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The Multiplication Table for Smooth Integers

Marzieh Mehdizadeh1

Départment de Mathématiques et Statistique, Université de Montréal. Montréal, QC, Canada.

Abstract

The Erdős multiplication table problem asks how many distinct integers appear in the N ×N multiplication

table. The order of magnitude of this quantity was determined by Ford [1]. In this paper we study the

number of y-smooth entries of the N × N multiplication table, that is to say entries with no prime factors

greater than y.

Key words: Probailistic and Multiplicative number thorey, Smooth integers.

1. Introduction

The multiplication table problem involves estimating

A(x) := #{ab : a, b ≤ √
x, and a, b ∈ N}.

This interesting question, posed by Erdős, has been studied by many authors. Erdős in [2], showed that for

all ε > 0, we have
x

(log x)δ+ε
≤ A(x) ≤ x

(log x)δ−ε
(x → ∞), (1)

where

δ = 1 − 1 + log log 2
log 2

= 0.0860 . . . . (2)

The best estimate of A(x) is a result due to Kevin Ford [1], who significantly improved (1) by showing that

A(x) � x

(log x)δ(log log x)3/2
. (3)

Notation: In this paper, we use the notation f(x) � g(x) if both f(x) � g(x) and g(x) � f(x) hold,

where we write f(x) � g(x) or f(x) = O(g(x)) interchangeably to mean that |f(x)| ≤ cg(x) holds with some

constant c for all x in a range which will normally be clear from the context. Also, the notation f(x) ∼ g(x)

means that f(x)
g(x) → 1 as x → ∞, and f(x) = o(g(x)) means that f(x)

g(x) → 0 as x → ∞.

Also, u is defined as

u :=
log x
log y

x ≥ y ≥ 2,

and we let logk x denote the k-fold iterated logarithm, defined by log1 x := log x and logk x = log logk−1 x,

for k > 1. Motivated by this background, in this paper we investigate the multiplication table problem for
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smooth integers. The set of y-smooth numbers, is defined by

S(x, y) := {n ≤ x : P (n) ≤ y},

where P (n) denotes the largest prime factor of an integer n ≥ 2, with the convention P (1) = 1. Set

Ψ(x, y) :=
∣∣S(x, y)

∣∣.
Our main aim in this work is to study

A(x, y) := #{ab : a, b ∈ S(
√
x, y)}.

Hence computing A(x, y) is equivalent to estimating the size of S(
√
x, y) ·S(

√
x, y), where dot sign stands for

the set multiplication. A simple approximation of Ψ(x, y) due to Canfield, Erdős and Pomerance [5] states

that for a fixed ε > 0 we have

Ψ(x, y) = xu−u(1+o(1)) as u → ∞, (4)

for u ≤ y1−ε, that is for y ≥ (log x)1+ε.

By estimate (4), one can see that for u large (or y small), the value of Ψ(x, y) is small. Moreover, most

integers counted by Ψ(x, y) have a lot of prime factors.

If u is small (which means that y is large), then from (4) it follows that the value of Ψ(x, y) is comparable5

in size to x. In this case, S(x, y) contains integers with large prime factors and we expect the size of

S(
√
x, y) · S(

√
x, y) to be small compared to

∣∣S(x, y)
∣∣.

The behaviour of A(x2, y) =
∣∣S(x, y) · S(x, y)

∣∣ in different ranges of y, particularly in the range where y is

relatively large or small, was considered by Banks and Covert [6] in the context of a sum-product problem.

They used combinatorial tools.10

Here we present a simple idea to prove that A(x, y) has the same size as Ψ(x, y) when y is small compared

to log x. Let n ≤ x
y be a y-smooth number. If n ≤ √

x then trivially we have n ∈ A(x, y). Thus, we may

assume that
√
x ≤ n. Let p1 ≤ p2 ≤ · · · ≤ pk be prime factors of n. Consider the following sequence obtained

from prime factorization of n:

n0 = 1, nj =
j∏

i=1

pi, 1 ≤ j ≤ k.

Since n ≥ √
x then there exists a unique integer s, with 0 ≤ s < k such that ns <

√
x ≤ ns+1. Each prime

factor of n is less than y, therefore

ns ≤
√
x ≤ ns+1 ≤ nsy.

Set d = ns, then √
x

y
≤ d ≤ √

x.

Since n ≤ x/y, then we easily conclude that
n

d
≤ √

x.

Therefore,

Ψ(x/y, y) ≤ A(x, y) ≤ Ψ(x, y),
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and by a simple argument we deduce that Ψ(x/y, y) ∼ Ψ(x, y) when y = o(log x) as both x and y tends to

infinity (see Corollary 2.3). This argument leads us to state the following theorem.

Theorem 1.1. If y = o(log x) then we have

A(x, y) ∼ Ψ(x, y) as x, y → ∞.

The problem gets harder and hence more interesting, when y takes larger values compared to log x. We

shall prove the following theorem for small values of y compared to x.

Theorem 1.2. Defining the constant L := 1−log 2
log 2 , we have

A(x, y) ∼ Ψ(x, y) as x, y → ∞,

when u and y satisfy
u log u

(log y log2 y log3 y)2
→ ∞. (5)

In particular this holds when

y ≤ exp

{
(log x)

1
3

(log2 x)
1
3+ε

}
, (6)

for ε > 0 arbitrarily small.15

Theorem 1.2 is proved in Section 3. The proof relies on some probabilistic arguments and recent estimates

for Ψ(x, y).

If y takes values very close to x, which implies u is small compared to log log y, then we will show the following

theorem.

Theorem 1.3. Let ε > 0 is arbitrarily small, then we have

A(x, y) = o(Ψ(x, y)) as x, y → ∞,

where u and y satisfy

u < (L− ε) log2 y. (7)

In particular this holds when

y ≥ exp
{

log x
(L− ε) log2 x

}
, (8)

Theorem 1.3 is proved in Section 4, by applying an idea of Erdős [7], suitably modified for y-smooth

integers.

In what follows, we will give a heuristic argument that predicts the behaviour of A(x, y) in the ranges

(5) and (7).

We define the function τ(n;A,B) to be the number of all divisors of n in the interval (A,B]. In other words.

τ(n;A,B) := #{d : d|n ⇒ A < d ≤ B}.

3



Let n ∈ S((1 − η)x, y) be a square-free number with k prime factors where η is a function of x tending

sufficiently slowly to 0, as x → ∞. Assume that the set

D(n) := {log d : d|n}

is uniformly distributed in the interval [0, log n]. So

P (d ∈ (A,B)) := τ(n)
logB − logA

log n
, with τ(n) = τ(n; 0, n) (9)

where the sample space is defined by

Πk(x) := {n ≤ x : ω(n) = k} ,

and n is chosen uniformly at random. By this assumption, the expected value of the function τ(n, (1 −
η)
√
x,

√
x) is as follows

E
[
τ(n, (1 − η)

√
x,

√
x)
] ≈ 2k log 1

1−η

log x
≈ 2k

u log y
. (10)

Alladi and Hildebrand in [8], respectively [9], showed that the normal number of prime factors of y-smooth

integers is very close to its expected value u + log2 y in different ranges of y. Hence, from (10), we deduce

that

E
[
τ(n, (1 − η)

√
x,

√
x)
] � 2u+log2 y

u log y
=

2u(1+o(1))+log2 y

log y
.

If 2u(1+o(1))+log2 y/ log y → ∞, then we expect that for almost all n ∈ S((1 − η)x, y) will have a divisor d in

the interval ((1 − η)
√
x,

√
x].

Since n ≤ (1 − η)x, then we have n/d ≤ √
x, and we deduce that n ∈ A(x, y), this means that

A(x, y) ≥ (1 + o(1))Ψ((1 − η)x, y) ≥ (1 + o(1))Ψ(x, y),

where the last inequality is obtained by using Theorem 2.2. Trivially A(x, y) ≤ Ψ(x, y). So by this argument,

we expect that

A(x, y) ∼ Ψ(x, y).

On the other hand, if
2u(1+o(1))+log2 y

log y
→ 0, (11)

then we expect that none of integers in S((1 − η)x, y) have a divisor in ((1 − η)
√
x,

√
x] (except a set with20

density 0). So for almost all integers n ≤ (1 − η)x if d|n then either d < (1 − η)
√
x or d >

√
x. If d is the

biggest divisor of n less than (1 − η)
√
x then for any prime divisor p of n we have d ≤ (1− η)

√
x ≤ dp ≤ dy.

Therefore,

d
′
=

n

d
≥ ny

(1 − η)
√
x
≥ √

x,

where the last inequality is a deduction of (11) as x → ∞. So we conclude that

A(x, y) = o(Ψ(x, y)) as x → ∞

This heuristic gives some evidence for the following conjecture:

25
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Conjecture 1. Put L := 1−log 2
log 2 . We have the following dichotomy

1. If u− log u− L log2 y → +∞, then we have

A(x, y) ∼ Ψ(x, y) as x, y → ∞.

In particular this holds when

y ≤ exp
{

log x
L log2 x

}
.

2. If u− log u− L log2 y → −∞, then we have

A(x, y) = o(Ψ(x, y)) as x, y → ∞.

In particular, this holds when

y ≥ exp
{

log x
(L− ε) log2 x

}
,

where ε > 0 is small.

Theorem 1.2 and Theorem 1.3 are in the direction of the first case and the second case of Conjecture 1

respectively, but the claimed range in the first case of conjecture is larger than the claimed range in Theorem

1.2, this is a consequence of our uniformly assumption regarding D(n).30

2. Preliminaries

In this section, we review some results used in the proof of our main theorems. We first fix some notation.

The Dickman–de Bruijn function ρ(u)isacontinuousfunctionthatsatisfiesthedelaydifferentialequationuρ ′(u)+

(u− 1) = 0,with initial conditions ρ(u) = 1 for 0≤u≤1. By [10, 3.9] we have the estimate for ρ(u)

ρ(u) =
(
e + o(1)
u log u

)u

as u → ∞. (12)

35

Theorem 2.1 (Hildebrand [11]). The estimate

Ψ(x, y) = xρ(u)
(

1 + Oε

(
log(u + 1)

log y

))
(13)

holds uniformly in the range

x ≥ 3, 1 ≤ u ≤ log x
(log2 x)

5
3+ε

, that is, y ≥ exp
(
(log2 x)

5
3+ε
)
, (14)

where ε is any fixed positive number.

It is good to mention that the estimate in (4) can be deduced by combining (13) with the asymptotic

formula (12). We will apply this estimate in the proof of Theorem 1.3. However this estimate of Ψ(x, y) is

5



not very sharp for large values of u, for which the saddle point method is more effective.

Let α := α(x, y) be any real number satisfying

∑
p≤y

log p
pα − 1

= log x. (15)

It can be shown that α is unique. This function will play an essential role in this work, so we briefly recall

some fundamental properties of this function that are used frequently. By [12, Lemma 3.1] we have the

following estimates for α.

α(x, y) =
log
(
1 + y

log x

)
log y

{
1 + O

(
log2 y

log y

)}
x ≥ y ≥ 2. (16)

For any ε > 0, we have the particular cases

α(x, y) = 1 − ξ(u)
log y

+ O

(
1

Lε(y)
+

1
u(log y)2

)
if y ≥ (log x)1+ε, (17)

where

Lε(y) = exp
{

(log y)3/5−ε
}
, (18)

and ξ(t) is the unique real non-zero root of the equation:

eξ(t) = 1 + tξ(t), (19)

and we have the following useful estimate for ξ

ξ(t) = log(t log t) + O

(
log2 t

log t

)
t ≥ 3. (20)

Also for small values of y, we have

α(x, y) =
log(1 + y

log x )

log y

{
1 + O

(
1

log y

)}
if 2 ≤ y ≤ (log x)2. (21)

We now turn to another ingredient related to the behaviour of Ψ(x, y). The following estimate is a special40

case of a general result of de La Bretéche and Tenenbaum [12, Theorem 2.4].

Theorem 2.2. If d ≤ x/y, then uniformly for x ≥ y ≥ 2 we have

Ψ(
x

d
, y) =

{
1 + O

(
1
u

+
log y
y

)}
Ψ(x, y)

dα
. (22)

We deduce the following corollary by Theorem 2.2.

Corollary 2.3. If y ≥ 2 and y = o(log x), then we have

Ψ(x/y, y) ∼ Ψ(x, y) as x → ∞. (23)

Proof. (i): Let y ≥ (log2 x)2 and y = o(log x). By applying (22), if d = y, we obtain

Ψ(x/y, y) =
Ψ(x, y)

yα

{
1 + O

(
log y
y

)}
. (24)

6



By combining the above estimate along with estimate (21), we get

Ψ(x/y, y) =
Ψ(x, y)(

1 + y
log x

)1+O( 1
log y )

{
1 + O

(
log y
y

)}
. (25)

We remark again that y = o(log x), so we obtain

1

(1 + y/ log x)1+O( 1
log y )

→ 1 when x → ∞.

Also, we have
log y
y

→ 0 when x → ∞,

since y ≥ (log2 x)2. Thus, by (25), we conclude

Ψ(x
y , y)

Ψ(x, y)
→ 1 when x → ∞.

(ii) : Let 2 ≤ y ≤ (log2 x)2, then by invoking Ennola’s theorem [13], we get

Ψ(x/y, y) =
1

π(y)!

∏
p≤y

log x/y
log p

{
1 + O

(
y2

log x log y

)}

=
1

π(y)!

∏
p≤y

log x
log p

∏
p≤y

(
1 − log y

log x

){
1 + O

(
y2

log x log y

)}

= Ψ(x, y)
(

1 + O

(
π(y)

log y
log x

))

= Ψ(x, y)
(

1 + O

(
y

log x

))
,

(26)

which gives that

Ψ(x/y, y) ∼ Ψ(x, y) as x → ∞,

and this completes the proof.

Finally, we define

θ(x, y, z) := #{n ≤ x : p|n ⇒ z < p ≤ y}.

This function has been studied in the literature. Namely Friedlander [14] and Saias [15, 16] gave several

estimates for θ(x, y, z) in different ranges. The following theorem is due to Saias [16, Theorem 5] and [17,45

Theorem B] and is used in Section 4.

Theorem 2.4. There exists a constant c > 0 such that for x ≥ y ≥ z ≥ 2 we have

θ(x, y, z) ≤ c
Ψ(x, y)
log z

. (27)

In the more restricted range z(log 2u) ≤ y ≤ x we have

θ(x, y, z) = Ψ(x, y)
∏
p≤z

(1 − 1
p
)
(

1 + O

(
(log 2u) log z

log y

))
. (28)

7



3. Proof of Theorem 1.2

We begin this section by setting some notation. Let η be defined by

η :=
1

log3 y
,

and set

N :=
⌊

log2 y − log η
log 2

+ 2
⌋
, (29)

These two quantities play an essential role in our proof.

The proof of Theorem 1.2 combines both probabilistic and combinatorial techniques. Before working out the

details, we give a sketch of proof.

The first step in proving Theorem 1.2 is to study the number of prime factors of n ∈ S(x, y) in the narrow

intervals

Ji :=
[
(1 − κ)y1− 1

2i , y1− 1
2i

]
, 1 ≤ i ≤ N,

of multiplicative length (1 − κ)−1, where κ is defined as

κ :=
η

2N
. (30)

Also, we define the tail interval

J∞ := [(1 − κ)y, y].

Let ωi(n) be the number of prime factors of n in Ji for each i ∈ {1, 2, . . . , N,∞}, more formally

ωi(n) := # {p|n : p ∈ Ji} . (31)

We define

μi(x, y) :=
1

Ψ(x, y)

∑
n∈S(x,y)

ωi(n), (32)

to be the expected values of ωi(n). In Proposition 3.4, we will prove that for almost all y-smooth integers

the value of ωi(n) exceeds μi(x, y)/2. We establish this by applying the Chebyshev inequality

#{n ∈ S(x, y) : ωi(n) ≤ μi(x,y)
2 }

Ψ(x, y)
≤ 4σ2

i (x, y)
μ2
i (x, y)

, (33)

where

σ2
i (x, y) :=

1
Ψ(x, y)

∑
n∈S(x,y)

(ωi(n) − μi(x, y))
2
, (34)

is the variance of ωi(n) and i ∈ {1, 2, . . . , N,∞}. By using th above information, we will conclude that

there is at least one prime factor pi in each Ji for 1 ≤ i ≤ N and N prime factors q1, . . . , qN in J∞. Then50

by using the product of these prime factors in Corollary 3.5, we will find a divisor of n in the interval[
(1 − κ)NyN−j/2N

, yN−j/2N
]
, where j is an integer in {0, 1, . . . 2N − 1}.

Also, we find another divisor of n in the interval
(√

n
yN yj/2

N

,
√
n

yN y(j+1)/2N
)
. Multiplying these two divisors

will give a new divisor of n such that we can write n as the product of two divisors less than
√
x.

8



Before stating some technical lemmas, we obtain an estimate for the expected value of ωi(n) for all

1 ≤ i ≤ N and i = ∞. By changing the order of summation in (32), we easily see that

μi(x, y) =
∑
p∈Ji

Ψ(x
p , y)

Ψ(x, y)
. (35)

By (22), we have the following estimate55

μi(x, y) =
∑
p∈Ji

1
pα

(
1 + O

(
1
u

+
log y
y

))
, (36)

for all 1 ≤ i ≤ N and x ≥ y ≥ 2. Also, we obtain the following estimate for μi(x/q, y), where q is a prime

divisor of n ∈ S(x, y).

μi(x/q, y) =
∑
p∈Ji

1
pαq

{
1 + O

(
1
uq

+
log y
y

)}
, (37)

where uq := u− log q/ log y. By substitution we obtain x/q = yuq . We define the saddle point αq := α(x/q, y)

as the unique real number satisfying ∑
p≤y

log p
pαq − 1

= log
x

q
. (38)

We are ready to prove the following lemma showing the difference between μi(x/q, y) and μi(x, y) is small.

Lemma 3.1. Let q be a prime divisor of n ∈ S(x, y), then we have

∣∣μi(
x

q
, y) − μi(x, y)

∣∣� μi(x, y)
u

.

Proof. First we represent the saddle point α as a function of u, so we have

α(u) = α(yu, y).

We use the estimate

0 < −α′(u) := −dα(u)
du

� ū

u2 log y
, (39)

established in [18, formula 6.6], where ū := min{u, y
log y}. By (39), we deduce

∣∣α′(u)
∣∣� 1

u log y
. (40)

Then applying (40), gives that

α− αq ≤
∫ u

uq

∣∣α′(v)
∣∣dv �

∫ u

uq

dv

v log y

=
1

log y
log
(

u

uq

)
� log q

log y log x
.

(41)

By combining (36) and (37) and using O(1/u) = O(1/uq), we get

∣∣μi(
x

q
, y) − μi(x, y)

∣∣ ≤ ∑
p∈Ji

1
pα

{∣∣pα−αq − 1
∣∣+ O

(
1
u

+
log y
y

)}
. (42)

9



By the Taylor expansion of the exponential function and invoking (41) we obtain

exp{(α− αq) log p} − 1 � log p log q
log y log x

. (43)

We recall that p, q ≤ y for 1 ≤ i ≤ N and i = ∞. From this we infer that

∣∣pα−αq − 1
∣∣� 1

u
,

this finishing the proof.

The following lemma provides an upper bound for σ2
i (x, y) (defined in (34)) for each i ∈ {1, 2, . . . , N,∞}.

Lemma 3.2. For i ∈ {1, 2, . . . , N,∞}, we have

σ2
i (x, y) � μi(x, y) +

μ2
i (x, y)
u

.

Proof. By the definition of σ2
i (x, y) given in (34), we have

σ2
i (x, y) =

1
Ψ(x, y)

∑
n∈S(x,y)

[
ω2
i (n) − 2μi(x, y)ωi(n) + μ2

i (x, y)
]
.

Using the definition of ωi(n) in (31), gives

∑
n∈S(x,y)

ωi(n) =
∑

n∈S(x,y)

∑
p∈Ji

1p|n =
∑
p∈Ji

Ψ(
x

p
, y),

where the indicator function 1p|n is 1 or 0 according to the prime p divides n or not. By the definition of

μi(x, y) in (35), we deduce that ∑
n∈S(x,y)

ωi(n) = Ψ(x, y)μi(x, y).

By (32), we have

Ψ(x, y)σ2
i (x, y) =

∑
n∈S(x,y)

[
ω2
i (n) − 2μi(x, y)ωi(n) + μ2

i (x, y)
]

=
∑

n∈S(x,y)

ω2
i (n) − 2Ψ(x, y)μ2

i (x, y) + Ψ(x, y)μ2
i (x, y)

=

⎛
⎜⎜⎝ ∑

p,q∈Ji
p�=q

Ψ(x/pq, y)

⎞
⎟⎟⎠− Ψ(x, y)μ2

i (x, y) +
∑
p∈Ji

Ψ(x/p, y)

:= S1 + S2,

where S1 :=
∑

p,q∈Ji
p�=q

Ψ( x
pq , y) − Ψ(x, y)μ2

i (x, y) and S2 :=
∑

p∈Ji
Ψ(x/p, y). We next find an upper bound

for each Si. We first consider S1, by using (35) we get

∑
p,q∈Ji
p�=q

Ψ(
x

pq
, y) − Ψ(x, y)μ2

i (x, y) ≤
∑
p∈Ji

Ψ(
x

p
, y)
(
μi(

x

p
, y) − μi(x, y)

)
. (44)

By Lemma 3.1 and using (44), we obtain the following upper bound for S1

S1 ≤ C
Ψ(x, y)μ2

i (x, y)
u

, (45)

10



where C is a positive constant. It remains to estimate S2. From (35) we have

S2 = Ψ(x, y)μi(x, y).

By substituting the upper bounds for S1 and S2, we get

σ2
i (x, y) =

S1 + S2

Ψ(x, y)
�
(
μi(x, y) +

μ2
i (x, y)
u

)
,

and the proof is complete.60

By recalling that α and κ defined in (15) and (30) respectively, we give the order of magnitude for μi(x, y),

where i ∈ {1, 2, . . . , N,∞}

Lemma 3.3. We have

μi(x, y) � κ
Y 1− 1

2i

log y
,

where i ∈ {1, 2, . . . , N,∞}, and

Y := y1−α.

Proof. By the definition of each Ji, we obtain the simple inequalities

1
yα(1−1/2i)

# {p ∈ Ji} ≤
∑
p∈Ji

1
pα

≤ 1
(1 − κ)yα(1−1/2i)

# {p ∈ Ji} . (46)

By applying the prime number theorem, we obtain

#{p ∈ Ji} = π(y1−1/2i

) − π((1 − κ)y1−1/2i

)

=
y1−1/2i

log
(
y1−1/2i

) − (1 − κ)y1−1/2i

log
(
(1 − κ)y1−1/2i

) + O

(
y1−1/2i

log2 y

)

=
y1−1/2i

(1 − 1/2i) log y
− (1 − κ)y1−1/2i

(1 − 1/2i) log y

(
1 + O

(
1

log y

))

=
κy1−1/2i

(1 − 1/2i) log y
(1 + o(1)),

(47)

The last equality is true, since the given values of κ and N in (30) and (29) imply

κ � 1
log2 y log3 y

. (48)

By substituting in (46) the estimate for #{p ∈ Ji} given in (47), we obtain

μi(x, y) � κ
Y 1−1/2i

log y
, (49)

and we get our desired result.

Having the above lemmas at our disposal, we are now ready for proving the following proposition.

Proposition 3.4. If u and y are in range given in (5), we have

#
{
n ∈ S(x, y) : ωi(n) >

μi(x, y)
2

∀i ∈ {1, . . . , N,∞}
}

∼ Ψ(x, y) as x, y → ∞,

11



Proof. By Chebyshev’s inequality in (33) and using the upper bound for σ2
i (x, y) in Lemma 3.2, we get

#
{
n ∈ S(x, y) : ωi(n) ≤ μi(x, y)

2

}
� Ψ(x, y)

(
1

μi(x, y)
+

1
u

)
.

Define

M := #
{
n ∈ S(x, y) : ∃i ∈ {1, . . . , N,∞} such that ωi(n) ≤ μi(x, y)

2

}
.

By the above inequality, we obtain an upper bound of M as follows:

M � Ψ(x, y)

[
1

μ∞(x, y)
+

N∑
i=1

1
μi(x, y)

+
N + 1

u

]
. (50)

Our main task is to show that in the range (5) we have

M

Ψ(x, y)
→ 0.

By using Lemma 3.3 and substituting the order of magnitude of μi(x, y) in (50), we get

M � Ψ(x, y)

[
log y
κY

+
log y
κ

N∑
i=1

1
Y 1−1/2i +

N + 1
u

]
. (51)

In what follows, we find a lower bound for Y in two different ranges of y.65

(i) If y ≤ (log x)2, then by (21) α ≤ 1/2 + o(1) as y → ∞. Therefore,

Y ≥ y1/2−o(1) ≥ y1/3.

By substituting this lower bound in (51) and using the precise value of N in (29), we have

M � Ψ(x, y)

[
log y
κy1/3

+
N

u
+

log y
κy1/3

N∑
i=1

y1/3(2i)

]

� Ψ(x, y)
[
log2 y

u
+

y1/6 log y
κy1/3

(
1 + O

(
N

y1/12

))]

� Ψ(x, y)
log y
κy1/6

.

(52)

By using the asymptotic value of κ in (48), we obtain

M � Ψ(x, y)
log y log2 y log3 y

y1/6
,

and clearly we have

M = o(Ψ(x, y)) as x, y → ∞,

this finishing the proof for the case y ≤ (log x)2.

(ii) If y ≥ (log x)2, by applying (17), we have

1 − α =
ξ(u)
log y

+ O

(
1

Lε(y)
+

1
u(log y)2

)
. (53)

12



Using (20), we have the following estimate of ξ

ξ(t) = log(t log t) + O

(
log2 t

log t

)
if t > 3.

Therefore,

1 − α =
log(u log u)

log y
+ O

(
log2 u

log y log u

)
,

Thus, we get

Y = u log u
[
1 + O

(
log2 u

log u

)]

� u log u.
(54)

By combining the above with the estimate in (54), and using the value of N in (29), we get70

M � Ψ(x, y)

[
log y

κu log u
+

log y
κu log u

N∑
i=1

(u log u)1/2
i

+
N + 1

u

]

� Ψ(x, y)
[

log y
κu log u

(
(u log u)1/2 + (u log u)1/2

2
+ ... + (u log u)1/2

N
)

+
N + 1

u

]

� Ψ(x, y)
[

log y
κ(u log u)1/2

(
1 + O

(
N(u log u)−1/4

))
+

N + 1
u

]

� Ψ(x, y)
[
log2 y

u
+

log y
κ(u log u)1/2

]
,

(55)

Using (48) to estimate κ, one arrive at the following upper bound of M :

M � Ψ(x, y)
log y log2 y log3 y

(u log u)1/2
. (56)

So there exists a constant c such that for all i ∈ {1, . . . , N,∞}, we have

#
{
n ∈ S(x, y) : ωi(n) >

μi(x, y)
2

∀i
}

≥ Ψ(x, y)
(

1 − c
log y log2 y log3 y

(u log u)1/2

)
, (57)

and this finishes the proof, since by assumption u log u/(log y log2 y log3 y)2 → ∞.

Corollary 3.5. If x and y are in the range (5), then almost all n in S(x, y) are divisible by at least one

prime factor pi in Ji, and N prime factors q1, . . . , qN in J∞. Moreover, the product
∏N

i=1 piqi has a divisor

Dj in each of intervals [(1 − κ)NyN−j/2N

, yN−j/2N

], where j ∈ {0, 1, . . . , 2N − 1}.

Proof. The first assertion is a direct consequence of Proposition 3.4.

For the second part, let n be in S(x, y) with x and y satisfy in (5). Let pi ∈ Ji for 1 ≤ i ≤ N , q1, . . . , qN ∈ J∞,

and j be an arbitrary integer in {0, 1, . . . , 2N − 1}. Moreover, we define

a0 := N −
N∑
i=1

ai,

where ai’s get the values 0 or 1 such that

j =
N∑
i=1

ai2N−i. (58)
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We consider the divisor of Dj of n having the following form:

Dj :=
N∏
i=1

pai
i

a0∏
i=1

qi,

By using the bounds of pi’s and qi’s, we deduce that

(1 − κ)NyN−∑N
i=1 ai/2

i ≤ Dj ≤ yN−∑N
i=1 ai/2

i

,

By using (58), we have

(1 − κ)NyN−j/2N ≤ Dj ≤ yN−j/2N

,

and this finishes our proof.75

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let n ≤ (1 − η)x be a y-smooth integer with at least one prime factor pi in each

Ji , where i = 1, . . . , N , and N prime divisors q1, q2, . . . , qN in J∞. Set

m :=
n∏N

i=1 piqi
.

By this definition, we get

m =
n∏N

i=1 piqi
≥ n

y2N
>

√
n,

when 4N ≤ u. Let {rv} be the increasing sequence of prime factors of m taken with multiplicity and set

dv = r1 . . . rv.

Clearly, m has at least one divisor among the rv bigger than
√
n

yN . We suppose that l is the smallest integer

such that dl ≥
√
n

yN , and evidently we have

dl−1 ≤
√
n

yN
.

So, we arrive at the following bounds for dl

√
n

yN
≤ dl ≤ ydl−1 ≤

√
n

yN−1
. (59)

We pick k ∈ {0, 1, 2..., 2N − 1} such that
√
n

yN
yk/2

N ≤ dl ≤
√
n

yN
y(k+1)/2N

. (60)

By the second part of Corollary 3.5, for every k in {0, 1, . . . , 2N − 1} there exists a divisor Dk of n such that

(1 − κ)NyN−k/2N ≤ Dk ≤ yN−k/2N

.

We define d := dlDk. Then we have

(1 − κ)N
√
n ≤ d ≤ y1/2N√

n.

By using the values of N in (29) and κ in (30), we have

y
1

2N ≤ eη/2,

14



and

(1 − κ)N = exp
(
N(−κ + O(κ2))

)
= exp

(
−η

2
+ O(

η2

N
)
)

= exp
(
−η

2
+ O(η3)

)
.

Now by applying the Taylor expansion for exponential function we obtain

(
1 − η

2
+

η2

8
+ O(η3)

)1/2 √
n ≤ d ≤

(
1 +

η

2
+

η2

8
+ O(η3)

)1/2 √
n. (61)

By using the assumption n ≤ (1 − η)x in the upper bound and lower bound above, we obtain

d ≤
(
1 − η

2
+ O(η2)

)1/2 √
x ≤ √

x,

and
n

d
≤
(
1 − η

2
+ O(η2)

)1/2 √
x ≤ √

x.

Thus, we write n ∈ S((1 − η)x, y) as the product of two divisors less than
√
x, and we deduce that

Ψ ((1 − η)x, y) − o (Ψ(x, y)) ≤ A(x, y) ≤ Ψ(x, y),

By using (22), we have

Ψ ((1 − η)x, y)
Ψ(x, y)

= (1 − η)α
{

1 + O

(
1
u

+
log y
y

)}
→ 1 as x, y → ∞,

this finishing the proof.

4. Proof of Theorem 1.380

In this section, we shall study the behaviour of A(x, y) for large values of y. When y takes values very

close to x, then the set of y-smooth integers contains integers having large prime factors. As we explained

in the heuristic argument, we expect that A(x, y) = o(Ψ(x, y)). To show this assertion, we recall the idea of

Erdős used to prove the multiplication table problem for integers up to x.

We start our argument by giving an upper bound for A∗(x), defined by

A∗(x) := #
{
ab : a, b ≤ √

x and (a, b) = 1
}
. (62)

We shall find an upper bound of A∗(x) by considering the number of prime factors of a and b. We first define

πk(x) := #{n ≤ x : ω(n) = k}

Therefore,

A∗(x) ≤
∑
k

min

⎧⎨
⎩πk(x),

k−1∑
j=1

πj(
√
x)πk−j(

√
x)

⎫⎬
⎭

≤
∑
k

min

⎧⎨
⎩ cx

log x
(log2 x + C)k−1

(k − 1)!
,

k−1∑
j=1

c
√
x

log
√
x

(log2

√
x + C)j−1

(j − 1)!
c
√
x

log
√
x

(log2

√
x + C)k−j−1

(k − j − 1)!

⎫⎬
⎭ ,

(63)
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where in the last inequality, we used the well-known result of Hardy and Ramanujan stating there are absolute

constants C and c such that

πk(x) ≤ cx

log x
(log2 x + C)k−1

(k − 1)!
for k = 0, 1, 2, .. and x ≥ 2. (64)

By simplifying the upper bound in (63) and using Stirling’s formula

n! ∼
√

2πnn+ 1
2 e−n

we obtain

A∗(x) ≤
∑
k

min

⎧⎨
⎩ cx

log x
(log2 x + C)k−1

(k − 1)!
,

4c2Cx

(log x)2

k−2∑
j=0

1
(k − 2)!

(
k − 2
j

)
(log2

√
x + C)k−2

⎫⎬
⎭

=
∑
k

min
{

cx

log x
(log2 x + C)k−1

(k − 1)!
,

4c2Cx

(log x)2
(2 log2

√
x + C)k−2

(k − 2)!

}

≤
∑

k≤ log2 x
log 2

4c2Cx

(log x)2
(2 log2

√
x + C)k−2

(k − 2)!
+

∑
k>

log2 x+C
log 2

cx

log x
(log2 x + C)k−1

(k − 1)!

� x

(log x)1−
1+log log 2

log 2 (log2 x)1/2
→ 0 as x → ∞.

(65)

We shall get the same upper bound for A(x). Let n ≤ x and there are a and b less than
√
x such that

n = ab. If (a, b) = 1 then n is counted by A(x) , and if (a, b) = d > 1 then we write n as n = a′b′d2 such that

(a′, b′) = 1. So n/d2 ≤ x/d2, and n
d2 will be counted by A(x/d2). Therefore,

A(x) ≤
∑

d≤√
x

A∗(
x

d2
) � A∗(x)

By (65), we get

A(x) � x

(log x)1−
1+log log 2

log 2 (log2 x)1/2
.

Thus,

A(x) = o(x) as x → ∞.

Motivated by Erdős’ idea for the multiplication table of integers up to x, we apply a similar method to

find an upper bound for A(x, y).

The first step of proof is to study the following function which plays a crucial role in this section. Let

Nk(x, y, z) := #{n ∈ S(x, y) : ωz(n) = k},

where ωz(n) is the truncated version of ω(n), only counting divisibility by distinct primes not exceeding z

with their multiplicities. In other words

ωz(n) :=
∑
pv||n
p≤z

1.
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In the following lemma, by using induction on k, we shall find an upper bound of type (64) for Nk(x, y, z).

The reason of applying truncation is to sieve out prime factors exceeding some power of y which are the

cause of big error terms as k increases in each step of induction. The upper bound of Nk(x, y, z) leads us to85

generalize Erdős’ idea for y-smooth integers in a certain range of y.

Lemma 4.1. Let u ≤ C log log y, for a fixed constant C < 1, and choose the parameter z such that

log log z ≤ Cu.

Then, there are constants A and B depending at most on C such that the inequality

Nk(x, y, z) ≤ AΨ(x, y)
log z

(log log z + B)k

k!
(66)

holds for every integer k ≥ 0.

Proof. When k = 0, by (27), evidently we have

N0(x, y, z) = θ(x, y, z) ≤ c0
Ψ(x, y)
log z

,

where c0 > 0 is a constant. When k = 1, we can write n as n = pam, where p ≤ z and every prime factor q

of m is between z and y, then using the definition of θ(x, y, z) and applying (22) we have90

N1(x, y, z) =
∑
p≤z

∑
m≤x/pa

q|m⇒z<q≤y

1 ≤
∑
p≤z

θ(
x

p
, y, z)

=
∑
p≤z

[
Ψ(

x

p
, y) − Ψ(

x

p
, z)
]

=
∑
p≤z

1
pα

[Ψ(x, y) − Ψ(x, z)]
(

1 + O(
1
u

)
)

=
∑
p≤z

1
pα

θ(x, y, z)
(

1 + O(
1
u

)
)

(67)

By applying the inequality in (27), there is constant c such that

N1(x, y, z) ≤ c
Ψ(x, y)
log z

∑
p≤z

1
pα

{
1 + O

(
1
u

)}
.

In order to estimate the later sum we note that∑
p≤z

1
pα

=
∑
p≤z

1
p

(
p1−α

)

=
∑
p≤z

1
p
{1 + O ((1 − α) log p)} .

(68)

Since (1 − α) log z is bounded in our range (see (70)). Therefore,

∑
p≤z

1
pα

= log2 z + O (1 + (1 − α) log z) , (69)
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By using the estimates of α in (17), ξ in (20) and the upper bound of z, we get

(1 − α) log z � log u
log y

log z � log3 y(log y)C
2

log y
� 1, (70)

and we obtain ∑
p≤z

1
pα

= log2 z + O (1) . (71)

Thus, ∑
p≤z

1
pα

{
1 + O

(
1
u

)}
= log2 z + O(1), (72)

since we have log log z ≤ Cu.

Substituting (72) in the upper bound of N1(x, y, z) gives

N1(x, y, z) ≤ cΨ(x, y)
log z

(log2 z + O(1)) .

Now we argue by induction: we assume that the estimate in (66) is true for any positive integer k, we now

prove it for n ∈ S(x, y) with ωz(n) = k + 1. We write n as n = pa1
1 · · · pak+1

k+1 m such that p1, . . . , pk+1 ≤ z and

and m having only prime factors greater than z and less than y. Then by definition of θ(x, y, z) we have

Nk+1(x, y, z) =
1

(k + 1)!

∑
p1,...,pk+1≤z

θ(
x

pa1
1 · · · pak+1

k+1

, y, z)

≤ 1
(k + 1)!

∑
p1,...,pk+1≤z

θ(
x

p1 · · · pk+1
, y, z)

=
1

(k + 1)!

∑
p1,...,pk+1≤z

[
Ψ(

x

p1 · · · pk+1
, y) − Ψ(

x

p1 · · · pk+1
, z)
]

=
1

(k + 1)!

∑
p1···pk≤z

∑
pk+1≤z

1
pαk+1

[
Ψ(

x

p1 · · · pk , y) − Ψ(
x

p1 · · · pk , z)
](

1 + O(
1
u

)
)

=
1

k + 1
(log2 z + O(1))

1
k!

∑
p1···pk≤z

[
Ψ(

x

p1, · · · pk , y) − Ψ(
x

p1 · · · pk , z)
]

=
1

k + 1
(log2 z + O(1))

1
k!

∑
p1,...,pk≤z

θ(
x

p1 · · · pk , y, z)

=
1

k + 1
(log2 z + O(1))Nk(x, y, z).

(73)

So by putting A = c and B an upper bound on the constant implied by O(1) we get our desired result.95

Proof of Theorem 1.3. For ε > 0 small enough, we set u <
(

λ
log 2 − ε

)
log2 y, where λ is a fixed real

number in the interval (0, 1 − log 2).

We now choose z such that

log log z =
log 2
λ

u, (74)
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so the given ranges of u and z satisfy Lemma 4.1.

By the definition of A(x, y) the following evident upper bound holds:

A(x, y) ≤
∑
k

min

⎧⎪⎪⎨
⎪⎪⎩

∑
n∈S(x,y)
ωz(n)=k

1,
k−1∑
j=1

∑
a∈S(

√
x,y)

ωz(a)=j

1
∑

b∈S(
√
x,y)

ωz(b)=k−j

1

⎫⎪⎪⎬
⎪⎪⎭ . (75)

We set

L = �H log2 z�,

where

H :=
1 − λ

log 2
.

By using (75),we obtain the following upper bound for A(x, y)

A(x, y) ≤ # {n ∈ S(x, y) : ωz(n) > L} + #
{
ab : a, b ∈ S(

√
x, y), ωz(a) + ωz(b) ≤ L

}
≤
∑
k>L

Nk(x, y, z) +
∑
k≤L

k∑
j=0

Nj(
√
x, y, z)Nk−j(

√
x, y, z).

(76)

By applying Lemma 4.1, we have

A(x, y) �
∑
k>L

Ψ(x, y)
log z

(log2 z + c)k

k!
+
∑
k≤L

k∑
j=0

Ψ2(
√
x, y)

log2 z

(log2 z + c)j

j!
(log2 z + c)k−j

(k − j)!

=
∑
k>L

Ψ(x, y)
log z

(log2 z + c)k

k!
+
∑
k≤L

Ψ2(
√
x, y)

log2 z

k∑
j=0

1
k!

(
k

j

)
(log2 z + c)k

=
∑
k>L

Ψ(x, y)
log z

(log2 z + c)k

k!
+
∑
k≤L

Ψ2(
√
x, y)

log2 z

(2 log2 z + 2c)k

k!
.

(77)

By applying the estimate (12), Theorem 13 and using the assumption (74), we get

Ψ2(
√
x, y)

Ψ(x, y)
� (log z)λ as u, y → ∞. (78)

Thus,

A(x, y) � Ψ(x, y)
log z

∑
k>L

(log2 z + c)k

k!
+

(log z)λΨ(x, y)
log2 z

∑
k≤L

(2 log2 z + 2c)k

k!
. (79)

The maximum values of the functions in the latter two sums (with respect to k) are attained at k =

log2 z + O(1) and k = 2 log2 z + O(1) respectively. By using Stirling’s formula k! ∼ √
2πkk+ 1

2 e−k, for

each summation we have

∑
k>L

(log2 z)k

k!
=

∑
H log2 z<k≤e log2 z

(log2 z)k

k!
+

∑
k>e log2 z

(log2 z)k

k!

�
( e

H

)H log2 z

� 1
(log z)H logH−H

.

(80)

The function in the second summation in (79) is increasing for k ≤ L, and we have

∑
k≤L

(2 log2 z + 2c)k

k!
�
(

2e
H

)H log2 z

=
1

(log z)H logH−H−H log 2
. (81)
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Substituting the upper bounds obtained in (80) and (81) in (79), and using the definition of H, gives

A(x, y) � Ψ(x, y)
(log z)G(H)

,

where

G(H) := 1 + H logH −H.

The function G(H) is increasing in the interval (1, 2) with a zero at H = 1. Thus, for any arbitrary

0 < λ < 1 − log 2, we have

A(x, y) = o(Ψ(x, y)) as x, y → ∞,

and so we obtained our desired result.
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