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Abstract

Let K be a real quadratic field with 2-class rank equal to 4 or 5 and 4-class rank equal to 3. This
paper computes density information for such fields to have infinite Hilbert 2-class field towers.
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1. Introduction

Let K be a finite algebraic extension of the rational numbers Q. Let CK denote the
2-class group of K (i.e., the Sylow 2-subgroup of the ideal class group of K), and let
Ci

K = {ci : c ∈ CK }, where i is a positive integer. Let K1 be the Hilbert 2-class field of K

(i.e., the maximal abelian unramified extension of K whose Galois group is a 2-group),
and let Ki be the Hilbert 2-class field of Ki−1 for i � 2. Then

K ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Ki ⊆ · · ·
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is the Hilbert 2-class field tower of K . If Ki �= Ki−1 for all i, then the Hilbert 2-class field
tower of K is said to be infinite.

Next, let rK denote the 2-class rank of K ; i.e.,

rK = dimF2

(
CK/C2

K

)
, (1)

where F2 is the finite field with two elements, and the elementary abelian 2-group CK/C2
K

is viewed as a vector space over F2. Similarly, let sK denote the 4-class rank of K ; i.e.,

sK = dimF2

(
C2

K/C4
K

)
. (2)

From [3, p. 233], we know that the Hilbert 2-class field tower of K is infinite if

rK � 2 + 2
√

zK + 1, (3)

where zK is the number of infinite primes of K .
We shall now summarize some results that are known for quadratic fields K . Suppose

first that K is an imaginary quadratic extension of Q. Then zK = 1. So if rK � 5, then (3)
is satisfied and K has infinite Hilbert 2-class field tower. If rK = 3 or 4 and if sK � 3,
then K has infinite Hilbert 2-class field tower (cf. [11,12]). If rK = 4 and sK = 2, then
most K have infinite Hilbert 2-class field towers, and if rK = 4 and sK � 1, then many K

have infinite Hilbert 2-class field towers (cf. [1,2,9]). Thus there is considerable support for
the conjecture that all imaginary quadratic fields with 2-class rank equal to 4 have infinite
Hilbert 2-class field towers. Also, a positive proportion of the K with rK = 3 and sK = j

(with j = 0,1, or 2) have infinite Hilbert 2-class field towers (cf. [7,8]).
Now suppose K is a real quadratic extension of Q. Then zK = 2. So if rK � 6, (3) is

satisfied and K has infinite Hilbert 2-class field tower. If rK = 4 or 5 and sK � 4, then K

has infinite Hilbert 2-class field tower (cf. [14]). Also, a positive proportion of the K with
rK = 5 and sK = j (with j = 0,1,2, or 3) have infinite Hilbert 2-class field towers, and a
positive proportion of the K with rK = 4 and sK = j (with j = 0,1,2, or 3) have infinite
Hilbert 2-class field towers (cf. [7]). In this paper we shall show that when rK = 4 or 5 and
sK = 3, then most such K have infinite Hilbert 2-class field towers. More precisely, for
square-free integers m > 1, r = 4 or 5, and positive real numbers x, we let

Ar;x = {
K = Q(

√
m): rK = r and m � x

}
, (4)

Ar,3;x = {K ∈ Ar;x : sK = 3}, (5)

A∗
r,3;x = {K ∈ Ar,3;x : the Hilbert 2-class field tower of K is infinite}. (6)

We then define a density α∗
r,3 by

α∗
r,3 = lim inf

x→∞
|A∗

r,3;x |
|Ar,3;x | , (7)

where |A| denotes the cardinality of a set A.
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Theorem 1. For real quadratic fields with 2-class rank r = 4 or 5, let α∗
r,3 be the density

defined by (7). Then α∗
5,3 = 1 and α∗

4,3 � 1650
1710 > 0.9649.

This theorem provides some support for a conjecture that all real quadratic fields with
2-class rank greater than or equal to 4 have infinite Hilbert 2-class field towers.

2. Proof of Theorem 1

Let K = Q(
√

m), where m > 1 is a square-free integer. Let rK be the 2-class rank of K ,
and let t be the number of primes that ramify in K/Q. It is well known that

rK =
{

t − 1 if no prime dividing m is congruent to 3 (mod 4),

t − 2 if some prime dividing m is congruent to 3 (mod 4).
(8)

Let r be a fixed positive integer. If rK = r , then (8) implies that m has one of the following
forms:

(i) m = p1 · · ·pr+1 with distinct primes p1, . . . , pr+1 and no pi ≡ 3 (mod 4);
(ii) m = p1 · · ·pr+1 with distinct odd primes p1, . . . , pr+1 and an odd number of pi ≡ 3

(mod 4);
(iii) m = 2p1 · · ·pr+1 with distinct odd primes p1, . . . , pr+1 and at least one pi ≡ 3

(mod 4);
(iv) m = p1 · · ·pr+2 with distinct odd primes p1, . . . , pr+2 and a positive even number of

pi ≡ 3 (mod 4).

Let x be a positive real number and let Nx be the number of square-free positive integers
m � x with r + 2 prime factors. Then

Nx ∼ 1

(r + 1)! · x(log logx)r+1

logx
(as x → ∞)

(cf. [13, Theorem 437]). Now using the m from case (iv) above, we define

Yr;x = {
K = Q(

√
m): m = p1 · · ·pr+2 � x with odd primes p1 < · · · < pr+2

and with a positive even number of pi ≡ 3 (mod 4)
}
. (9)

Then

|Yr;x | ∼
(

1

2
− 1

2r+2

)
· 1

(r + 1)! · x(log logx)r+1

logx
(as x → ∞), (10)

since

∣∣{m = p1 · · ·pr+2 � x with primes p1 < · · · < pr+2 and m ≡ 1 (mod 4)
}∣∣ ∼ 1

Nx

2
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and
∣∣{m = p1 · · ·pr+2 � x with primes p1 < · · · < pr+2 and each pi ≡ 1 (mod 4)

}∣∣
∼ 1

2r+2
Nx.

Next we note that the m in (4) come from cases (i)–(iv) above, but m in cases (i)–(iii)
contribute only o(x(log logx)r+1/ logx) to |Ar;x |. So

|Ar;x | ∼ |Yr;x | (as x → ∞). (11)

Then for r = 4 or 5, we define

Yr,3;x = {K ∈ Yr;x : the 4-class rank sK = 3}, (12)

Y ∗
r,3;x = {K ∈ Yr,3;x : the Hilbert 2-class field tower of K is infinite}. (13)

From [5, Proposition 5.1],

|Yr,3;x | � x(log logx)r+1

logx

(in the formula for |Bt,e;x | in [5, Proposition 5.1], use t = r + 2, e = 3, but sum over � � 2
rather than � � 0 to get |Yr,3;x |). From (10) and from [7, Theorem 2 and Eq. 13],

∣∣Y ∗
r,3;x

∣∣ � x(log logx)r+1

logx
.

So we may disregard the m in cases (i)–(iii) when calculating asymptotic formulas for
|Ar,3;x | and |A∗

r,3;x | for r = 4 or 5. In other words, for r = 4 or 5,

|Ar,3;x | ∼ |Yr,3;x | (as x → ∞),∣∣A∗
r,3;x

∣∣ ∼ ∣∣Y ∗
r,3;x

∣∣ (as x → ∞).

Then from (7) we get

α∗
r,3 = lim inf

x→∞
|Y ∗

r,3;x |
|Yr,3;x | (14)

for r = 4 or 5.
We first consider r = 5. Since only the m in case (iv) are used in Y5,3;x , then the number

of ramified primes in Q(
√

m) is seven. From [10, Theorem 1], Q(
√

m) has infinite Hilbert
2-class field tower if seven primes ramify in Q(

√
m) and the 4-class rank of Q(

√
m) is 3.

So Y ∗ = Y5,3;x and α∗ = 1.
5,3;x 5,3
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So we consider r = 4. For K = Q(
√

m) ∈ Y4;x , we see that m = p1 · · ·p6 with odd
primes p1 < p2 < · · · < p6 and with a positive even number of pi ≡ 3 (mod 4). From [5,
Eqs. 5.5 and 5.6],

sK = 5 − rankMK, (15)

where MK is a 6 × 6 Rédei matrix over F2 whose entries aij are defined by Legendre
symbols as follows:

(−1)aij =
⎧⎨
⎩

(
Pi

pj

)
if i �= j,(

P̄i

pj

)
if i = j,

(16)

where Pi = pi if pi ≡ 1 (mod 4), Pi = −pi if pi ≡ 3 (mod 4), and P̄i = m/Pi . Actually
the matrix MK whose entries satisfy (16) is the transpose of the matrix MK in [5], but the
transpose of MK in [5] is used to derive other formulas in [5]. Also, the 4-class rank in
[5] is the 4-rank of the narrow ideal class group of K , but since some primes congruent to
3 (mod 4) divide m, then the 4-class rank of K in the usual sense is the same as the 4-class
rank of K in the narrow sense. We also note that from properties of Legendre symbols, the
sum of the entries in each column of MK is zero.

Now since pi ≡ 1 or 3 (mod 4) for 1 � i � 6 and since a positive even number of pi

satisfy pi ≡ 3 (mod 4), there are
(6

2

) + (6
4

) + (6
6

) = 31 possible sets of these congruence
conditions: 15 with exactly two pi ≡ 3 (mod 4), 15 with exactly four pi ≡ 3 (mod 4), and
one with all six pi ≡ 3 (mod 4). For each of the 31 possible sets of congruence conditions,
there are 32 768 possible matrices MK whose entries satisfy (16). (These matrices are
determined by the 215 = 32 768 possible values of the 15 Legendre symbols

(
Pi

pj

)
for 1 �

i < j � 6, given a set of congruence conditions (mod 4) for p1, . . . , p6.) Then combining
the possible sets of congruence conditions (mod 4) and the number of matrices for each
set of congruence conditions (mod 4), there are 31 · 32 768 = 1 015 808 possibilities to
consider, and each is asymptotically equally likely to occur as x → ∞. (This follows from
[5, Eq. 2.11 and Formula 2.12], which depend on character sum estimates similar to those
in Section 4 of [4] and Section 5 of [6]. Actually Eq. 2.11 and Formula 2.12 in [5] are
derived for imaginary quadratic fields, but the same arguments work for real quadratic
fields.)

Although there are 1 015 808 possibilities to consider when analyzing Y4;x , we are ac-
tually interested in K ∈ Y4,3;x . So we want the 4-class rank sK = 3. From (15), we want
rankMK = 2. The condition rankMK = 2 will substantially reduce the number of possi-
bilities to consider.

Case (a). Suppose that K = Q(
√

m), where m = p1 · · ·p6 with odd primes p1 < p2 <

· · · < p6 and exactly two pi ≡ 3 (mod 4), and sK = 3.

For convenience we consider p1 ≡ p2 ≡ 3 (mod 4) and pi ≡ 1 (mod 4) for 3 � i � 6.
(Similar arguments work for other arrangements of the six primes with two of them con-
gruent to 3 (mod 4).) Since the sum of the entries in each column of MK is zero, we may



F. Gerth III / Journal of Number Theory 118 (2006) 90–97 95
delete the first row of MK without changing the rank. Then by adding columns 2 through
6 to column 1, we get a matrix of the form

M̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
... A

... B· · · · · · · · · · · · · ·
0

...
...

0
...

...BT C
0

...
...

0
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦

, (17)

where A is a 1 × 1 matrix over F2, B is a 1 × 4 matrix over F2, BT is the transpose of B ,
and C is a 4 × 4 symmetric matrix over F2 (cf. [5, Eq. 5.12]). We can calculate the number
of possible M̄ in (17) with rank M̄ = 2 by using the algorithm in the remark following
Proposition 5.10 in [5]. That calculation gives 90 matrices M̄ in (17) with rank M̄ = 2.
Since there are

(6
2

) = 15 arrangements of the six primes dividing m with exactly two of
them congruent to 3 (mod 4), there are 90 · 15 = 1350 possibilities to consider in Case (a).

We shall call a matrix MK “good” if it corresponds to a field K that we know has infinite
Hilbert 2-class field tower. We shall need two preliminary lemmas. Although these results
are known to specialists, we shall sketch their proofs.

Lemma 1. Suppose L is a real quadratic field and suppose F is a quadratic extension of
L with at least ten primes ramified in F/L. Then F has infinite Hilbert 2-class field tower.

Proof. From genus theory the 2-class rank

rF � t − 1 − dimF2

(
EL/

(
EL ∩ NF/L

(
F×)))

,

where t is the number of primes that ramify in F/L, EL is the group of units in
the ring of integers of L, and NF/L : F× → L× is the norm map. Since t � 10 and
dimF2(EL/(EL ∩ NF/L(F×))) � 2, then rF � 7. So rF satisfies (3) and hence F has infi-
nite Hilbert 2-class field tower. �
Lemma 2. Suppose L is a totally real field with [L : Q] = 4. Suppose q1, q2, q3 are rational
primes, each congruent to 1 (mod 4), that split completely in L. Let F = L(

√
q1q2q3 ).

Then F has infinite Hilbert 2-class field tower.

Proof. Since q1, q2, q3 split completely in L, then twelve primes ramify in F/L. Since
each qi ≡ 1 (mod 4), then −1 ∈ (EL ∩NF/L(F×)). So dimF2(EL/(EL ∩NF/L(F×))) � 3.
So the 2-class rank rF � 12 − 1 − 3 = 8. Then rF satisfies (3), and hence F has infinite
Hilbert 2-class field tower. �

Now if rank M̄ = 2 in (17), then the rank of the submatrix [BT C] must be 1. Suppose
the first row of [BT C] consists entirely of zeros. From the way M̄ was created from
the entries in (16), this means

(
P3
pj

) = 1 for all j �= 3. Then p1,p2,p4,p5,p6 split in

L = Q(
√

P3 ), and then ten primes ramify in F/L, where F = L(
√

m). By Lemma 1,
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F has infinite Hilbert 2-class field tower. Since F is contained in the Hilbert 2-class field
of K = Q(

√
m), then K has infinite Hilbert 2-class field tower. A similar argument can be

used if any row of [BT C] consists entirely of zeros. So the matrix MK is good if any row
of [BT C] consists entirely of zeros.

So suppose there are no rows of [BT C] consisting entirely of zeros. Since
rank[BT C] = 1, then every row of [BT C] is the same. One possibility is when
B = [1 1 1 1] and every entry in C is zero. From the way M̄ was created from the en-
tries in (16), we see that

(
Pi

pj

) = −1 for 1 � i � 2 and 3 � j � 6. Also
(

P3
pj

) = 1 for

4 � j � 6. Then p4,p5,p6 split completely in L = Q(
√

P1P2,
√

P3 ). Then we can ap-
ply Lemma 2 to conclude that F = L(

√
P4P5P6 ) has infinite Hilbert 2-class field tower.

Since L(
√

m) = L(
√

P4P5P6 ) = F , then F is contained in the Hilbert 2-class field of
K = Q(

√
m), and hence K has infinite Hilbert 2-class field tower. So MK is a good matrix

in this situation.
The other possibilities with rank[BT C] = 1 and no row of zeros in [BT C] are B =

[0 0 0 0] or [1 1 1 1], and every entry in C is 1. In these situations we are not able to
determine whether K has infinite Hilbert 2-class field tower. Since A = [0] or [1] in (17),
there are 4 possible matrices M̄ in (17) for which we are unable to determine whether the
field has infinite Hilbert 2-class field tower. Since there are

(6
2

) = 15 arrangements of the six
primes dividing m with exactly two of them congruent to 3 (mod 4), there are 4 · 15 = 60
of the 1350 possibilities in Case (a) in which we are unable to determine whether K has
infinite Hilbert 2-class field tower. For the other 1290 possibilities, K has infinite Hilbert
2-class field tower.

Case (b). Suppose that K = Q(
√

m), where m = p1 · · ·p6 with odd primes p1 < p2 <

· · · < p6 and exactly four pi ≡ 3 (mod 4), and sK = 3.

For convenience we suppose pi ≡ 3 (mod 4) for 1 � i � 4 and p5 ≡ p6 ≡ 1 (mod 4).
(Similar arguments work for other arrangements.) Analogous to (17), we get a matrix

M̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
...

...

1
... A

... B

1
...

...· · · · · · · · · · · · · · ·
0

...
...

0
... BT

... C

⎤
⎥⎥⎥⎥⎥⎥⎦

, (18)

where A = [Aij ] is a 3 × 3 antisymmetric matrix over F2 (i.e., Aij �= Aji if i �= j ), B is a
3 × 2 matrix over F2, BT is the transpose of B , and C is a 2 × 2 symmetric matrix over F2.
If we use the algorithm in the remark following Proposition 5.10 in [5], we get 24 possible
matrices M̄ in (18) with rank M̄ = 2, and in each of them, rank[BT C] = 0. Then

(
P6
pj

) = 1

for 1 � j � 5. So p1,p2,p3,p4,p5 split is L = Q(
√

P6 ), and ten primes ramify in F/L,
where F = L(

√
m). By Lemma 1, F has infinite Hilbert 2-class field tower. Since F is

contained in the Hilbert 2-class field of K = Q(
√

m), then K has infinite Hilbert 2-class
field tower. Since there are

(6) = 15 arrangements of the six primes dividing m with exactly
4
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four of them congruent to 3 (mod 4), there are 24 · 15 = 360 possibilities in Case (b), and
all of them correspond to fields K which have infinite Hilbert 2-class field towers.

Case (c). Suppose K = Q(
√

m), where m = p1 · · ·p6 and each pi ≡ 3 (mod 4), and
sK = 3.

In this case the 6 × 6 matrix MK is antisymmetric (i.e., aij �= aji for all i �= j in
(16)). From [5, Corollary 3.3], rankMK � 3. Hence there are no fields K in Case (c)
with rankMK = 2, and we may disregard this case.

Now tabulating the results from Cases (a) and (b), we see that there are 1350 + 360 =
1710 possibilities to consider, and for all but 60 of the possibilities, we know that K has
infinite Hilbert 2-class field tower. This implies that the density α∗

4,3 defined by (7) satisfies
α∗

4,3 � 1650
1710 , which completes the proof of Theorem 1.
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