τ = i and μ = ω̃ (and the scaling of [13]) we

obtain as expected g2 = 4 and g3 = 0.

We also obtain integral representations for the coefficients of the Laurent ex-

pansion about z = 0 for the Weierstrass zeta function ζw from Corollary 8 since

ζw(z, τ) = − ∫ z
℘(s, τ)ds = 1/z − S4z

3 − S6z
5 +O(z7).

Our results are also relevant to series expansions of the solutions of the first

Painlevé equation d2u
dz2

= 6u2 + z. This is because Boutroux [5] showed that, for

large |z|, with the scaled variables U = z−1/2u and Z = 4
5
z5/4, the solution of this

equation behaves asymptotically like the Weierstrass function, U ∼ ℘, which satisfies

the second order differential equation ℘′′ = 6℘2 − g2/2.

The following two Theorems provide sets of identities satisfied by the Hurwitz

numbers.

Theorem 16. Let the Laurent expansion of the Weierstrass ℘ function be written

as

℘(z) =
1

z2
+

∞∑
k=2

dkz
2k−2.

Then (a) for generic ℘ functions, i.e., such functions with arbitrary lattices,

2(k − 1)kdk +
(4− 4k)

2k − 1
dk +

k−2∑
j=2

(j − 1)
(4k−j − 4)

[2(k − j)− 1]
djdk−j = 0.

33



(b) For the square lattice of periods ω̃ and ω̃i, we identify

dk =
4k

2k

H̃2k

(2k − 2)!
,

in which case

(k − 1)

(2k − 2)!
H̃2k +

(4− 4k)

(2k)!
H̃2k +

1

4

k−2∑
j=2

(j − 1)
(4k−j − 4)

[2(k − j)− 1]!

H̃2jH̃2(k−j)

j(k − j)(2j − 2)!
= 0.

Proof. Introduce the Weierstrass ζ-function via ζ ′(z) = −℘(z). This function has

a simple pole at the origin, is analytic in a neighborhood of that point, and ζ(z)−z−1

vanishes at z = 0. Accordingly, it has the Laurent expansion

ζ(z) =
1

z
−

∞∑
k=2

dk
2k − 1

z2k−1.

Now it holds that

℘′(z)ζ(2z) = 2℘′(z)ζ(z) +
1

2
℘′′(z).

We use

℘′(z) = − 2

z3
+

∞∑
k=2

(2k − 2)dkz
2k−3,

℘′′(z) =
6

z4
+

∞∑
k=2

(2k − 2)(2k − 3)dkz
2k−4,

and manipulation of the product of two infinite series. As it must be, the O(1/z4)

polar terms cancel. Then the coefficients of z2k−4 on both sides are equated, giving

the result.

Theorem 17. Let

cj ≡
j−3∑
n=4

2j

n(j − n)

H̃nH̃j−n

(n− 3)!(j − n− 3)!
.

Then for � ≥ 4,

−9
2�

�

H̃�

(�− 3)!
+
9

4
c�+4×2�(2�−2+2)

H̃�

�(�− 2)!
−4

�−3∑
n=4

(2×2�+2n−2)
H̃�−nH̃n

(�− n)(�− n− 3)!n(n− 2)!
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+
�−2∑
j=8

H̃�−jcj
(�− j)(�− j − 2)!

2�−j(2 + 2�−j−2)

= 3
2�

�

H̃�

(�− 4)!
+

1

4

�−4∑
n=4

2�

n(�− n)

H̃nH̃�−n

(n− 4)!(�− n− 4)!
.

The initial identities are given by:

−30H̃2
4 + H̃8 = 0, 6H̃3

4 −
9

5
H̃4H̃8 +

52

4725
H̃12 = 0,

and

68H̃2
4H̃8 − 16

5
H̃2

8 −
1408

945
H̃4H̃12 +

901

315315
H̃16 = 0.

The initial values of the cj’s are: c8 = 4/25, c12 = 8/125, and c16 = 236/24375.

Proof. We write the duplication formula of the ℘ function in the form

℘(2z)[℘′(z)]2 =
1

4
[℘′′(z)]2 − 2[℘′(z)]2℘(z),

wherein polar terms of O(1/z8) and O(1/z4) cancel. Then comparing coefficients of

the terms O(1), O(z4), and O(z8) gives the initial relations. For the general result,

we give various intermediate expressions based upon the use of (4.1):

(℘′(z))2 =
4

z6
− 4

z3

∞∑
n=3

2n

n

H̃n

(n− 3)!
zn−3 +

∞∑
j=6

cjz
j−6,

[℘′′(z)]2 =
36

z8
+

12

z4

∞∑
n=4

2n

n

H̃n

(n− 4)!
zn−4 +

∞∑
j=8

j−4∑
n=4

2j

n(j − n)

H̃nH̃j−n

(n− 4)!(j − n− 4)!
zj−8,

with resulting expressions for ℘(kz)[℘′(z)]2, k = 1, 2 being omitted. Again the polar

terms in the duplication formula cancel. We compare the coefficients of z�−8 on both

sides of this formula, and then combine like terms.

Remarks. The denominators of the Hurwitz numbers form a divisibility sequence,

so it could be posed whether the cj’s or a closely related set of numbers also has

interesting arithmetic properties. In fact, it does appear that the denominators of

{cj} form a divisibility sequence, and that other properties may hold as well.
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There are several other relations between the Weierstrass ζ, σ, and ℘ functions

that could be used to develop identities amongst the coefficients dk and so among

the Hurwitz numbers. Here σ′(z)/σ(z) = ζ(z) is an entire function which vanishes at

the origin. Some of these relations, for instance, relate functions at argument 3z to

values at argument z. However, this is not further pursued in this article.

The elliptic function analogs of the trigonometric functions sin z, cot z, and csc2 z

are σ(z), ζ(z), and ℘(z), respectively. For example, cot z = (d/dz) sin z and−(d/dz) cot z =

csc2 z.

Theorem 18. (Series representation of the Hurwitz numbers). For m ≥ 1,

H̃4m =
(π
ω̃

)4m
[
−B4m + 8m

∞∑
n=1

n4m−1

e2πn − 1

]
.

Proof. The ℘ function has the Fourier expansion [4]

℘(z, τ) = −2

(
1

6
+

∞∑
n=1

1

sin2(nπτ)

)
+

π2

sin2 πz
− 8π2

∞∑
n=1

n cos(2πnz)

e−2πiτn − 1
.

This expression is expanded in powers of z with τ = i, appropriately scaling in terms

of ω̃, and the use of (4.2) and the following.

Lemma 2.

∞∑
n=1

1

sin2(nπi)
=

1

π2

∞∑
n=1

Γ2(in)Γ2(1− in) = −1

6
+

1

2π
.

Proof of Lemma 2. There is the expansion

csc2 πz =
1

sin2 πz
=

1

π2z2
+

2

π2

∞∑
k=1

z2 + k2

(z2 − k2)2
.

Then
∞∑
n=1

1

sin2(nπi)
= − 1

π2

∞∑
n=1

1

n2
+

2

π2

∞∑
n=1

∞∑
k=1

(k2 − n2)

(k2 + n2)2

= −1

6
+

2

π2

∞∑
k=1

[
− 1

2k2
+

π2

2
csch2(πk)

]
.

36



There follows

∞∑
m=1

24mH̃4m

4m(4m− 2)!
z4m−2 =

1

ω̃2

[
−π + 2B2π

2 −
∞∑

m=1

24mB4mπ
4m

4m(4m− 2)!

z4m−2

ω̃4m−2

−8π2

∞∑
j=0

(−1)j

(2j)!

(2π)2j

ω̃2j

∞∑
n=1

n2j+1

(e2πn − 1)
z2j

]
.

Equating the coefficients of z4m−2 gives the Theorem.

5. The equianharmonic case for ℘

We have covered the lemniscatic case of the ℘ function, for which the lattice is

a certain square. We are concerned in this section with the equianharmonic case,

for which the lattice is composed of equilateral triangles. 7 So we now consider a ℘

function for which g2 = 0, g3 = 1, with half periods

ω1 =

∫ ∞

41/3

dx√
4x3 − 1

=
Γ3(1/3)

4π
,

and ω2 = eiπ/3ω1. Then τ = ω2/ω1 = eiπ/3 is a 6th root of unity.

We write the expansion

℘(z; 0, 1) =
1

z2
+

∞∑
n=1

(6n− 1)

(2ω1)6n
S6n(e

iπ/3)z6n−2, (5.1)

such that S2n(e
iπ/3) = 0 unless n ≡ 0 mod 3. For this case, early investigation of the

coefficients was performed by Matter [10, 24, 27].

Theorem 19. Let the functions f1 and f2 be as given in section 3. Then (a)

S6n(e
iπ/3) =

4

(6n− 1)!

∫ ∞

0

[e−tf1(e
iπ/3, t) + eit exp(iπ/3)(−1)nf2(e

iπ/3, t)]t6n−1dt,

and (b)

S6n(e
iπ/3) ∼ 6 + 2

(
− 1

27

)n

.

Proof. Part (a) follows by using the intermediate result (4.3) in the proof of

Theorem (14), the expansion (5.1), and then equating the coefficients of z6n−2.

7Further background on these two cases may be found in section 7.5 of [31].
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The asymptotic form of (b) is given by

S6n(e
iπ/3) ∼ 4

(6n− 1)!

∫ ∞

0

[e−t cosh2(eiπt/3/2) + (−1)neit exp(iπ/3) cos2(t/2)]t6n−1dt.

The integral may be evaluated in terms of Γ(6n) = (6n − 1)! by using (4.4). Then

after a number of steps of simplification, we obtain the stated form.

Remark. A systematic development of the denominators of the functions f1 and f2

in terms of decreasing exponential functions may be performed by using the generating

function of the Chebyshev polynomials of the second kind Un(x), with U0(x) = 1,

U1(x) = 2x, and U2(x) = 4x2 − 1. We have, for t > 0,

1

1− 2e−t cosh(τt) + e−2t
=

∞∑
k=0

Uk(cosh τt)e
−kt.

The following is an analog of Theorem 15 for Matter numbers.

Theorem 20. Let

6F
±
11 ≡ 6F11

(
1− n,

7

6
− n,

4

3
− n,

3

2
− n,

5

3
− n,

11

6
− n;

7

6
,
7

6
,
4

3
,
4

3
,
3

2
,
3

2
,
5

3
,
5

3
,
11

6
,
11

6
, 2;± t6

66

)
,

and define the constants

CS
n =

4

5!

(
6n

6

)∫ ∞

0

t5
[
e−tf1(e

iπ/3, t)6F
+
11 − eit exp(iπ/3)f2(e

iπ/3, t)6F
−
11

]
dt.

Then

S6n(e
iπ/3) = CS

n −
n−1∑
k=1

(
6n

6k

)
S6k(e

iπ/3).

Proof. We apply the integral representation of part (a) of the previous Theorem.

6. Discussion: other Bernoulli relations

Proposition 1. For integers k ≥ 0,

B2k+2 =
(2k + 2)(2k + 1)

4(22k+2 − 1)

∫ 1

0

E2k(x)dx.
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Proof. We integrate the generating function (1.4), so that

z

2
tanh

(z
2

)
=

∞∑
n=0

zn

n!

∫ 1

0

En(x)dx.

We then compare with the generating function

tanh x =
∞∑
k=1

22k(22k − 1)

(2k)!
B2kx

2k−1, |x| < π

2
,

and the result follows.

Similarly, if we integrate the generating function (2.1) for Bernoulli polynomials,

we obtain the well known relations
∫ 1

0
B0(x)dx = 1 and for n > 0,

∫ 1

0
Bn(x)dx = 0.

Lehmer obtained the recurrences [8, 20]

n∑
k=0

(
6n+ 3

6k

)
B6k = 2n+ 1

and
n∑

k=0

(
6n+ 5

6k + 2

)
B6k+2 =

1

3
(6n+ 5).

In terms of the Riemann zeta function at even integers congruent to 0 and 2 modulo

6, we thus have
n∑

k=0

(6n+ 3)!

(6n− 6k + 3)!

(−1)k+1

26k−1π6k
ζ(6k) = 2n+ 1

and
n∑

k=0

(6n+ 5)!

(6n− 6k + 3)!

(−1)k+1

26k+1π6k+2
ζ(6k + 2) =

1

3
(6n+ 5).

These expressions then provide a starting point for generalization according to the

previous sections of this paper. Furthermore, we have determined the following re-

currences, which may then be expressed in terms of sums of values ζ(6k + q), being

special cases of ζ(6k + q, a), Φ(z, 6k + q, a), and of other functions.

Proposition 2.
n∑

k=0

(
6n+ 7

6k + 4

)
B6k+4 = −

(
n+

7

6

)
,
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n∑
k=0

(
6n+ 9

6k + 6

)
B6k+6 = 2(n+ 1),

n∑
k=0

(
6n+ 11

6k + 8

)
B6k+8 = −1

2
(6n+ 11)(n+ 1),

n∑
k=0

(
6n+ 13

6k + 10

)
B6k+10 =

1

60
(6n+ 13)(18n2 + 81n+ 100),

n∑
k=0

(
6n+ 15

6k + 12

)
B6k+12 = − 1

420
(648n4+6156n3+22266n2+36765n+24185)(n+2)(n+1),

n∑
k=0

(
6n+ 17

6k + 14

)
B6k+14 =

1

8400
(6n+ 17)(n+ 2)(n+ 1)

×(1944n5 + 23652n4 + 116046n3 + 288423n2 + 366675n+ 196000),

and
n∑

k=0

(
6n+ 19

6k + 16

)
B6k+16 = − 1

55440
(6n+ 19)(n+ 2)(n+ 1)

×(11664n7+209952n6+1623240n5+6998400n4+182132n3+28919198n2+25568993n+10026324).

These successive sums may be obtained from the initial ones by shifting the summa-

tion index k and upper limit n.

Owing to the particular binomial coefficient in the summand in these relations,

they are closely connected with the properties of various 6F5 hypergeometric functions

when integral representations are applied. Similarly, other 6F5 functions appear if we

use a summation representation such as

B2k

2k
= 2

∞∑
m=1

m2k−1

e2πm − 1
− 2π

k
[1 + (−1)k]

∞∑
m=1

m2ke2πm

(e2πm − 1)2
.
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