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Abstract

In the study of substitutative dynamical systems and Pisot number systems, an algebraic
condition, which we call ‘weak finiteness’, plays a fundamental role. It is expected that all Pisot
numbers would have this property. In this paper, we prove some basic facts about ‘weak
finiteness’. We show that this property is valid for cubic Pisot units and for Pisot numbers of
higher degree under a dominant condition.
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1. Introduction

Let f>1 be a real number. The [-transformation is a piecewise linear
transformation on [0, 1) defined by

Tp:x—fx— [ fx],
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where | | is the largest integer not exceeding &. By iterating this map and
considering its trajectory

xx—'>Tl;(x)X—2>T[?(x)X—3>

with x; = LﬁTli?_l (x) |, we obtain the greedy expansion of x:

X1 X2 X3
— =4+ =

A A

X = X1 X2 X3... .

For any real number x>0, there is an m>0 such that =" 'x€[0, 1). Thus we can
express each x in the form

m X1
X=X_nf"+ - +x0f+x0+—+ " =X_p... X_1X0. X1 X2X3... ,

p

which is called the beta expansion. If there is an integer k such that x; = 0 for i>k,
then we say that the f-expansion of x is finite and we occasionally omit writing zeros
in the tail like: X = X_,,X_ a1 ... X1 Xk

Formally we may consider the trajectory of 1:

1S T() S TH) S

We call ajaas... the expansion of one and denote it by dg(1). Define

dp(1) if dg(1) is not finite,
diy=4"2 &
ai...aq—i1(ag— 1) if dg(l) = ay...az with az#0,

where X7...x; stands for the periodic expansion xj...x;X;...Xg.... Then a sequence
(finite or infinite) over the alphabet {0,1,2, ...} is said to be admissible if all its
right truncations are lexicographically less than dg(l). A sequence is the ff-expansion
of some real number if and only if it is admissible (see [15,16] for details). Let
Fin(f) be the set of non-negative real numbers with finite f-expansion. Denote
by Z[f] the minimal ring containing Z and f and by Z[f]., the non-negative
elements of Z[f]. We say that the number f§ has the finiteness property or property
(F) if

(F) Fin(B) = Z[1/B].,

holds. This property was introduced by Frougny—Solomyak [12]. They
showed that it implies that f is a Pisot number, i.e. a real algebraic integer
greater than 1 with all conjugates lying strictly inside the unit circle, and they
found the following class of Pisot numbers satisfying this property. Here a
root of a polynomial is called dominant, if it has the maximal modulus of all
roots.
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Theorem A (Frougny—Solomyak [12]). If S is the dominant root of the polynomial
X — by x?=' — byx2 — ... —byeZ[x] with by=by>---=by>0, then B is a Pisot
number and has the property (F).

Another class of Pisot numbers with (F) was found by Hollander.

Theorem B (Hollander [13]). If B is the dominant root of the polynomial x* —
bix?=1 — byx¥7% — ... —byeZ|x] with b1>2?:2 b; and b;=0(1<i<d), then B is a
Pisot number and has the property (F).

An alternative proof of Theorem B is given in Section 6. Of particular interest are
Pisot units, which are Pisot numbers as well as algebraic units. Akiyama—Sadahiro [5]
and Akiyama [1] used Pisot units f with the property (F) to construct tilings of R¢~!
(where d is the degree of f§). Praggastis [17] showed that such tiling gives rise to a
Markov partition of the torus when f satisfies (F). The idea of these constructions is
due to Thurston [24]. Note that a tiling close to these was originally obtained by
Rauzy [18] in connection with substitutative dynamical systems. Arnoux—Ito [6] gave
a further generalization of this ‘Rauzy fractal’ and described the relation with
Markov partitions of toral automorphisms. A lot of applications of this theory are
found (cf. [11,23]).

Note that there are Pisot numbers without the property (F), in particular all
numbers with infinite expansions of one. A classification of cubic Pisot units with (F)
was established in [2] (see also Proposition 1).

Akiyama [3] also showed that the origin is an ‘exclusive’ inner point of the central
tile if and only if (F) holds. For the tiling property, he showed that the condition (F)
can be relaxed. Namely, for a Pisot unit §, Thurston’s construction gives a tiling if
and only if:

(W) For any xe Z[1/f]., and any positive ¢, there exist y,ze Fin(f) that x =y — z
and z<e.

We call this condition a weak finiteness property or (W) in this paper.

This property was first studied by Hollander [13]. He tried to show that a
substitutative dynamical system associated to beta expansions has purely
discrete spectrum by reducing this problem to showing (W). Sidorov [21] used this
property to construct an almost conjugacy between the beta shift and a related
toral automorphism. He also found another application of (W) for Bernoulli
convolutions [22].

To study the tilings rising from Rauzy fractal, Ito—Rao [14] introduced the super-
coincidence condition of a substitution. The condition (W) is equivalent to the super-
coincidence condition if we restrict to substitutions coming from f-numeration
systems (see [10]).

The present paper is devoted to the study of the property (W).
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A Salem number is a real algebraic integer greater than 1 such that all its
conjugates lie inside the closed unit disk and at least one conjugate lies on the unit
circle. First we show

Theorem 1. If f has the property (W), then it must be a Pisot or a Salem number.

However, we are not able to prove (W) for any Salem number. Second, we derive
an easier criterion for the property (W).

Theorem 2. The property (W) is equivalent to:
(W') For any xeZ[1/f]n[0,1), there exist y,ze Fin(p) such that x =y — z with
y<pandz<1.

This will be used to prove Theorem 4 in Section 5 and Proposition 3 in Section 6.
It is easy to show that quadratic Pisot numbers f satisfy this weakly finiteness (see
Section 2). In [3] it is conjectured that the property (W) holds for all Pisot units, in
[22] that it should hold even for all Pisot numbers. We give partial answers to this
conjecture.

Theorem 3. If § is a cubic Pisot unit, then [§ satisfies (W).
We do not know whether all cubic Pisot numbers satisfy (W).

Theorem 4. Let f be the dominant root of x? —bx' — ... —bseZ[x]. If
bi>S0,|byl and (b, by)# (2, 1), then B satisfies (W).

Hereafter we refer to the inequality b, >Z]’?:2 |bj| as a dominant condition.

The paper is organized as follows. In Section 2, we review known results and also
prove Theorems 1 and 2. If we knew the set Z of purely periodic orbits of 7%, then
we could show (W) without difficulty. In Section 3 the set £ is given for cubic Pisot
units by using an idea of [13]. Thus we can show Theorem 3 in Section 4. In Section
5, we prove Theorem 4. In Section 6, we discuss an alternative approach by using a
branching beta expansion. This gives an efficient algorithm to confirm (F) or (W) in
practice.

2. General criteria for weak finiteness

First, we prove the necessary condition for numbers satisfying (W) given in
Theorem 1.

Proof of Theorem 1. The condition (W) implies that f§ is an algebraic integer, since
we have an expression ff — | f | = y — z with y,zeFin(f) and z<y<1. Assume that
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there is a conjugate y of f with |yp|>1. Take a positive integer m. From (W)
we infer

4

B LB 1= b

i=1
with ¢;e (—f, ) nZ. Thus we have

LA]
Pl =1

l
LB =) s
i=1

This is absurd since the left side is not bounded when m— co. [

Now we turn to sufficient conditions for (W). It is obvious that (F) implies (W). In
[3], it is shown that the Pisot numbers with the following property satisfy (W):

(PF) For each polynomial P(x) with non negative integer coefficients, P(f) € Fin(f).

This condition was studied in [12] and proved for f§ where the expansion of one
ajaxas... has decreasing digits. Quadratic Pisot numbers satisfy either (F) by
Theorem A or (PF) by the above criterion. Hence each quadratic Pisot number has
the property (W).

For Pisot numbers, we claim that it is sufficient to test a finite set of Z[1/f]:

Bertrand [8] and Schmidt [20] proved independently that every element of Q(f), so
in particular every element of Z[1/f], has eventually periodic fi-expansion if f§ is a
Pisot number. (For Salem numbers, this is unknown.) Therefore we study the set

P ={xeZ[f].o| T§'(x) = x for some m>0}.

(The periodic points of Z[1/f] are always in Z[f], since we can choose n large such
that x = f"x — P(f), and both "x and P(f}) belong to Z[f].) It is easily seen that 2 is
a finite set and gives the set of all possible periodic tails of beta expansions (cf. [3,
Lemma 2]). Therefore for Pisot numbers, (W) is equivalent to

(P) For any xe 2 and any positive ¢, there exist y,ze Fin(f) such that x =y — z
and z<e.

This shows the claim. Furthermore, in [13], it is implicitly noted that

Lemma 1. The property (W) is equivalent to
(H) For any xe 2P, there exist y,ze Fin(f) such that x =y — z with y<1 and z< 1.

For the convenience of the reader, we give the proof due to Hollander.
Proof. For each xeZ[1/f] and for a sufficiently large n, we have the beta expansion

—n—1
X=X_p...X_1X0.X1...X, + "1
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with T = ¢1...¢;e?. We may assume that t#0. Since this expansion is less than
dp(1) at any starting point, there exists n so that x_,,...x_1x0.X1...X4—1 (X, + 1) is
admissible. Express t = y — z by (H). Then, as finite words, the beta expansion of
D ﬁ*"*l y coincides with the concatenation of x_,...x, and the beta
expansion of y. This means

X = (X_pme  X_1X0-X] .. Xy + [T"*ly) —p

gives a desired expression. Thus f has the property (W). O

Now we turn to the equivalent condition for (W) which is needed in Sections 5 and
6. Although we do not have any example, the following proof is valid even for Salem
numbers.

Proof of Theorem 2. Clearly, (W) implies (W’). We are going to prove the other
direction.

Let dj(1) = aja;... be the infinite representation of 1. Pick xe Z[1/p] with infinite
greedy expansion x = .x1x;... and let x = .B|B,... be its free block decomposition,
which is recursively given by B = x;...X;, such that xj...xz_1 = ai...ap and

Xiy <ap,, By = Xpq1... Xk, such that X 41...X%,-1 = ay .. ag, g and Xiy <Ay,
and so on.
We distinguish four cases:
(i) There exists arbitrarily large j such that xk/,<a,’;7k/ . — 1. In this case, we
—k;
consider

n=Xx—.x] ...xk,eZ[[}’l] N[0, 7).

Then %y is in Z[f~']~[0,1) and has, by assumption (W’), a representation
phin = VoVIV2.--VJ — Z1Z2...2)
with yoe{0, 1}. Hence
X =.X] ...xkj,l(xk/ +y0)y1 V= .Okf'zlzz...zj
=y -z
where y,zeFin(f) and z<p7%. Since k; can be arbitrarily large, we get the desired
representation.

(i) There exists arbitrarily large j such that kj . — k;>k; — kj_;. Then we first
claim that

ki1 —k;j—2
xk:/.7]+l ...ijfl(xkj + 1)0 j+1—kj—21
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is admissible. By the definition of the free block decomposition, Xk, 41... Xk, -1 (xkj +1)
is admissible. Hence the only possibility that the claim is false would be

ki 171('71 _ * *
Xkl e Xig—1 (Xi + 1DOT0 T =ayap g

— ee. = g*
e akj+l*kj—l

ay. . >Xy,, and the claim is proved. So set
I+ 7 K

. o e B : .
hence @ 1 = 0, in particular a4 _, = 0, but this contradicts
n=.X1...x-1(x, +1) —x
* *
< X1 X1 (X 1) = XX el g
—ki _ xp—ki—=1 _ . x —kj1+1 —kj1+1
<P —aip akjﬂ_kj_lﬁ T < T

By assumption (W’), we get

B = yoyiva.. vy — Z1z2... 2y
and thus

01—k =1 Ky —2

XZ.X]...Xk,._l(Xk,.-i-l) z1z2...27 — .0 Yovi---VJ

:y _ Z’
where y,zeFin(f) and z< %2,
It remains to deal with the case k41 — k; = k; — kj—y = / for all sufficiently large j

where the assumption of (i) fails, i.e. x is eventually periodic with period
ay...a;_(a; —1).

(iii) Suppose x is purely periodic, that is, x = .aj...a;_,(a; — 1). Let k>0 be the
integer such that di(1) = .4}...a;0%a;, ... and a;, ., >0. Let, for arbitrary j>0,

* Jj-1 « *

n=.aj...a;,_(a,—1))""ai...a; — x

e (@B @ B 4 (@ - D)
|
:a;_HC_Hﬁf/flcfl +a;+x+2ﬁ7/7K72 4.

1-p~

=p

ﬁ—j (—(—K

B’ < (1)

From a;>0 we infer that dl’g(l) is lexicographically larger than 10°~21. Hence

1>p7"+ " and (1 — p~7)" <p. This together with (1) implies <~ /~/ 7+
If />1, then n<f~7/~*!, hence

0/ /+Ic+lzl )

n=.07 " ypoy1...v; — ..zJ



142 S. Akiyama et al. | Journal of Number Theory 107 (2004) 135-160

and

* * * k—1 x * K iy
x=.(daj...a;_(a; — 1)) lal ...a/Othl Zy = 07 oy Ly
gives the desired representation.
The case / =1, i.e. x = .(a] — 1) (with ¢} >2) is more complicated. Formula (1)
becomes
* -1 * -2
e a7+ -

_ L op—j—k—1
n= g B (2)

and thus <. If <7 "!, then the argument for /> 1 still works here. So we
may assume 7" <n<p77*. From (W’), we have

n=.0"""yoy ..y — .07z Lz
Hence
x=.(a] — l)jfla’fO"zl -2 e | EAL VS R TP

If z1z3--- <.dj,,d; ..., then we already have the desired representation. So we
assume

Z1Z2. > 5y (3)
We are going to show
n<(l+p g7 (4)

If this holds, then we have 5 — 7 *"'e(0, $77%). Hence

n— ﬂfjflcfl _ -OH’C“yo'yl'...er' _ -0j+K+2211...ZJ//
and

x=.(a; — l)jilaTOK-'—zZ]/...Z]/l — 0/ Ly v vy
is a desired representation.

We may assume y; = 0 because of z; >0. (Otherwise, decrease both y; and z;.)
Hence we have
yoyi ... <1.0a}d;... =1+ p7".

This together with (3) implies

n<(l+ [rl - a;+2[371 - a;*c+3ﬂ72 - -").Bijﬂc-
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Substituting # by its expression in (2), we get

) -3
GepaB "+ a3 f 7+ -

1—p7!

<1 +[3_1 - aZ+z/3_l _az+3ﬁ_2 + -

thus
aoB d B+ <(LH B = B,

Using (2) once again, we get (4).

(iv) Finally we consider x = .xy...xa}...a;_,(a; — 1). By (iii), there exist .y;...y;
and .z ...zyeFin(p) such that

ai..a; (@ —1)=yi..y5—.21...2).
Hence for any J,
i +j
X =.X1...xXpla}...a;_ (@5 — 1)Yyr..py— 0"z 2

is a desired representation. This completes the proof of the theorem. [

3. Purely periodic orbits

In this section, we determine the set 2, the purely periodic expansions in Z[f] for
cubic Pisot units. Geometrically, this set &2 corresponds to dual tiles sharing the
origin (cf. [3]).

We first review briefly the idea of [13] to interpret Ty as a shift on a symbolic space.
Let f>1 be an algebraic integer. Let 1 = 0.b1b,...b, be an arbitrary expression of 1
in base f§, where b; are integers. (We do not consider the admissibility and also allow
b; to be negative.) Let

ri=0.biy...04, 0<i<d-1.

It is easy to check that {rg,r, ...,r4—1} spans Z[f]. Hence for any xeZ[f]n][0, 1),
there are integers zy,z3, ..., z4 such that

X =Z|tg-1 + 2afg—2 + -+ + Zalo
and a sequence (z441,Z4+2, ... ), such that for each i>1,
0<zirg_1 + zicita_s+ - 4+ ziza_1ro<1. (5)

Then the sequence in the above formula is uniquely determined by initial values
z1,22, ..., 2q4—1 and we call it a carry sequence of x. Let x; = byz44i—1 + -+ + byz;, then
it is easy to check that the S-expansion of x is 0.x;x;.... Hence
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Lemma 2 (Hollander [13]). Let xeZ[f]n][0,1). Then xe2 if and only if a carry
sequence of x is purely periodic.

Let f>1 be the dominant root of the polynomial
f(x)=x—ax* —bx—c.
Then f is a Pisot number if and only if
|b—cl<a+c and ¢ —b<sgn(c)(l + ac)

holds. When ¢ =1, f is a Pisot number if and only if —a+ 1<b<a+ 1. When
¢ = —1, fis a Pisot number if and only if —a+3<b<a— 1. (cf. [2])

Proposition 1. Let f be a cubic Pisot unit. Then the set & is given by the following
table.

c=1 a=1 b=01,2 0
az2 —1<b<a+1 0
az3 —a+1<b<s -2 (va + vb),v=0, admissible
c=-1 a=3 b=a-1 0,(a—1)(b—1),(b—1)(a—1),
alb—2),(b—-2)a
a=4  2<b<a-2 0,a—Db-1),b=-D@a-1
az=?2 b=1 0,(a—1)0,0(a—1),(a—1)
az3 —a+3<b<0 (av + bv — 2v),v=0, admissible

Proof. For a<6, this is checked by a theoretic bound on £ (cf. [3, Lemma 2]). In
the following, we assume a=6. Let ro =1, r| = %+ﬁ% and r, = % Then {rg,r,r2}
is a basis of Z[f]. Suppose (z;),, is a purely periodic carry sequence other than 0.
Then

0<ziry + zipir + ziga < 1. (6)

We denote

Zmin = min{07mi% z,}, Zmax = max{O,max z,}.

Zi< ziz

(i) c = 1,b = a+ 1. This case has been treated by [2]. Here we give a simpler proof.
Let 6 and €' (assume 6> 6') be the roots of

X2+ rnX+1=0.
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Then ¢/ <0< — 1. Let y; = z; — 0z;4, for i=0, then we have
ziry + zipir1 + Zipa = Yira + Y1 (r1 + 0r2).
Since r; + 0r, >0 and r, >0, by (6) we have

Ymin?2 +ymax(rl + 0?‘2)< 1>
0< Ymax72 +ymin(rl +072)~

These two formulas imply that

1) < < < 11+ 0ry
_—2 ymm \ymax —2'
(r1 +0ry)" — 13 (r1 4+ 0r))" =13
When a>6, we have ry >1, r; <% and —%<0< — 1. Hence from the above formula
1 4 : 1 4
we have —3<Ymin <Pmax <3. So for any i>1, —3<z; | — 0z;<35 holds.
First we claim that z; <0 implies z;_; >|z;|. Since —%<Z,~,1 —0z; and 0< — 1, we

have z;_1 >0z; — %2 |zi| — % Hence the claim is true because z; are integers.

Second, we assert that z; | < —z; when z;>0. From z;>0 we infer z;_; <0,
otherwise we have z;_; — 0z;>1 — 6>§. Moreover, this implies z;_» > — z;_;(=0) by
the above claim. Suppose our assertion is false, i.e. —z; + 1<z;_; <0. This together
with z;_» > — z;_ implies

Zioby + zZioir1 + z;
> —zioir +zioir + (1 —zi)
> —zig(n—rn+1)+1=>1

This contradicts (6) and establishes our assertion. Hence in any case we have

|zi—1| =|z:]- Since (z;) is purely periodic, so (z;) = z(—z) for some constant z>0. Now
by the left side of (6) we have 0<z(—r, + r; — 1), which implies z = 0. Therefore the
only element of £ is 0.

(i1) ¢ = 1, 1<b<a. This case follows from Theorem A.

(iii) ¢ = 1,5 = 0. This case has follows from Theorem B.

(iv) c=1,—a+2<b< — 1. In this case r; <0 and r, >0. It is easy to check that

[ri| + |r2| < 1. (7)

We assert that
|Zmin| < |Zmax| —1 (8)

holds. Setting z; = zin In r2z; 5 + 11z +z; <1, we get

0<rzi2 +71zi1 + Zmin <Zmax?2 + Zmin?1 + Zmin-
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Hence (Zmax — Zmin )72 = Zmin(r2 — 11 — 1). So no matter zy,;, = 0 or not, we have (8).
We claim that z; = zy,, Implies z;_| = zpax. Otherwise, setting z; = zgax In 1225 +
rzi1 +zi<l, we get

P2Zmin + 71 (Zmax — 1) + Zmax <F2Zi—2 + F1Zi—1 + Zmax < 1.

This together with (8) implies (zmax — 1)(—r2 + 11 + 1) <0. Hence zpox = 0and z; =0
for any /. This is a contradiction and our claim is proved. Hence (z; = z) is a constant
word, and the f-expansion of x is 0.x;x,... with x; = z(a + b) for any i>1. The
proposition is proved in this case.

(v) c=1,b=—a+1. Let >0 be the roots of mX>+rX +1=0. Then
#>1>6">0. Using the same argument as in (i), we have

yiry + yip1(r1 +0r2) <1,
where y; = z; — 0z;11. When a>6 we have r; + 0r, <0. So setting y;11 = Ymin We get
Ymin?2 +J/min(rl + 07‘2) <1,

which implies z; — 0zi4 | > Ymin > > — 3 when a>6.

If z;< — 1, then clearly z;.; <0 by the above inequality. If z; = —1, then z;; <0,
but z;;; =0 will lead to zx =1 for k>=i+ 2 by direct calculation and hence is
impossible. So we conclude that z; <0 implies z;;; <0. From (6), it is easy to show
that there is at least one z; such that z; >0. Hence we conclude that z; >0 for any i.

Setting z; = zmax 1IN 12z, + r1zi1 + z; <1, it is clear that z; | must be zy,x also.
Hence z; is a constant sequence and this case is settled.

(vi) c = —1,1<b<a — 1. In this case r; >0 and r, <0. Since |r|| + |r2| <1, we have
|Zmin| < Zmax — 1 by the same argument as in (iv). Setting z;;» = zmax in (6), we get

1> ziry + Zip 171 + Zmax
> Zmax?2 + Zmin”1 + Zmax
= Zmax!2 — (Zmax - 1)71 + Zmax-
Hence

Zmax < 1 +m (9)

(vi-1) b =a — 1. In this case Zya <2 by (9) when a>6. So z;e {—1,0,1,2}. If zy = —1
and z; = —1, then by (6) we have z; = 1, z3 =0, z4 = 1, zs = 0. Hence it has
purely periodic tail 10, which means that a purely periodic carry sequence
cannot start with (—1)(—1). By checking all the possibilities of zy and z;, one

can show that the purely periodic carry sequences are 0,10,01,2(—1), (—1)2.
Hence 2 is determined.
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(vi-2) 2<b<a—2. In this case zyax = 1 and hence z;€{0, 1}. Calculations show
that the purely periodic carry sequences are 0,01, 10.

(vi-3) b = 1. In this case zmax < 1 and z;€ {0, 1}. The purely periodic carry sequences
are 0,10, 10, 1.

(vii) ¢ = =1, —a + 3<h<0. In this case r; <0, r, <0 and |r;| + |r2|<1.

If (z;) is a purely periodic carry sequence with zp,, = 1, then it is easy to check
that (z;) = 1.

Assume that zp,=2. We claim that z; = zy,, implies z;_| = zpax. Otherwise,
setting z; = zmax 1IN 12z, 5 + r1zi-1 + z; <1, we get

Zmax!?2 + (Zmax - 1)V1 + Zmax < 17

which implies zyax <3 l:irz <2 when a>6. This contradicts our assumption and the

claim is proved. Hence (z;) is a constant sequence. This settles (vii). [

4. Weak finiteness of cubic Pisot units

We wish to show Theorem 3 by using the result in the previous section. Let us give
an example to illustrate the idea. Set « = 3, = —2,¢ = 1. Then by Proposition 1, we
have .1 =.111...e2. As dg(1) = .20111..., we have

A1l =111, — (=1)20111... = 2(=D)1 = 287" + ) = g2,
which shows (H). The following result is due to [2] and Bassino [7].

Lemma 3. The expansions of one for cubic Pisot units are given by the following
table:

c=1
b dp(1)
—a+1<b< -2 (a—1)(a+b—1)(a+b)
b=—1 (a—=1)(a—1)01
0<b<a abl
b=a+1 (a+ 1)00al
c=—1
b dp(1)

—a+3<b<0 (a—1)(a+b—1)(a+b-2)
I<b<a-—1 alb—1)(a—1)
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Proof of Theorem 3. If 2 = {0} then the stronger condition (F) holds and we have
nothing to prove. We will prove that the property (H) holds for those f with 2+ {0}.

(i) c=1and —a+ 1<b< — 2. Let v be an integer such that (v(a + b)) belongs to
2. Then v(a + b) <a — 1 as it has to be less than the expansion of one. First consider
the case v = 1. Lemma 3 shows

{a+b)y=p—(a—1)—(a+b—1)=100.— (a— 1)(a+b—1).

Therefore

(a+b) =.(a+b)(a+b)(a+b)+.000(a+b)
= (a+b+1)a+b)(a+b)—0a—)(a+b—1)

=(a+b+1)(a+b—1)1—.0(a-2),

which gives a desired expression. We do induction on v. If v(a + b) + 1 <a — 1 then
by adding the expansion of one, we see

(v(@a+b))=.(vla+b)+ D(wa+b))((v—1D(a+b)+1)((v—1)(a+b)—.0a—-1)

thus the problem is reduced to ((v — 1)(a + b)). Similarly if v(a +b) +1 =a — 1 and
a+ b>1, then the same expression gives

(v(a+b))=.(v(a+b)+1)0((v—1)(a+b)+1)((v—1)(a+b)) — .01
as desired. It remains to consider the case v(a+b)+1=a—1and a+ b =1 with

v>2. This implies a>4. In this case, ds(1) = .(a — 1)01. Adding two expansions of
one after shifting, we have

(a=2)=.(a—=2)+ .1(=a+ 1)0(=1) +.01(—a + 1)0(—1)

= .(a—1)00(a — 3)(a — 4) — .001.

This reduces the problem to (¢ — 4) which was discussed already. We finished this
case.

(ii) c = —1,1<b<a — 1. In this case there are (¢ — 1)(b— 1) and (b — 1)(a — 1) in
2. Thus

G-—(a-1)=.(b—D)a-1)b-1Da—1)

=bp ' —pr=b—- .01
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and
(a=-D(b-1N)=(a=1)b-1)a-1)
=.(a—1)b—.001

hold and we have done. When b = 1 and b = a — 1 there are some other elements in
2, which will be treated in (iii) and (iv).

(iii) c = —1 and b = 1. In this case, we additionally have (¢ — 1) e 2. Using (ii), we
have

0la—1)=.1-—.01 and (a—1)0=.(a— 1)1 —.001.
So (a—1)=.al —.011 = .a—.001
(iv) c = —1 and b = a — 1. Adding three expansions of one after shifting, we have
the formal expression

0=.(—1)a(a—2)(a—1)—.0(-=a(a —2)(a—1)

+.00(—)a(a —2)(a — 1)

=.(-1)(a+ 1)(=3)(a+ 1)(a - 3)a.
Thus
{a—=3)a=.(a—3)ala —3)a(a—3)a
=.(a—2)(-Da(-1) = .(a — 2)0a — .0101

and

.a(a—3) = .ala —2)0a — .00101

give the required expressions.
(V) c=—1and —a+3<b<0. Set kK =a+ b —2. Let v be an integer that (vk) is
admissible. Using the expansion of one, we see

K= .kkkk = .(a+b—1)—.0(1 = b)I,
which shows the case v = 1. We proceed in the same manner as in (i). As (vk) is
admissible, we have vk <a — 1. By using

(o)

= oK) — (~D(a—D(a+b— Dz
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=.(ok+1)0((v — Dx — )((v—DK) — .0(a — 1 —vx),

we can reduce the case to ((v — 1)k) and have confirmed all cases. [

5. Dominant condition

We shall proof Theorem 4 in this section. The essential idea is to use the sum of
digits as in [12].
Let
7(x) = X = byx = pyx— L — by

and set b; = 0 for all j>d. Let  be the dominant root of y(x), and let dg(1) = a1a...
when ff>1. We need the following lemma for the proof of Theorem 4.

Lemma 4. Let f>1 be the dominant root of y(x) with b, > Z;i:z |bj|. If, for some
(>0, a;=by+by+ - +b;—1 for all j</, then a;e{by +by+ --- +b, —1,b; +
byt 4 by,

Proof. (i) For / = 1, we have to show a; = | f | €{h; — 1, b;}. This holds because we
have y(b; — 1) <0 and y(b; + 1)>0, hence fe(b; — 1,b; + 1).
(i1) For 1</ <d, consider the following addition, where all lines are zero:

(-1 ,bl b./_l. !7/ !)d
(=) by by o bay by
(=1). by e by_s ... by
(—1) a ... ds_1. (bl—‘r"-—l—b/) (bd,/,l—l—“-—l—bd) ... by
Hence

a, = |_(b1 + .. —|—b/).(b2 + .- —|—b/+1)...(bd_/_1 + .- —l—bd)...de.
By the dominant condition b, >Z;l:2 |b;], we have
|b2 + .- +b/+1|<b1 -1, ...,|bd,/,1 + - +bd|<b1 —-1,..., ‘bd|<b1 — 1. (10)

If one of these inequalities is an equality, then Zj-lzz |bj| = by — 1 and all b; must have
the same sign. If all b; are positive, then f>b;, which contradicts the assumption
a; = by — 1. So all b; are negative and —Z;I:Z b; = by — 1. Hence we can factorize
2(x) as

2(x) = (x = D)(x = (by = Dx? = (by + by — X2 — oo — (b + - + by — 1)).
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Clearly by — 1=by+by—1=---2b; + --- + b4_1 — 1>0and hence dg(1) = (b; — 1)
(by+by—1)---(by+ -+ +bg-1 — 1). The lemma is proved in this case.
If all the inequalities in (10) are strict, then
by -2 by—2 b -2

and a/e{bl + -+ b= 1,01+ - +b/}.
(iii) />d means that a; = by + b, + --- +b; — 1 holds for all 1<j<d. Then it is
easy to check that

dg(1) = (br = 1)(by + by = 1)+ (by + - +bgy = 1)(b1 + -+ + by — 1)
and again the lemma holds. [

Proof of Theorem 4. By Theorem 2, it suffices to show (W’). As we have shown in
the proof of Lemma 4, in case —1+ by + --- +b; =0 and (by,b)#(2,—1), the
conditions of Theorem A are satisfied and f§ has the property (F). We have to exclude
(b1,by) = (2,—1) because this means y(x) =x>—2x+1 and f=1. So in the
following we assume —1 + by + --- + b;>0.

Consider xeZ[1/]n[0,1). This means that x has a representation x = .x1x3...x;
where x; may be negative. Set x; = max(xx,0), x; = max(—xg,0). Then

X=X X3 LX) — XXX
We extend the notion of admissibility to integer sequences y;y;... with possibly
negative entries by calling y;y,... admissible if and only if y|y; ... and y;y; ... are
admissible.

If x;x,...x; is admissible, then we are done. If x1x,...x; is not admissible, we
define an algorithm which changes it to a new representation x = xo'.x]x2"...x,".
The idea is to decrease Ejoio |x;/ by adding or subtracting digitwisely
OF=11(=by)...(=by) for some k>0. Then, we show that after a finite number of
iterations, we obtain an admissible (finite) representation of x.

Algorithm. Assume, w.l.o.g, that k is the smallest integer such that

+
X1 Xpq 2 =Zaay... .

If xpy1>=b;, which is always the case if a; =b;, we digitwisely add
0511 (=by)...(~=by) to .x1x3...x; and we obtain a new representation of x in the
form

xo' . x1'x2 .. = 0xy o xe1 (o + D) (kr — b1) oo (Xkewd — ba)Xevdst o -
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(For k=0, read x¢'.x1'xy’"... = 1.(x; — b1)...(xg — by)X441....) By the dominant
condition, we have

0 0 d
DD <t —bi+) ) |bl<o0.
=0 =0 =

The construction is finished. We remark that the left side of the above formula is
strictly less than 0 in case x; <0.

If X411 = by — 1, then necessarily a; = by — 1 and x],,x; ;... >aas.... Moreover,
Lemma 4 gives ape{b; + by — 1,b; + by }.

If xi,o>=by + by, which is always the case if a, = by + by, then we add
O (=by)...(=by) and .051(—by)...(—by) to xix;...x; and obtain

xo'.xl'le... =0.x; ...xk,l(xk + 1)(Xk+1 +1-— bl)(X/ﬁLz — b — bz)
(X3 — b2 — b3) -+ (Xksa — ba—1 — ba) (Xkvas1 — ba)Xkrasa ...

and hence

0 o0 d d
D= IS+ 1=bi—bi—br+ Y b+ |b]<0.
J=0 j=0 Jj=2 J=3

In general, we look for the positive integer ¢ such that x;; = by + --- +b; — 1 for
all j</ and x4, >=by + --- + b,. We claim that such an / always exists under the
assumption —1 4 by 4 --- 4 by>0. Otherwise, x;,x;,,... >a1a;... and Lemma 4
imply recursively xp;; = a; = by + --- +b; — 1>0 for all j>1, but this contradicts
that x;x,...xy is finite and the claim is proved.

Now, add .0F2H1(=by)---(=by) to x1x3...x; for 1<j</. We obtain x =
xo'.x1'xy"... of the form

0.x1...xk_1(xk+ 1)(xk+1 + 1 —b])...(xk+/_1 + 1 —bl — e —bk+/_1)
(Xkr = b1 — -+ = by)(Xkyrp1 — b2 — - = byy1)...
and
D= Il
=0 =0
¢/
KU+ (L=b) 4ot (1 =by— o —byg) = (b4 b))+ > > |yl
=2 j=i
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d
<C—(hi+0) ) |bl<0.
=2

The construction is finished.
Hence we always obtain a new representation of x with 37 |x/| <3575, |x]. If
Xy 1 Xgyn -+ =@14z..., a similar argument works by adding O (=1)by...by to

X1X.... Furthermore, 77, |x/| =3 7, |x;| is possible only for x>0 if
Xf X = aar ... (and x; <O if X\ x, . = a1ap.0).

Starting with xE)O).ng)x(zo) ... = 0.x1x,..., construct iteratively x(’H). (1'+1> ... from
X0 xl7.. as above by using the minimal k>0 such that xf{lﬁxﬁclz .Zaiay... or
x,((ilxig ...=Zaa,... and denote this k by k;. We have

w @ @
CREDIIRED DA
=0 =0 =0

Our algorithm terminates once we get an admissible sequence x(1i>x(2i>... . The
admissibility implies \xl x2 ...|<1 and xo e{O 1} because of xel0,1). Hence

xé)xi)xg)... is admissible if f>2. The only possibility for f<2 is by...b; =

20972(—1), but this is excluded by the assumption —1 + by + --- + by >0. Therefore
x(()”xgi)xg) ... is admissible and we have a representation x = y — z with y, ze Fin(f),
y<pand:z<l.

Suppose that the algorithm does not terminate in finitely many steps. Then
Z/%O |x;| becomes a constant after some iterations. We take this sequence as the

starting sequence and show that the {xo x(f)xg')...} converges to an infinite

sequence.
Let L = min;>ok; and A be the smallest number such that k; = L. Assume,
h h
w.lo.g., (x(Lll) (X(le)+ Zaia....

(h (h+1)

First we argue that x )>0, for otherwise >, [x; /| <> ;50 |)g;h)|. Second, the
next time we come back to L, we cannot come back with a different sign. For if /' is
the next time of coming back with

W) \— W) \—
()

. 3 (h+1) o ()
non-admissible, then x;"’>0 and thus > 7, [x;""/|<3> %, |x;"|. Hence we can
return to L at most | f | times.

By repeating the above argument, we have proved that xé').x(l')xg') ... converges to
an infinite sequence, which contradicts that Z/ﬁo |x;| is a constant. Therefore our

algorithm terminates and gives us an admissible representation of x. [
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6. Branching beta expansion

There is another way to access this weak finiteness problem. The result in this
section gives a practical way to show the property (F) or (W) for a fixed . Before
introducing the branching algorithm, we begin with an easier case, the property (F).
Denote by T, = Ty and define 7_(x) = Tp(x) — 1 = fx— | fx+1]. Of course
T_(x)e[—1,0). We say that an element x € Z[f] is f-finite if there is a positive integer
/ that T/f (x) = 0. This means that x can be expanded in the form

‘
—i
x:g X = xix0... Xy,

i=1

with x; = L/?T[";’l(x)J. Note that the first digit x; = | fx | is an integer without
restriction but the remaining expansion .0x;x3... is the beta expansion of x — x;/p.

Proposition 2. Assume that there exists a subset E of Z[f] which satisfies

® O0cE
o T.(E)uT_(E)<E.
® Fach element of E is [-finite.

Then f has the property (F).

Originally this type of method was introduced by Brunotte [9] and Scheicher—
Thuswaldner [19] independently for canonical number systems. The next proof is an
analogy to Lemma 4.1 in [4].

Proof. Assume that ¢ is f-finite and ne E. We wish to show that & + # is S-finite.
Note that

Tp(E+n) — Tp(¢) = Tp(n)(mod Z).

Thus if Tp(& +n) — Tp(£)€[0,1) then we have

Tp(C+n) = Tp(S) + T (n)
and if Tg(E+n) — Tp(E)e[—1,0) then

Tp(&+n) = Tp(&) + T-(n).
Thus we have shown that there exists an #' € E such that

Ty(E+n) =Tp(E) +1'.

Repeating this argument, we see that there exists an 7 such that

TR +n) =TEE) +n"=n"
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with 1" € E. Using the assumption of the proposition, we have shown that & + 5 is 8-
finite.

Since T_(0) = —1, it is easy to see that 7° (0) (i = 1,2, ...,d) forms a basis of Z[f]
as Z-module, where d is the degree of 5. Hence E contains a basis of Z[f]. Using the
additivity, each element of Z[f] is p-finite. Let x be an element of Z[1/f] and take a
positive integer N that f¥xeZ[1/f]. Then T[’}’ (x)eZ[B]n]0,1). This shows that x is

p-finite. Reviewing the definition of the beta expansion, this also proves that each
element xe Z[1/f] ., has finite beta expansion. [J

Assume that > 1 is the dominant root of the polynomial x4 — b;x¢~! — byx?~2 —
co —bg. Let ri = bipibia...bg = Y47 by 8 for i=0,1,...d — 1. Assume that
Z;‘J;l |r;|< 1. Then we show that the set

d—1
E = {Z Zd—ili

i=0

Z,’E{—I,O7 1}}

satisfies first the first two conditions of Proposition 2. The first condition is clear.
Using the carry sequence explained in Section 3, we have

d—1 d—1
Ty Z Za-1-iti | = Z Zd—ili
i=0 i=0
and z; has two choices to satisfy
—1<zyrg_ 1+ zor4 0+ - +zgro<1. (11)

Thus to show the 2nd condition of Lemma 2, it suffices to show that if z;e {—1,0,1}
for i=1,...d =1 then z;e{—1,0,1}. But this is clear from the condition
Z?;ll |ri|< 1. Now we give an alternative proof of the results in [13].

The following corollary can be found implicity in [13].

Corollary 1. If ri,ry, ...r5—1>0 and Z;:ll r;<1 then f has the property (F).

Proof. We only need to show that each element x of E has finite beta expansion.
Recalling (5), zj14—1 is determined from z;, zii1, ...zi+q—2 by Tp. Suppose that x
does not have finite beta expansion. Then we may assume xeZ. Using
periodicity, the associated carry sequence (z;) cannot take the value —1 since
Zirdg—1 = —1 causes a contradiction in (5). Thus z; must be 0 or 1. This implies
Zitd—1 = Zitqa = - = 0 and thus the carry sequence falls into the 0 cycle. This is
absurd. O
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From this, Theorem B is easily shown, since r| + -+ + ry_; equals
(by+ by + - +bg) " + (b3 +ba+ - + b))+ - + bafp ",

which is easily seen to be less than 1.
Now, let us introduce the ‘branching’ beta expansion. Assume that x can be
transformed by one of two maps 7T:

X1 X2 X3
x=¢( =658

where x; = & — T, (&;) and m;e {4+, —}. Then we can expand x by

s}

x:Z xif = x1xa... . (12)

i=1

Take an integer ¢ <f. We say that x is g-expansible if | T,, (& )| <q/p for all k, and x
is g-finite if additionally T, (¢,) =0 for some /. If x is g-expansible, then x is
expanded in a form (12) with |x;|<q for i>2. Note that x; may be large. The largest
digit |x;| = ¢ (i>2) appears only when we change the ‘branching direction’, i.e., the
signs m;_; and m; are different.

Conversely, if we have an expression (12) of x with |x;|<g — 1 for i>2 then one
will see that x is g-expansible. In fact, taking m; appropriately, we have

o0

T (&) = > xip

i=k+1
with

q9—1 ¢

| T ()| < m< B

where we used the assumption g<p5.
If ¢>f/2, then each xeR is g-expansible. This fact is seen by the central beta
transformation:

Up(x) = P — | Bx +3

which acts on [—1/2,1/2)=(—¢q/f,q/p). This gives digits x;e(—(f+1)/2,(p +
1)/2)nZ for i=2. This is a deterministic algorithm and Uj coincides with T or 7T_
depending on the applied value. In general, the above branching expansion is
indeterministic and we have one or two choices of digits.

Proposition 3. Assume that there exists a subset E of Z[f] which satisfies

® OekE,
o T (E)uT_(E)cE,
® there exists B/2<q<p that each xeE is q-finite.
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Then each element of Z[1/f) is g-finite. If q<| B | then B satisfies the property (W).
The last inequality can be replaced by q<| p | when a, = | pTp(1) | >0.

Proof. Assume that & is g-finite and ne E. We aim for showing that ¢ + 5 is g-finite.
By the assumption,

E=636365 3850,

where x; = p&; — Tp,,(&;) and m;e{+, —} and | T}, (&;)| <q/p for all k. We claim that
there exists an '€ E and k; € {4+, —} such that

T (E+11) = Ty (&) + 0 with [Ty, (€ + 1) <%.

Note that
T (E+1) — T (&) = T4 (E4 1) — T4(&) = T4 (n)(mod Z).

Thus if T(&+#n) — T+ (&) €[0,1) then we have

Tml (‘f + 17) = Tml ((:> + T+(’7)

and if T,.(¢+1n) — T4 (&)e[—1,0) then

Ty (E+1) = T, (&) + T- ().

Thus if |T,, (¢ +n)|<q/p, then we take k; = m; and ' = T4 () e E. Assume that
T, (E+n)e[—1,—q/p]. Then we see m; = —". As | T, (&)| <q/p, the value T4 (n)
must be negative. So we have

T-(E+n)=T(O)+T-(n)

and thus
To(&+n)=T-(&)+ T+(n)

and T, (¢+#n)e0,1 —q/Bl=(—q/P,q/B). This shows that we can take k; =+~
and #' = T, (5). The case T,, (¢ +n)e(q/p,1) is done the same way and we have
shown the claim.

Repeating this argument, we see that there exist k; (i = 1, ..., /) such that

Tk/ Tk/—l Tkz Tkl (f + 77) = Tm/ Tm/4 Tmz Tml (f) + 17” = ’7//

with 4" € E and | Ty, Ty,_, ... T, (¢ + 1)| <g/p for each i. Using the assumption of the
proposition, we have shown that & + # is g-finite.
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As in the proof of the previous proposition, E contains a basis of Z[f]
and therefore each element of Z[ff] is ¢g-finite. Let x be an element of Z[1/f] and take
a positive integer N such that ¥ xeZ[f]. Iterating the central beta expansion we
have U/],V(x) eZ[f]n[-1/2,1/2) which is g-finite. This shows that x is g-finite.

Suppose g<| f]. As each element x of Z[1/f]n[—1/2,1/2) is g-finite, we have
X=X|..X, =X] ..x; —x7...x;, with |x;|<¢<|p]—1. Note that x{...x/ and
Xy ...x, are admissible since we do not use the digit [ f]|. Take an element
xeZ[1/B]n[0,1). Then x or 1 — x is contained in [—1/2,1/2). In the latter case, the
relation 1 —x = .x{...x} — .x7...x;, shows x = L.x7...x; — .x{...x}. This shows
that f§ has the property (W) by Proposition 2. If @, >0, then one can take ¢ = | f | in
the above proof since x7' = | | implies x7}; =0 where me{+,—}. Indeed the
crucial digit | f | appears only when we change the sign m; in the branching beta
expansion (12). O

Propositions 2 and 3 give us an efficient way to show the properties (F) or (W) for
a fixed . Namely

(a) Let E; = {0}.

(b) Define inductively E, = E,_j T (E,_1)VT_(E,_).

(c) If E, = E,_; then go to (d) otherwise go to (b).

(d) For each element x of E,, confirm that x is f-finite. If it is true, then f§ has the
property (F).

(e) If there exists xeE, which is not fS-finite, i.e., x gives an eventually periodic
expansion, then we start over again and try to show that all elements of E, are ¢-
finite.

The emerging process (b) will terminate in a finite number of steps when f is a
Pisot number. This is easily proved since E,<Z[ff] and by each Galois conjugate
map, the image of E, is bounded. Thus this gives an efficient algorithm to
confirm that the property (F) holds or not. Process (e) is executed in the following
way. Let 4 be a directed graph of vertices E, and draw edges a — b between a,be E,
when T4 (a) = b and |b|<q/p. If we can walk along this G from each vertex to 0,
then all elements of E, are g-finite. However at this moment, this is not an
established algorithm for (W). It is not known that each x in E, must be g-finite
even if f>2 satisfies (W). By using Proposition 3, we can also give a sufficient
condition of (W).

Corollary 2. Let

_{LﬁJ ifa2>05
TVl -1 faa=0.

IfZ?;]l |ri|<q/P then B has the property (W).
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Proof. As Z;tll |ril<q/p<1, the set E = {E;{:_ol zg-iri| zie{—1,0,1}} satisfies the
first two conditions of Proposition 3. It remains to show that each element of E is ¢-
finite. As |Z;’;11 Za-iti| <Z?;11 |ri|<g/p, one can take z; = 0 in the branching beta
expansion keeping the g-expansible property. Continuing the same argument, we are
able to take z; = z;, = --- = 0 and thus each element of E is g-finite. [

This assertion is close to Theorem 4. In fact, Zf;ll |ri|< (b1 — 1)/p implies the
dominant condition b1>2?:2 |b;/ and conversely b >1 +Z§1:z |b;] implies
Z;‘:l |ri|< (b1 — 1)/p. However Corollary 2 occasionally exceeds Theorem 4. For
example, the dominant root of x3—3x*>—2x+1 satisfies the inequality
Z;‘;l |ri|<q/p with ¢ = 3 but does not satisfy the dominant condition.
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