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Abstract

In the study of substitutative dynamical systems and Pisot number systems, an algebraic

condition, which we call ‘weak finiteness’, plays a fundamental role. It is expected that all Pisot

numbers would have this property. In this paper, we prove some basic facts about ‘weak

finiteness’. We show that this property is valid for cubic Pisot units and for Pisot numbers of

higher degree under a dominant condition.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let b41 be a real number. The b-transformation is a piecewise linear
transformation on ½0; 1Þ defined by

Tb : x-bx � Ibxm;
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where Ixm is the largest integer not exceeding x: By iterating this map and
considering its trajectory

x!x1
TbðxÞ!

x2
T2
bðxÞ!

x3 ?

with xi ¼ IbTi�1
b ðxÞm; we obtain the greedy expansion of x:

x ¼ x1

b
þ x2

b2
þ x3

b3
? ¼ :x1x2x3y :

For any real number x40; there is an m40 such that b�m�1xA½0; 1Þ: Thus we can
express each x in the form

x ¼ x�mb
m þ?þ x�1bþ x0 þ

x1

b
þ? ¼ x�myx�1x0:x1x2x3y ;

which is called the beta expansion. If there is an integer k such that xi ¼ 0 for i4k;
then we say that the b-expansion of x is finite and we occasionally omit writing zeros
in the tail like: x ¼ x�mx�mþ1yxk�1xk:

Formally we may consider the trajectory of 1:

1!a1
Tbð1Þ!

a2
T2
bð1Þ!

a3
y :

We call a1a2a3y the expansion of one and denote it by dbð1Þ: Define

d�
bð1Þ ¼

dbð1Þ if dbð1Þ is not finite;

a1yad�1ðad � 1Þ if dbð1Þ ¼ a1yad with ada0;

(

where x1yxk stands for the periodic expansion x1yxkx1yxky: Then a sequence
(finite or infinite) over the alphabet f0; 1; 2;yg is said to be admissible if all its
right truncations are lexicographically less than d�

bð1Þ: A sequence is the b-expansion
of some real number if and only if it is admissible (see [15,16] for details). Let
FinðbÞ be the set of non-negative real numbers with finite b-expansion. Denote
by Z½b� the minimal ring containing Z and b and by Z½b�

X0 the non-negative

elements of Z½b�: We say that the number b has the finiteness property or property
(F) if

(F) FinðbÞ ¼ Z½1=b�
X0

holds. This property was introduced by Frougny–Solomyak [12]. They
showed that it implies that b is a Pisot number, i.e. a real algebraic integer
greater than 1 with all conjugates lying strictly inside the unit circle, and they
found the following class of Pisot numbers satisfying this property. Here a
root of a polynomial is called dominant, if it has the maximal modulus of all
roots.
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Theorem A (Frougny–Solomyak [12]). If b is the dominant root of the polynomial

xd � b1xd�1 � b2xd�2 �?� bdAZ½x� with b1Xb2X?Xbd40; then b is a Pisot

number and has the property (F).

Another class of Pisot numbers with (F) was found by Hollander.

Theorem B (Hollander [13]). If b is the dominant root of the polynomial xd �
b1xd�1 � b2xd�2 �?� bdAZ½x� with b14

Pd
i¼2 bi and biX0ð1pipdÞ; then b is a

Pisot number and has the property (F).

An alternative proof of Theorem B is given in Section 6. Of particular interest are
Pisot units, which are Pisot numbers as well as algebraic units. Akiyama–Sadahiro [5]

and Akiyama [1] used Pisot units b with the property (F) to construct tilings of Rd�1

(where d is the degree of b). Praggastis [17] showed that such tiling gives rise to a
Markov partition of the torus when b satisfies (F). The idea of these constructions is
due to Thurston [24]. Note that a tiling close to these was originally obtained by
Rauzy [18] in connection with substitutative dynamical systems. Arnoux–Ito [6] gave
a further generalization of this ‘Rauzy fractal’ and described the relation with
Markov partitions of toral automorphisms. A lot of applications of this theory are
found (cf. [11,23]).

Note that there are Pisot numbers without the property (F), in particular all
numbers with infinite expansions of one. A classification of cubic Pisot units with (F)
was established in [2] (see also Proposition 1).

Akiyama [3] also showed that the origin is an ‘exclusive’ inner point of the central
tile if and only if (F) holds. For the tiling property, he showed that the condition (F)
can be relaxed. Namely, for a Pisot unit b; Thurston’s construction gives a tiling if
and only if:

(W) For any xAZ½1=b�
X0 and any positive e; there exist y; zAFinðbÞ that x ¼ y � z

and zoe:

We call this condition a weak finiteness property or (W) in this paper.
This property was first studied by Hollander [13]. He tried to show that a

substitutative dynamical system associated to beta expansions has purely
discrete spectrum by reducing this problem to showing (W). Sidorov [21] used this
property to construct an almost conjugacy between the beta shift and a related
toral automorphism. He also found another application of (W) for Bernoulli
convolutions [22].

To study the tilings rising from Rauzy fractal, Ito–Rao [14] introduced the super-
coincidence condition of a substitution. The condition (W) is equivalent to the super-
coincidence condition if we restrict to substitutions coming from b-numeration
systems (see [10]).

The present paper is devoted to the study of the property (W).
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A Salem number is a real algebraic integer greater than 1 such that all its
conjugates lie inside the closed unit disk and at least one conjugate lies on the unit
circle. First we show

Theorem 1. If b has the property (W), then it must be a Pisot or a Salem number.

However, we are not able to prove (W) for any Salem number. Second, we derive
an easier criterion for the property (W).

Theorem 2. The property (W) is equivalent to:
ðW0Þ For any xAZ½1=b�-½0; 1Þ; there exist y; zAFinðbÞ such that x ¼ y � z with

yob and zo1:

This will be used to prove Theorem 4 in Section 5 and Proposition 3 in Section 6.
It is easy to show that quadratic Pisot numbers b satisfy this weakly finiteness (see
Section 2). In [3] it is conjectured that the property (W) holds for all Pisot units, in
[22] that it should hold even for all Pisot numbers. We give partial answers to this
conjecture.

Theorem 3. If b is a cubic Pisot unit, then b satisfies (W).

We do not know whether all cubic Pisot numbers satisfy (W).

Theorem 4. Let b be the dominant root of xd � b1xd�1 �y� bdAZ½x�: If

b14
Pd

j¼2jbjj and ðb1; b2Það2;�1Þ; then b satisfies (W).

Hereafter we refer to the inequality b14
Pd

j¼2 jbjj as a dominant condition.

The paper is organized as follows. In Section 2, we review known results and also
prove Theorems 1 and 2. If we knew the set P of purely periodic orbits of Tb; then

we could show (W) without difficulty. In Section 3 the set P is given for cubic Pisot
units by using an idea of [13]. Thus we can show Theorem 3 in Section 4. In Section
5, we prove Theorem 4. In Section 6, we discuss an alternative approach by using a
branching beta expansion. This gives an efficient algorithm to confirm (F) or (W) in
practice.

2. General criteria for weak finiteness

First, we prove the necessary condition for numbers satisfying (W) given in
Theorem 1.

Proof of Theorem 1. The condition (W) implies that b is an algebraic integer, since
we have an expression b� Ibm ¼ y � z with y; zAFinðbÞ and zoyo1: Assume that
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there is a conjugate g of b with jgj41: Take a positive integer m: From (W)
we infer

bm � Ibmm ¼
Xc
i¼1

cib
�i

with ciAð�b; bÞ-Z: Thus we have

gm � Ibmm ¼
Xc
i¼1

cig�ip
Ibm
jgj � 1

:

This is absurd since the left side is not bounded when m-N: &

Now we turn to sufficient conditions for (W). It is obvious that (F) implies (W). In
[3], it is shown that the Pisot numbers with the following property satisfy (W):

(PF) For each polynomial PðxÞ with non negative integer coefficients, PðbÞAFinðbÞ:

This condition was studied in [12] and proved for b where the expansion of one
a1a2a3y has decreasing digits. Quadratic Pisot numbers satisfy either (F) by
Theorem A or (PF) by the above criterion. Hence each quadratic Pisot number has
the property (W).

For Pisot numbers, we claim that it is sufficient to test a finite set of Z½1=b�:
Bertrand [8] and Schmidt [20] proved independently that every element of QðbÞ; so

in particular every element of Z½1=b�; has eventually periodic b-expansion if b is a
Pisot number. (For Salem numbers, this is unknown.) Therefore we study the set

P ¼ fxAZ½b�
X0 j Tm

b ðxÞ ¼ x for some m40g:

(The periodic points of Z½1=b� are always in Z½b�; since we can choose n large such
that x ¼ bnx � PðbÞ; and both bnx and PðbÞ belong to Z½b�:) It is easily seen that P is
a finite set and gives the set of all possible periodic tails of beta expansions (cf. [3,
Lemma 2]). Therefore for Pisot numbers, (W) is equivalent to

(P) For any xAP and any positive e; there exist y; zAFinðbÞ such that x ¼ y � z

and zoe:
This shows the claim. Furthermore, in [13], it is implicitly noted that

Lemma 1. The property (W) is equivalent to

(H) For any xAP; there exist y; zAFinðbÞ such that x ¼ y � z with yo1 and zo1:

For the convenience of the reader, we give the proof due to Hollander.

Proof. For each xAZ½1=b� and for a sufficiently large n; we have the beta expansion

x ¼ x�myx�1x0:x1yxn þ b�n�1t

ARTICLE IN PRESS
S. Akiyama et al. / Journal of Number Theory 107 (2004) 135–160 139



with t ¼ :c1yccAP: We may assume that ta0: Since this expansion is less than
dbð1Þ at any starting point, there exists n so that x�myx�1x0:x1yxn�1ðxn þ 1Þ is

admissible. Express t ¼ y � z by (H). Then, as finite words, the beta expansion of

x�myxn þ b�n�1y coincides with the concatenation of x�myxn and the beta
expansion of y: This means

x ¼ ðx�myx�1x0:x1yxn þ b�n�1yÞ � b�n�1z

gives a desired expression. Thus b has the property (W). &

Now we turn to the equivalent condition for (W) which is needed in Sections 5 and
6. Although we do not have any example, the following proof is valid even for Salem
numbers.

Proof of Theorem 2. Clearly, (W) implies ðW0Þ: We are going to prove the other
direction.

Let d�
bð1Þ ¼ a�

1a�
2y be the infinite representation of 1. Pick xAZ½1=b� with infinite

greedy expansion x ¼ :x1x2y and let x ¼ :B1B2y be its free block decomposition,
which is recursively given by B1 ¼ x1yxk1

such that x1yxk1�1 ¼ a�
1ya�

k1�1 and

xk1
oa�

k1
; B2 ¼ xk1þ1yxk2

such that xk1þ1yxk2�1 ¼ a�
1ya�

k2�k1�1 and xk2
oa�

k2�k1

and so on.
We distinguish four cases:
(i) There exists arbitrarily large j such that xkj

oa�
kj�kj�1

� 1: In this case, we

consider

Z ¼ x � :x1yxkj
AZ½b�1�-½0; b�kj Þ:

Then bkjZ is in Z½b�1�-½0; 1Þ and has, by assumption ðW0Þ; a representation

bkjZ ¼ y0:y1y2yyJ � :z1z2yzJ

with y0Af0; 1g: Hence

x ¼ :x1yxkj�1ðxkj
þ y0Þy1yyJ � :0kj z1z2yzJ

¼ y � z;

where y; zAFinðbÞ and zob�kj : Since kj can be arbitrarily large, we get the desired

representation.
(ii) There exists arbitrarily large j such that kjþ1 � kj4kj � kj�1: Then we first

claim that

xkj�1þ1yxkj�1ðxkj
þ 1Þ0kjþ1�kj�21
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is admissible. By the definition of the free block decomposition, xkj�1þ1yxkj�1ðxkj
þ 1Þ

is admissible. Hence the only possibility that the claim is false would be

xkj�1þ1yxkj�1ðxkj
þ 1Þ0kjþ1�kj�1 ¼ a�

1ya�
kjþ1�kj�1�1;

hence a�
kj�kj�1þ1 ¼ ? ¼ a�

kjþ1�kj�1�1 ¼ 0; in particular a�
kjþ1�kj

¼ 0; but this contradicts

a�
kjþ1�kj

4xkjþ1
and the claim is proved. So set

Z ¼ :x1yxkj�1ðxkj
þ 1Þ � x

o :x1yxkj�1ðxkj
þ 1Þ � :x1yxkj

a�
1ya�

kjþ1�kj�1

o b�kj � a�
1b

�kj�1 �?� a�
kjþ1�kj�1b

�kjþ1þ1ob�kjþ1þ1:

By assumption ðW0Þ; we get

bkjþ1�1Z ¼ y0:y1y2yyJ � :z1z2yzJ

and thus

x ¼ :x1yxkj�1ðxkj
þ 1Þ0kjþ1�kj�1z1z2yzJ � :0kjþ1�2y0y1yyJ

¼ y � z;

where y; zAFinðbÞ and zob�kjþ1þ2:
It remains to deal with the case kjþ1 � kj ¼ kj � kj�1 ¼ c for all sufficiently large j

where the assumption of (i) fails, i.e. x is eventually periodic with period
a�
1ya�

c�1ða�
c � 1Þ:

(iii) Suppose x is purely periodic, that is, x ¼ :a�
1ya�

c�1ða�
c � 1Þ: Let kX0 be the

integer such that d�
bð1Þ ¼ :a�

1ya�
c0

ka�
cþkþ1y and a�

cþkþ140: Let, for arbitrary j40;

Z ¼ :ða�
1ya�

c�1ða�
c � 1ÞÞ j�1

a�
1ya�

c � x

¼ b�j c � ða�
1b

�1 þ?þ a�
c�1b

�cþ1 þ ða�
c � 1Þb�cÞb�j;ell

1 � b�c

¼
a�
cþkþ1b

�c�k�1 þ a�
cþkþ2b

�c�k�2 þ?

1 � b�c b�j co
b�j c�c�k

1 � b�c : ð1Þ

From a�
c40 we infer that d�

bð1Þ is lexicographically larger than 10c�21: Hence

14b�1 þ b�c and ð1 � b�cÞ�1ob: This together with (1) implies Zob�j c�c�kþ1:

If c41; then Zob�j c�k�1; hence

Z ¼ :0 j cþky0y1yyJ � :0 j cþkþ1z1yzJ
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and

x ¼ :ða�
1ya�

c�1ða�
c � 1ÞÞk�1

a�
1ya�

c0
kþ1z1yzJ � :0 j cþky0y1yyJ

gives the desired representation.

The case c ¼ 1; i.e. x ¼ :ða�
1 � 1Þ (with a�

1X2) is more complicated. Formula (1)

becomes

Z ¼
a�
kþ2b

�1 þ a�
kþ3b

�2 þ?

1 � b�1
b�j�k�1 ð2Þ

and thus Zob�j�k: If Zob�j�k�1; then the argument for c41 still works here. So we

may assume b�j�k�1oZob�j�k: From ðW0Þ; we have

Z ¼ :0 jþk�1y0y1yyJ � :0 jþkz1yzJ :

Hence

x ¼ :ða�
1 � 1Þ j�1

a�
10

kz1yzJ � :0 jþk�1y0y1yyJ :

If :z1z2?o:a�
kþ2a�

kþ3y; then we already have the desired representation. So we

assume

:z1z2y4:a�
kþ2a�

kþ3y : ð3Þ

We are going to show

Zoð1 þ b�1Þb�j�k�1: ð4Þ

If this holds, then we have Z� b�j�k�1Að0; b�j�k�2Þ: Hence

Z� b�j�k�1 ¼ :0 jþkþ1y0
0y1

0
yyJ 0

0 � :0 jþkþ2z1
0
yzJ 0

0

and

x ¼ :ða�
1 � 1Þ j�1

a�
10

kþ2z1
0
yzJ 0

0 � :0 jþk1y0
0y1

0
yyJ 0

0

is a desired representation.
We may assume y1 ¼ 0 because of z140: (Otherwise, decrease both y1 and z1:)

Hence we have

y0:y1yo1:0a�
1a�

2y ¼ 1 þ b�1:

This together with (3) implies

Zoð1 þ b�1 � a�
kþ2b

�1 � a�
kþ3b

�2 �yÞb�j�k:
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Substituting Z by its expression in (2), we get

a�
kþ2b

�2 þ a�
kþ3b

�3 þ?

1 � b�1
o1 þ b�1 � a�

kþ2b
�1 � a�

kþ3b
�2 þ?;

thus

a�
kþ2b

�1 þ a�
kþ3b

�2 þ?oð1 þ b�1Þð1 � b�1Þ:

Using (2) once again, we get (4).

(iv) Finally we consider x ¼ :x1yxma�
1ya�

c�1ða�
c � 1Þ: By (iii), there exist :y1yyJ

and :z1yzJAFinðbÞ such that

:a�
1ya�

c�1ða�
c � 1Þ ¼ :y1yyJ � :z1yzJ :

Hence for any j;

x ¼ :x1yxmða�
1ya�

c�1ða�
c � 1ÞÞj

y1yyJ � :0mþj cz1yzJ

is a desired representation. This completes the proof of the theorem. &

3. Purely periodic orbits

In this section, we determine the set P; the purely periodic expansions in Z½b� for
cubic Pisot units. Geometrically, this set P corresponds to dual tiles sharing the
origin (cf. [3]).

We first review briefly the idea of [13] to interpret Tb as a shift on a symbolic space.

Let b41 be an algebraic integer. Let 1 ¼ 0:b1b2ybd be an arbitrary expression of 1
in base b; where bi are integers. (We do not consider the admissibility and also allow
bi to be negative.) Let

ri ¼ 0:biþ1ybd ; 0pipd � 1:

It is easy to check that fr0; r1;y; rd�1g spans Z½b�: Hence for any xAZ½b�-½0; 1Þ;
there are integers z1; z2;y; zd such that

x ¼ z1rd�1 þ z2rd�2 þ?þ zdr0

and a sequence ðzdþ1; zdþ2;yÞ; such that for each iX1;

0pzird�1 þ ziþ1rd�2 þ?þ ziþd�1r0o1: ð5Þ

Then the sequence in the above formula is uniquely determined by initial values
z1; z2;y; zd�1 and we call it a carry sequence of x: Let xi ¼ b1zdþi�1 þ?þ bdzi; then
it is easy to check that the b-expansion of x is 0:x1x2y: Hence
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Lemma 2 (Hollander [13]). Let xAZ½b�-½0; 1Þ: Then xAP if and only if a carry

sequence of x is purely periodic.

Let b41 be the dominant root of the polynomial

f ðxÞ ¼ x3 � ax2 � bx � c:

Then b is a Pisot number if and only if

jb � cjoa þ c and c2 � bosgnðcÞð1 þ acÞ

holds. When c ¼ 1; b is a Pisot number if and only if �a þ 1pbpa þ 1: When
c ¼ �1; b is a Pisot number if and only if �a þ 3pbpa � 1: (cf. [2])

Proposition 1. Let b be a cubic Pisot unit. Then the set P is given by the following

table.

c ¼ 1 a ¼ 1 b ¼ 0; 1; 2 0
aX2 �1pbpa þ 1 0
aX3 �a þ 1pbp� 2 ðva þ vbÞ; vX0; admissible

c ¼ �1 aX3 b ¼ a � 1 0; ða � 1Þðb � 1Þ; ðb � 1Þða � 1Þ;
aðb � 2Þ; ðb � 2Þa

aX4 2pbpa � 2 0; ða � 1Þðb � 1Þ; ðb � 1Þða � 1Þ
aX2 b ¼ 1 0; ða � 1Þ0; 0ða � 1Þ; ða � 1Þ
aX3 �a þ 3pbp0 ðav þ bv � 2vÞ; vX0; admissible

Proof. For ap6; this is checked by a theoretic bound on P (cf. [3, Lemma 2]). In

the following, we assume aX6: Let r0 ¼ 1; r1 ¼ b
b þ c

b2 and r2 ¼ c
b: Then fr0; r1; r2g

is a basis of Z½b�: Suppose ðziÞiX1 is a purely periodic carry sequence other than 0.

Then

0pzir2 þ ziþ1r1 þ ziþ2o1: ð6Þ

We denote

zmin ¼ min 0;min
zip0

zi

� �
; zmax ¼ max 0;max

ziX0
zi

� �
:

(i) c ¼ 1; b ¼ a þ 1: This case has been treated by [2]. Here we give a simpler proof.
Let y and y0 (assume y4y0) be the roots of

r2X 2 þ r1X þ 1 ¼ 0:
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Then y0oyo� 1: Let yi ¼ zi � yziþ1 for iX0; then we have

zir2 þ ziþ1r1 þ ziþ2 ¼ yir2 þ yiþ1ðr1 þ yr2Þ:

Since r1 þ yr240 and r240; by (6) we have

yminr2 þ ymaxðr1 þ yr2Þo1;

0o ymaxr2 þ yminðr1 þ yr2Þ:

These two formulas imply that

� r2

ðr1 þ yr2Þ2 � r22
oyminpymaxo

r1 þ yr2

ðr1 þ yr2Þ2 � r22
:

When aX6; we have r141; r2o1
6
and �4

3
oyo� 1: Hence from the above formula

we have �1
3
oyminoymaxo4

3
: So for any i41; �1

3
ozi�1 � yzio4

3
holds.

First we claim that zip0 implies zi�1Xjzij: Since �1
3
ozi�1 � yzi and yo� 1; we

have zi�14yzi � 1
3
Xjzij � 1

3
: Hence the claim is true because zi are integers.

Second, we assert that zi�1p� zi when zi40: From zi40 we infer zi�1p0;

otherwise we have zi�1 � yzi41 � y44
3
: Moreover, this implies zi�2X� zi�1ðX0Þ by

the above claim. Suppose our assertion is false, i.e. �zi þ 1pzi�1p0: This together
with zi�2X� zi�1 implies

zi�2r2 þ zi�1r1 þ zi

X� zi�1r2 þ zi�1r1 þ ð1 � zi�1Þ

X� zi�1ðr2 � r1 þ 1Þ þ 1X1:

This contradicts (6) and establishes our assertion. Hence in any case we have

jzi�1jXjzij: Since ðziÞ is purely periodic, so ðziÞ ¼ zð�zÞ for some constant zX0: Now
by the left side of (6) we have 0pzð�r2 þ r1 � 1Þ; which implies z ¼ 0: Therefore the
only element of P is 0.

(ii) c ¼ 1; 1pbpa: This case follows from Theorem A.
(iii) c ¼ 1; b ¼ 0: This case has follows from Theorem B.
(iv) c ¼ 1;�a þ 2pbp� 1: In this case r1o0 and r240: It is easy to check that

jr1j þ jr2jo1: ð7Þ

We assert that

jzminjpjzmaxj � 1 ð8Þ

holds. Setting zi ¼ zmin in r2zi�2 þ r1zi�1 þ zio1; we get

0pr2zi�2 þ r1zi�1 þ zminpzmaxr2 þ zminr1 þ zmin:
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Hence ðzmax � zminÞr2Xzminðr2 � r1 � 1Þ: So no matter zmin ¼ 0 or not, we have (8).
We claim that zi ¼ zmax implies zi�1 ¼ zmax: Otherwise, setting zi ¼ zmax in r2zi�2 þ

r1zi�1 þ zio1; we get

r2zmin þ r1ðzmax � 1Þ þ zmaxpr2zi�2 þ r1zi�1 þ zmaxo1:

This together with (8) implies ðzmax � 1Þð�r2 þ r1 þ 1Þo0: Hence zmax ¼ 0 and zi ¼ 0
for any i: This is a contradiction and our claim is proved. Hence ðzi ¼ zÞ is a constant
word, and the b-expansion of x is 0:x1x2y with xi ¼ zða þ bÞ for any iX1: The
proposition is proved in this case.

(v) c ¼ 1; b ¼ �a þ 1: Let y4y0 be the roots of r2X 2 þ r1X þ 1 ¼ 0: Then
y414y040: Using the same argument as in (i), we have

yir2 þ yiþ1ðr1 þ yr2Þo1;

where yi ¼ zi � yziþ1: When aX6 we have r1 þ yr2o0: So setting yiþ1 ¼ ymin we get

yminr2 þ yminðr1 þ yr2Þo1;

which implies zi � yziþ14ymin4 1
r1þðyþ1Þr24� 3

2
when aX6:

If zio� 1; then clearly ziþ1o0 by the above inequality. If zi ¼ �1; then ziþ1p0;
but ziþ1 ¼ 0 will lead to zk ¼ 1 for kXi þ 2 by direct calculation and hence is
impossible. So we conclude that zio0 implies ziþ1o0: From (6), it is easy to show
that there is at least one zi such that ziX0: Hence we conclude that ziX0 for any i:

Setting zi ¼ zmax in r2zi�2 þ r1zi�1 þ zio1; it is clear that zi�1 must be zmax also.
Hence zi is a constant sequence and this case is settled.

(vi) c ¼ �1; 1pbpa � 1: In this case r140 and r2o0: Since jr1j þ jr2jo1; we have
jzminjpzmax � 1 by the same argument as in (iv). Setting ziþ2 ¼ zmax in (6), we get

14 zir2 þ ziþ1r1 þ zmax

4 zmaxr2 þ zminr1 þ zmax

X zmaxr2 � ðzmax � 1Þr1 þ zmax:

Hence

zmaxo1 þ �r2

1 � r1 þ r2
: ð9Þ

(vi-1) b ¼ a � 1: In this case zmaxp2 by (9) when aX6: So ziAf�1; 0; 1; 2g: If z0 ¼ �1
and z1 ¼ �1; then by (6) we have z2 ¼ 1; z3 ¼ 0; z4 ¼ 1; z5 ¼ 0: Hence it has

purely periodic tail 10; which means that a purely periodic carry sequence
cannot start with ð�1Þð�1Þ: By checking all the possibilities of z0 and z1; one

can show that the purely periodic carry sequences are %0; 10; 01; 2ð�1Þ; ð�1Þ2:
Hence P is determined.
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(vi-2) 2pbpa � 2: In this case zmax ¼ 1 and hence ziAf0; 1g: Calculations show

that the purely periodic carry sequences are %0; 01; 10:
(vi-3) b ¼ 1: In this case zmaxp1 and ziAf0; 1g: The purely periodic carry sequences

are %0; 10; 10; %1:

(vii) c ¼ �1;�a þ 3pbp0: In this case r1o0; r2o0 and jr1j þ jr2jo1:
If ðziÞ is a purely periodic carry sequence with zmax ¼ 1; then it is easy to check

that ðziÞ ¼ %1:
Assume that zmaxX2: We claim that zi ¼ zmax implies zi�1 ¼ zmax: Otherwise,

setting zi ¼ zmax in r2zi�2 þ r1zi�1 þ zio1; we get

zmaxr2 þ ðzmax � 1Þr1 þ zmaxo1;

which implies zmaxo 1þr1
1þr1þr2

o2 when aX6: This contradicts our assumption and the

claim is proved. Hence ðziÞ is a constant sequence. This settles (vii). &

4. Weak finiteness of cubic Pisot units

We wish to show Theorem 3 by using the result in the previous section. Let us give
an example to illustrate the idea. Set a ¼ 3; b ¼ �2; c ¼ 1: Then by Proposition 1, we

have :%1 ¼ :111yAP: As dbð1Þ ¼ :20111y; we have

:111y ¼ :111y� :ð�1Þ20111y ¼ :2ð�1Þ1 ¼ ð2b�1 þ b�3Þ � b�2;

which shows (H). The following result is due to [2] and Bassino [7].

Lemma 3. The expansions of one for cubic Pisot units are given by the following

table:

c ¼ 1

b dbð1Þ

�a þ 1pbp� 2 ða � 1Þða þ b � 1Þða þ bÞ
b ¼ �1 ða � 1Þða � 1Þ01
0pbpa ab1

b ¼ a þ 1 ða þ 1Þ00a1

c ¼ �1

b dbð1Þ

�a þ 3pbp0 ða � 1Þða þ b � 1Þða þ b � 2Þ
1pbpa � 1 aðb � 1Þða � 1Þ
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Proof of Theorem 3. If P ¼ f0g then the stronger condition (F) holds and we have
nothing to prove. We will prove that the property (H) holds for those b with Paf0g:

(i) c ¼ 1 and �a þ 1pbp� 2: Let v be an integer such that ðvða þ bÞÞ belongs to
P: Then vða þ bÞoa � 1 as it has to be less than the expansion of one. First consider
the case v ¼ 1: Lemma 3 shows

:ða þ bÞ ¼ b2 � ða � 1Þb� ða þ b � 1Þ ¼ 100:� ða � 1Þða þ b � 1Þ:

Therefore

:ða þ bÞ ¼ :ða þ bÞða þ bÞða þ bÞ þ :000ða þ bÞ

¼ :ða þ b þ 1Þða þ bÞða þ bÞ � :0ða � 1Þða þ b � 1Þ

¼ :ða þ b þ 1Þða þ b � 1Þ1 � :0ða � 2Þ;

which gives a desired expression. We do induction on v: If vða þ bÞ þ 1oa � 1 then
by adding the expansion of one, we see

:ðvða þ bÞÞ ¼ :ðvða þ bÞ þ 1Þðvða þ bÞÞððv � 1Þða þ bÞ þ 1Þððv � 1Þða þ bÞÞ � :0ða � 1Þ

thus the problem is reduced to ððv � 1Þða þ bÞÞ: Similarly if vða þ bÞ þ 1 ¼ a � 1 and
a þ b41; then the same expression gives

:ðvða þ bÞÞ ¼ :ðvða þ bÞ þ 1Þ0ððv � 1Þða þ bÞ þ 1Þððv � 1Þða þ bÞÞ � :01

as desired. It remains to consider the case vða þ bÞ þ 1 ¼ a � 1 and a þ b ¼ 1 with

vX2: This implies aX4: In this case, dbð1Þ ¼ :ða � 1Þ0%1: Adding two expansions of

one after shifting, we have

:ða � 2Þ ¼ :ða � 2Þ þ :1ð�a þ 1Þ0ð�1Þ þ :01ð�a þ 1Þ0ð�1Þ

¼ :ða � 1Þ00ða � 3Þða � 4Þ � :001:

This reduces the problem to ða � 4Þ which was discussed already. We finished this
case.

(ii) c ¼ �1; 1pbpa � 1: In this case there are ða � 1Þðb � 1Þ and ðb � 1Þða � 1Þ in
P: Thus

ðb � 1Þða � 1Þ ¼ :ðb � 1Þða � 1Þðb � 1Þða � 1Þ

¼ bb�1 � b�2 ¼ :b � :01
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and

ða � 1Þðb � 1Þ ¼ :ða � 1Þðb � 1Þða � 1Þ

¼ :ða � 1Þb � :001

hold and we have done. When b ¼ 1 and b ¼ a � 1 there are some other elements in
P; which will be treated in (iii) and (iv).

(iii) c ¼ �1 and b ¼ 1: In this case, we additionally have ða � 1ÞAP: Using (ii), we
have

0ða � 1Þ ¼ :1 � :01 and ða � 1Þ0 ¼ :ða � 1Þ1 � :001:

So ða � 1Þ ¼ :a1 � :011 ¼ :a � :001
(iv) c ¼ �1 and b ¼ a � 1: Adding three expansions of one after shifting, we have

the formal expression

0 ¼ :ð�1Þaða � 2Þða � 1Þ � :0ð�1Þaða � 2Þða � 1Þ

þ :00ð�1Þaða � 2Þða � 1Þ

¼ :ð�1Þða þ 1Þð�3Þða þ 1Þða � 3Þa:

Thus

:ða � 3Þa ¼ :ða � 3Þaða � 3Þaða � 3Þa

¼ :ða � 2Þð�1Það�1Þ ¼ :ða � 2Þ0a � :0101

and

:aða � 3Þ ¼ :aða � 2Þ0a � :00101

give the required expressions.

(v) c ¼ �1 and �a þ 3pbp0: Set k ¼ a þ b � 2: Let v be an integer that ðvkÞ is
admissible. Using the expansion of one, we see

: %k ¼ :kkk %k ¼ :ða þ b � 1Þ � :0ð1 � bÞ1;

which shows the case v ¼ 1: We proceed in the same manner as in (i). As ðvkÞ is
admissible, we have vkoa � 1: By using

:ðvkÞ

¼ :ðvkÞ � :ð�1Þða � 1Þða þ b � 1Þ %k
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¼ :ðvkþ 1Þ0ððv � 1Þk� 1Þððv � 1ÞkÞ � :0ða � 1 � vkÞ;

we can reduce the case to ððv � 1ÞkÞ and have confirmed all cases. &

5. Dominant condition

We shall proof Theorem 4 in this section. The essential idea is to use the sum of
digits as in [12].

Let

wðxÞ ¼ xd � b1xd�1 � b2xd�2 �y� bd

and set bj ¼ 0 for all j4d: Let b be the dominant root of wðxÞ; and let dbð1Þ ¼ a1a2y

when b41: We need the following lemma for the proof of Theorem 4.

Lemma 4. Let b41 be the dominant root of wðxÞ with b14
Pd

j¼2 jbjj: If, for some

c40; aj ¼ b1 þ b2 þ?þ bj � 1 for all joc; then acAfb1 þ b2 þ?þ bc � 1; b1 þ
b2 þ?þ bcg:

Proof. (i) For c ¼ 1; we have to show a1 ¼ IbmAfb1 � 1; b1g: This holds because we
have wðb1 � 1Þo0 and wðb1 þ 1Þ40; hence bAðb1 � 1; b1 þ 1Þ:

(ii) For 1ocpd; consider the following addition, where all lines are zero:

ð�1Þ b1 y bc�1: bc y bd

& & &: & & & &
ð�1Þ b1: b2 y bd�c y bd

ð�1Þ: b1 y bd�c�1 y y bd

ð�1Þ a1 y ac�1: ðb1 þ?þ bcÞ y ðbd�c�1 þ?þ bdÞ y bd

Hence

ac ¼ ðb1 þ?þ bcÞ:ðb2 þ?þ bcþ1Þyðbd�c�1 þ?þ bdÞybdb c:

By the dominant condition b14
Pd

j¼2 jbjj; we have

jb2 þ?þ bcþ1jpb1 � 1;y; jbd�c�1 þ?þ bd jpb1 � 1;y; jbd jpb1 � 1: ð10Þ

If one of these inequalities is an equality, then
Pd

j¼2 jbjj ¼ b1 � 1 and all bj must have

the same sign. If all bj are positive, then b4b1; which contradicts the assumption

a1 ¼ b1 � 1: So all bj are negative and �
Pd

j¼2 bj ¼ b1 � 1: Hence we can factorize

wðxÞ as

wðxÞ ¼ ðx � 1Þðxd�1 � ðb1 � 1Þxd�1 � ðb1 þ b2 � 1Þxd�2 �?� ðb1 þ?þ bd�1 � 1ÞÞ:
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Clearly b1 � 1Xb1 þ b2 � 1X?Xb1 þ?þ bd�1 � 140 and hence dbð1Þ ¼ ðb1 � 1Þ
ðb1 þ b2 � 1Þ?ðb1 þ?þ bd�1 � 1Þ: The lemma is proved in this case.

If all the inequalities in (10) are strict, then

:ðb2 þ?þ bcþ1Þybdj jpb1 � 2

b
þ?þ b1 � 2

bd�1
o

b1 � 2

b� 1
o1

and acAfb1 þ?þ bc � 1; b1 þ?þ bcg:
(iii) c4d means that aj ¼ b1 þ b2 þ?þ bj � 1 holds for all 1pjpd: Then it is

easy to check that

dbð1Þ ¼ ðb1 � 1Þðb1 þ b2 � 1Þ?ðb1 þ?þ bd�1 � 1Þðb1 þ?þ bd � 1Þ

and again the lemma holds. &

Proof of Theorem 4. By Theorem 2, it suffices to show ðW0Þ: As we have shown in
the proof of Lemma 4, in case �1 þ b1 þ?þ bd ¼ 0 and ðb1; b2Það2;�1Þ; the
conditions of Theorem A are satisfied and b has the property (F). We have to exclude

ðb1; b2Þ ¼ ð2;�1Þ because this means wðxÞ ¼ x2 � 2x þ 1 and b ¼ 1: So in the
following we assume �1 þ b1 þ?þ bd40:

Consider xAZ½1=b�-½0; 1Þ: This means that x has a representation x ¼ :x1x2yxJ

where xi may be negative. Set xþ
k ¼ maxðxk; 0Þ; x�

k ¼ maxð�xk; 0Þ: Then

x ¼ :xþ
1 xþ

2 yxþ
J � :x�

1 x�
2 yx�

J :

We extend the notion of admissibility to integer sequences y1y2y with possibly

negative entries by calling y1y2y admissible if and only if yþ
1 yþ

2 y and y�
1 y�

2 y are

admissible.
If x1x2yxJ is admissible, then we are done. If x1x2yxJ is not admissible, we

define an algorithm which changes it to a new representation x ¼ x0
0:x0

1x2
0
yxJ 0 0:

The idea is to decrease
P

N

j¼0 jxjj by adding or subtracting digitwisely

:0k�11ð�b1Þyð�bdÞ for some kX0: Then, we show that after a finite number of
iterations, we obtain an admissible (finite) representation of x:

Algorithm. Assume, w.l.o.g, that k is the smallest integer such that

xþ
kþ1xþ

kþ2yXa1a2y :

If xkþ1Xb1; which is always the case if a1 ¼ b1; we digitwisely add

:0k�11ð�b1Þyð�bdÞ to :x1x2yxJ and we obtain a new representation of x in the
form

x0
0:x1

0x2
0
y ¼ 0:x1yxk�1ðxk þ 1Þðxkþ1 � b1Þyðxkþd � bdÞxkþdþ1y :
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(For k ¼ 0; read x0
0:x1

0x2
0
y ¼ 1:ðx1 � b1Þyðxd � bdÞxdþ1y:) By the dominant

condition, we have

XN
jX0

jxj
0j �

XN
jX0

jxjjp1 � b1 þ
Xd

j¼2

jbjjp0:

The construction is finished. We remark that the left side of the above formula is
strictly less than 0 in case xko0:

If xkþ1 ¼ b1 � 1; then necessarily a1 ¼ b1 � 1 and xþ
kþ2xþ

kþ3yXa2a3y: Moreover,

Lemma 4 gives a2Afb1 þ b2 � 1; b1 þ b2g:
If xkþ2Xb1 þ b2; which is always the case if a2 ¼ b1 þ b2; then we add

:0k�11ð�b1Þyð�bdÞ and :0k1ð�b1Þyð�bdÞ to x1x2yxJ and obtain

x0
0:x1

0x2
0
y ¼ 0:x1yxk�1ðxk þ 1Þðxkþ1 þ 1 � b1Þðxkþ2 � b1 � b2Þ

ðxkþ3 � b2 � b3Þ?ðxkþd � bd�1 � bdÞðxkþdþ1 � bdÞxkþdþ2y

and hence

XN
j¼0

jxj
0j �

XN
j¼0

jxjjp1 þ 1 � b1 � b1 � b2 þ
Xd

j¼2

jbj j þ
Xd

j¼3

jbjjp0:

In general, we look for the positive integer c such that xkþj ¼ b1 þ?þ bj � 1 for

all joc and xkþcXb1 þ?þ bc: We claim that such an c always exists under the

assumption �1 þ b1 þ?þ bd40: Otherwise, xþ
kþ1xþ

kþ2yXa1a2y and Lemma 4

imply recursively xkþj ¼ aj ¼ b1 þ?þ bj � 140 for all jX1; but this contradicts

that x1x2yxJ is finite and the claim is proved.

Now, add :0k�2þj1ð�b1Þ?ð�bdÞ to x1x2yxJ for 1pjpc: We obtain x ¼
x0

0:x1
0x2

0
y of the form

0:x1yxk�1ðxk þ 1Þðxkþ1 þ 1 � b1Þyðxkþc�1 þ 1 � b1 �?� bkþc�1Þ

ðxkþc � b1 �?� bcÞðxkþcþ1 � b2 �?� bcþ1Þy

and

XN
j¼0

jxj
0j �

XN
j¼0

jxjj

p1 þ ð1 � b1Þ þ?þ ð1 � b1 �?� bc�1Þ � ðb1 þ?þ bcÞ þ
Xc
i¼2

Xc
j¼i

jbj j
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pc� cb1 þ c
Xd

j¼2

jbj jp0:

The construction is finished.

Hence we always obtain a new representation of x with
P

N

j¼0 jxj
0jp
P

N

j¼0 jxjj: If

x�
kþ1x�

kþ2yXa1a2y; a similar argument works by adding :0k�1ð�1Þb1ybd to

:x1x2y: Furthermore,
P

N

j¼0 jxj
0j ¼

P
N

j¼0 jxjj is possible only for xkX0 if

xþ
kþ1xþ

kþ2yXa1a2y (and xkp0 if x�
kþ1x�

kþ2yXa1a2y).

Starting with x
ð0Þ
0 :x

ð0Þ
1 x

ð0Þ
2 y ¼ 0:x1x2y; construct iteratively x

ðiþ1Þ
0 :x

ðiþ1Þ
1 y from

x
ðiÞ
0 :x

ðiÞ
1 y as above by using the minimal kX0 such that x

ðiÞþ
kþ1x

ðiÞþ
kþ2yXa1a2y or

x
ðiÞ�
kþ1x

ðiÞ�
kþ2yXa1a2y and denote this k by ki: We have

XN
j¼0

jxð1Þ
j jX

XN
j¼0

jxð2Þ
j jX

XN
j¼0

jxð3Þ
j jXy :

Our algorithm terminates once we get an admissible sequence x
ðiÞ
1 x

ðiÞ
2 y . The

admissibility implies j:xðiÞ
1 x

ðiÞ
2 yjo1 and x

ðiÞ
0 Af0; 1g because of xA½0; 1Þ: Hence

x
ðiÞ
0 x

ðiÞ
1 x

ðiÞ
2 y is admissible if b42: The only possibility for bo2 is b1ybd ¼

20d�2ð�1Þ; but this is excluded by the assumption �1 þ b1 þ?þ bd40: Therefore

x
ðiÞ
0 x

ðiÞ
1 x

ðiÞ
2 y is admissible and we have a representation x ¼ y � z with y; zAFinðbÞ;

yob and zo1:
Suppose that the algorithm does not terminate in finitely many steps. ThenP
N

j¼0 jxjj becomes a constant after some iterations. We take this sequence as the

starting sequence and show that the fx
ðiÞ
0 :x

ðiÞ
1 x

ðiÞ
2 yg converges to an infinite

sequence.
Let L ¼ miniX0 ki and h be the smallest number such that kh ¼ L: Assume,

w.l.o.g., ðxðhÞ
Lþ1Þ

þðxðhÞ
Lþ2Þ

þ
yXa1a2y:

First we argue that x
ðhÞ
L X0; for otherwise

P
jX0 jx

ðhþ1Þ
j jo

P
jX0 jx

ðhÞ
j j: Second, the

next time we come back to L; we cannot come back with a different sign. For if h0 is
the next time of coming back with

ðxðh0Þ
Lþ1Þ

�ðxðh0Þ
Lþ2Þ

�?

non-admissible, then x
ðh0Þ
L 40 and thus

P
N

j¼0 jx
ðhþ1Þ
j jo

P
N

j¼0 jx
ðhÞ
j j: Hence we can

return to L at most Ibm times.

By repeating the above argument, we have proved that x
ðiÞ
0 :x

ðiÞ
1 x

ðiÞ
2 y converges to

an infinite sequence, which contradicts that
P

N

j¼0 jxj j is a constant. Therefore our

algorithm terminates and gives us an admissible representation of x: &
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6. Branching beta expansion

There is another way to access this weak finiteness problem. The result in this
section gives a practical way to show the property (F) or (W) for a fixed b: Before
introducing the branching algorithm, we begin with an easier case, the property (F).
Denote by Tþ ¼ Tb and define T�ðxÞ ¼ TbðxÞ � 1 ¼ bx � Ibx þ 1m: Of course

T�ðxÞA½�1; 0Þ: We say that an element xAZ½b� is b-finite if there is a positive integer

c that Tc
bðxÞ ¼ 0: This means that x can be expanded in the form

x ¼
Xc
i¼1

xib
�i ¼ :x1x2yxc;

with xi ¼ IbTi�1
b ðxÞm: Note that the first digit x1 ¼ Ibxm is an integer without

restriction but the remaining expansion :0x2x3y is the beta expansion of x � x1=b:

Proposition 2. Assume that there exists a subset E of Z½b� which satisfies

* 0AE
* TþðEÞ,T�ðEÞCE:
* Each element of E is b-finite.

Then b has the property (F).

Originally this type of method was introduced by Brunotte [9] and Scheicher–
Thuswaldner [19] independently for canonical number systems. The next proof is an
analogy to Lemma 4.1 in [4].

Proof. Assume that x is b-finite and ZAE: We wish to show that xþ Z is b-finite.
Note that

Tbðxþ ZÞ � TbðxÞ � TbðZÞðmod ZÞ:

Thus if Tbðxþ ZÞ � TbðxÞA½0; 1Þ then we have

Tbðxþ ZÞ ¼ TbðxÞ þ TþðZÞ

and if Tbðxþ ZÞ � TbðxÞA½�1; 0Þ then

Tbðxþ ZÞ ¼ TbðxÞ þ T�ðZÞ:

Thus we have shown that there exists an Z0AE such that

Tbðxþ ZÞ ¼ TbðxÞ þ Z0:

Repeating this argument, we see that there exists an c such that

Tc
bðxþ ZÞ ¼ Tc

bðxÞ þ Z00 ¼ Z00
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with Z00AE: Using the assumption of the proposition, we have shown that xþ Z is b-
finite.

Since T�ð0Þ ¼ �1; it is easy to see that Ti
�ð0Þ ði ¼ 1; 2;y; dÞ forms a basis of Z½b�

as Z-module, where d is the degree of b: Hence E contains a basis of Z½b�: Using the
additivity, each element of Z½b� is b-finite. Let x be an element of Z½1=b� and take a

positive integer N that bNxAZ½1=b�: Then TN
b ðxÞAZ½b�-½0; 1Þ: This shows that x is

b-finite. Reviewing the definition of the beta expansion, this also proves that each
element xAZ½1=b�

X0 has finite beta expansion. &

Assume that b41 is the dominant root of the polynomial xd � b1xd�1 � b2xd�2 �
?� bd : Let ri ¼ :biþ1biþ2ybd ¼

Pd�i
k¼1 biþkb

�k for i ¼ 0; 1;yd � 1: Assume thatPd�1
i¼1 jrijo1: Then we show that the set

E ¼
Xd�1

i¼0

zd�iri

�����ziAf�1; 0; 1g
( )

satisfies first the first two conditions of Proposition 2. The first condition is clear.
Using the carry sequence explained in Section 3, we have

T7

Xd�1

i¼0

zd�1�iri

 !
¼
Xd�1

i¼0

zd�iri

and zd has two choices to satisfy

�1pz1rd�1 þ z2rd�2 þ?þ zdr0o1: ð11Þ

Thus to show the 2nd condition of Lemma 2, it suffices to show that if ziAf�1; 0; 1g
for i ¼ 1;yd � 1 then zdAf�1; 0; 1g: But this is clear from the conditionPd�1

i¼1 jrijo1: Now we give an alternative proof of the results in [13].

The following corollary can be found implicity in [13].

Corollary 1. If r1; r2;yrd�140 and
Pd�1

i¼1 rio1 then b has the property (F).

Proof. We only need to show that each element x of E has finite beta expansion.
Recalling (5), ziþd�1 is determined from zi; ziþ1;yziþd�2 by Tb: Suppose that x

does not have finite beta expansion. Then we may assume xAP: Using
periodicity, the associated carry sequence ðziÞ cannot take the value �1 since
ziþd�1 ¼ �1 causes a contradiction in (5). Thus zi must be 0 or 1. This implies
ziþd�1 ¼ ziþd ¼ ? ¼ 0 and thus the carry sequence falls into the 0 cycle. This is
absurd. &
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From this, Theorem B is easily shown, since r1 þ?þ rd�1 equals

ðb2 þ b3 þ?þ bdÞb�1 þ ðb3 þ b4 þ?þ bdÞb�2 þ?þ bdb
�dþ1;

which is easily seen to be less than 1.
Now, let us introduce the ‘branching’ beta expansion. Assume that x can be

transformed by one of two maps T7:

x ¼ x1 !
x1 x2 !

x2 x3 !
x3
y

where xi ¼ bxi � Tmi
ðxiÞ and miAfþ;�g: Then we can expand x by

x ¼
XN
i¼1

xib
�i ¼ :x1x2y : ð12Þ

Take an integer qob: We say that x is q-expansible if jTmk
ðxkÞjoq=b for all k; and x

is q-finite if additionally TmcðxcÞ ¼ 0 for some c: If x is q-expansible, then x is
expanded in a form (12) with jxijpq for iX2: Note that x1 may be large. The largest
digit jxij ¼ q ðiX2Þ appears only when we change the ‘branching direction’, i.e., the
signs mi�1 and mi are different.

Conversely, if we have an expression (12) of x with jxijpq � 1 for iX2 then one
will see that x is q-expansible. In fact, taking mi appropriately, we have

Tmk
ðxkÞ ¼

XN
i¼kþ1

xib
k�i

with

jTmk
ðxkÞjp

q � 1

b� 1
o

q

b
;

where we used the assumption qob:
If q4b=2; then each xAR is q-expansible. This fact is seen by the central beta

transformation:

UbðxÞ ¼ bx � bx þ 1
2


 �
which acts on ½�1=2; 1=2ÞCð�q=b; q=bÞ: This gives digits xiAð�ðbþ 1Þ=2; ðbþ
1Þ=2Þ-Z for iX2: This is a deterministic algorithm and Ub coincides with Tþ or T�
depending on the applied value. In general, the above branching expansion is
indeterministic and we have one or two choices of digits.

Proposition 3. Assume that there exists a subset E of Z½b� which satisfies

* 0AE;
* TþðEÞ,T�ðEÞCE;
* there exists b=2oqob that each xAE is q-finite.
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Then each element of Z½1=b� is q-finite. If qoIbm then b satisfies the property (W).
The last inequality can be replaced by qpIbm when a2 ¼ IbTbð1Þm40:

Proof. Assume that x is q-finite and ZAE: We aim for showing that xþ Z is q-finite.
By the assumption,

x ¼ x1 !
x1 x2 !

x2 x3 !
x3 ? �!xc�1 xc !

xc
0;

where xi ¼ bxi � Tmi
ðxiÞ and miAfþ;�g and jTmk

ðxkÞjoq=b for all k: We claim that

there exists an Z0AE and k1Afþ;�g such that

Tk1
ðxþ ZÞ ¼ Tm1

ðxÞ þ Z0 with jTk1
ðxþ ZÞjoq

b
:

Note that

Tm1
ðxþ ZÞ � Tm1

ðxÞ ¼ Tþðxþ ZÞ � TþðxÞ � TþðZÞðmodZÞ:

Thus if Tþðxþ ZÞ � TþðxÞA½0; 1Þ then we have

Tm1
ðxþ ZÞ ¼ Tm1

ðxÞ þ TþðZÞ

and if Tþðxþ ZÞ � TþðxÞA½�1; 0Þ then

Tm1
ðxþ ZÞ ¼ Tm1

ðxÞ þ T�ðZÞ:

Thus if jTm1
ðxþ ZÞjoq=b; then we take k1 ¼ m1 and Z0 ¼ T7ðZÞAE: Assume that

Tm1
ðxþ ZÞA½�1;�q=b�: Then we see m1 ¼ ‘ � ’: As jTm1

ðxÞjoq=b; the value T7ðZÞ
must be negative. So we have

T�ðxþ ZÞ ¼ T�ðxÞ þ T�ðZÞ

and thus

Tþðxþ ZÞ ¼ T�ðxÞ þ TþðZÞ

and Tþðxþ ZÞA½0; 1 � q=b�Cð�q=b; q=bÞ: This shows that we can take k1 ¼ ‘ þ ’
and Z0 ¼ TþðZÞ: The case Tm1

ðxþ ZÞA½q=b; 1Þ is done the same way and we have
shown the claim.

Repeating this argument, we see that there exist ki ði ¼ 1;y; cÞ such that

TkcTkc�1
yTk2

Tk1
ðxþ ZÞ ¼ TmcTmc�1

yTm2
Tm1

ðxÞ þ Z00 ¼ Z00

with Z00AE and jTki
Tki�1

yTk1
ðxþ ZÞjoq=b for each i: Using the assumption of the

proposition, we have shown that xþ Z is q-finite.
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As in the proof of the previous proposition, E contains a basis of Z½b�
and therefore each element of Z½b� is q-finite. Let x be an element of Z½1=b� and take

a positive integer N such that bNxAZ½b�: Iterating the central beta expansion we

have UN
b ðxÞAZ½b�-½�1=2; 1=2Þ which is q-finite. This shows that x is q-finite.

Suppose qoIbm: As each element x of Z½1=b�-½�1=2; 1=2Þ is q-finite, we have

x ¼ x1yxc ¼ xþ
1 yxþ

c � x�
1 yx�

c with jxijpqpIbm� 1: Note that xþ
1 yxþ

c and

x�
1 yx�

c are admissible since we do not use the digit Ibm: Take an element

xAZ½1=b�-½0; 1Þ: Then x or 1 � x is contained in ½�1=2; 1=2Þ: In the latter case, the

relation 1 � x ¼ :xþ
1 yxþ

c � :x�
1 yx�

c ; shows x ¼ 1:x�
1 yx�

c � :xþ
1 yxþ

c : This shows

that b has the property (W) by Proposition 2. If a240; then one can take q ¼ Ibm in
the above proof since xm

i ¼ Ibm implies xm
iþ1 ¼ 0 where mAfþ;�g: Indeed the

crucial digit Ibm appears only when we change the sign mi in the branching beta
expansion (12). &

Propositions 2 and 3 give us an efficient way to show the properties (F) or (W) for
a fixed b: Namely

(a) Let E1 ¼ f0g:
(b) Define inductively En ¼ En�1,TþðEn�1Þ,T�ðEn�1Þ:
(c) If En ¼ En�1 then go to (d) otherwise go to (b).
(d) For each element x of En; confirm that x is b-finite. If it is true, then b has the

property (F).
(e) If there exists xAEn which is not b-finite, i.e., x gives an eventually periodic

expansion, then we start over again and try to show that all elements of En are q-
finite.

The emerging process (b) will terminate in a finite number of steps when b is a
Pisot number. This is easily proved since EnCZ½b� and by each Galois conjugate
map, the image of En is bounded. Thus this gives an efficient algorithm to
confirm that the property (F) holds or not. Process (e) is executed in the following
way. Let G be a directed graph of vertices En and draw edges a-b between a; bAEn

when T7ðaÞ ¼ b and jbjoq=b: If we can walk along this G from each vertex to 0;
then all elements of En are q-finite. However at this moment, this is not an
established algorithm for (W). It is not known that each x in En must be q-finite
even if b42 satisfies (W). By using Proposition 3, we can also give a sufficient
condition of (W).

Corollary 2. Let

q ¼
Ibm if a240;

Ibm� 1 if a2 ¼ 0:

�

If
Pd�1

i¼1 jrijoq=b then b has the property (W).
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Proof. As
Pd�1

i¼1 jrijoq=bo1; the set E ¼ f
Pd�1

i¼0 zd�iri j ziAf�1; 0; 1gg satisfies the

first two conditions of Proposition 3. It remains to show that each element of E is q-

finite. As j
Pd�1

i¼1 zd�irijp
Pd�1

i¼1 jrijoq=b; one can take zd ¼ 0 in the branching beta

expansion keeping the q-expansible property. Continuing the same argument, we are
able to take zd ¼ zdþ1 ¼ ? ¼ 0 and thus each element of E is q-finite. &

This assertion is close to Theorem 4. In fact,
Pd�1

i¼1 jrijoðb1 � 1Þ=b implies the

dominant condition b14
Pd

i¼2 jbij and conversely b141 þ
Pd

i¼2 jbij impliesPd�1
i¼1 jrijoðb1 � 1Þ=b: However Corollary 2 occasionally exceeds Theorem 4. For

example, the dominant root of x3 � 3x2 � 2x þ 1 satisfies the inequalityPd�1
i¼1 jrijoq=b with q ¼ 3 but does not satisfy the dominant condition.
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