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Abstract

Let K be a real quadratic field with 2-class rank equal to 4 or 5 and 4-class rank equal to 3. This
paper computes density information for such fields to have infinite Hilbert 2-class field towers.
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1. Introduction

Let K be a finite algebraic extension of the rational numbers Q. Let Cg denote the
2-class group of K (i.e., the Sylow 2-subgroup of the ideal class group of K), and let
C ’K ={c¢': c € Ck}, where i is a positive integer. Let K| be the Hilbert 2-class field of K
(i.e., the maximal abelian unramified extension of K whose Galois group is a 2-group),
and let K; be the Hilbert 2-class field of K;_; for i > 2. Then
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is the Hilbert 2-class field tower of K. If K; # K;_1 for all i, then the Hilbert 2-class field
tower of K is said to be infinite.
Next, let rg denote the 2-class rank of K; i.e.,

rx = dimp, (Cx /C%), (1

where [F; is the finite field with two elements, and the elementary abelian 2-group Cg / Clz(
is viewed as a vector space over 5. Similarly, let sx denote the 4-class rank of K; i.e.,

sk = dimp, (C%/C¥). )

From [3, p. 233], we know that the Hilbert 2-class field tower of K is infinite if

rk 22+2yVzk +1, 3

where zk is the number of infinite primes of K.

We shall now summarize some results that are known for quadratic fields K. Suppose
first that K is an imaginary quadratic extension of Q. Then zxg = 1. Soif rx > 5, then (3)
is satisfied and K has infinite Hilbert 2-class field tower. If rx =3 or 4 and if sx > 3,
then K has infinite Hilbert 2-class field tower (cf. [11,12]). If rx =4 and sx = 2, then
most K have infinite Hilbert 2-class field towers, and if rx =4 and sx < 1, then many K
have infinite Hilbert 2-class field towers (cf. [1,2,9]). Thus there is considerable support for
the conjecture that all imaginary quadratic fields with 2-class rank equal to 4 have infinite
Hilbert 2-class field towers. Also, a positive proportion of the K with rx =3 and sx = j
(with j =0, 1, or 2) have infinite Hilbert 2-class field towers (cf. [7,8]).

Now suppose K is a real quadratic extension of Q. Then zx =2. So if rg > 6, (3) is
satisfied and K has infinite Hilbert 2-class field tower. If rx =4 or 5 and sg > 4, then K
has infinite Hilbert 2-class field tower (cf. [14]). Also, a positive proportion of the K with
rg =5 and sk = j (with j =0, 1,2, or 3) have infinite Hilbert 2-class field towers, and a
positive proportion of the K with rx =4 and sx = j (with j =0, 1, 2, or 3) have infinite
Hilbert 2-class field towers (cf. [7]). In this paper we shall show that when rx =4 or 5 and
sx = 3, then most such K have infinite Hilbert 2-class field towers. More precisely, for
square-free integers m > 1, r =4 or 5, and positive real numbers x, we let

Arx ={K=QWm): rk =r andm < x}, )
Az ={K €A, : sk =3}, ®)
Af’3;x ={K € A, 3.,: the Hilbert 2-class field tower of K is infinite}. (6)

We then define a density a ; by

*
| r,3;x|

o) 3 =liminf ,
3T N5 A,
x | r3:x

@)

where |A| denotes the cardinality of a set A.
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Theorem 1. For real quadratic fields with 2-class rank r =4 or 5, let az 3 be the density

defined by (7). Then o 5 =1 and o 5 > {53 > 0.9649.

This theorem provides some support for a conjecture that all real quadratic fields with
2-class rank greater than or equal to 4 have infinite Hilbert 2-class field towers.

2. Proof of Theorem 1

Let K = Q(y/m), where m > 1 is a square-free integer. Let rx be the 2-class rank of K,
and let ¢ be the number of primes that ramify in K /Q. It is well known that
e — t — 1 if no prime dividing m is congruent to 3 (mod 4), ®)
K=1t—2 ifsome prime dividing m is congruent to 3 (mod 4).

Let r be a fixed positive integer. If rx = r, then (8) implies that m has one of the following
forms:

(i) m = p1--- pr4+1 with distinct primes py, ..., p,+1 and no p; =3 (mod 4);
(i) m = pj - - - pr41 with distinct odd primes p1, ..., pr4+1 and an odd number of p; =3
(mod 4);
(iii)) m = 2py - -- pr41 with distinct odd primes pq, ..., pr+1 and at least one p; =3
(mod 4);
(iv) m = py - - pr42 with distinct odd primes py, ..., pr4+2 and a positive even number of
pi =3 (mod 4).

Let x be a positive real number and let N, be the number of square-free positive integers
m < x with r 4 2 prime factors. Then

1 x(loglogx)+1
(r+ 1! logx

M (as x = o0)

(cf. [13, Theorem 437]). Now using the m from case (iv) above, we define

Y x = {K=Q(«/ﬁ): m=pi--- pri2 < x with odd primes p; < --- < pry2

and with a positive even number of p; =3 (mod 4) } )
Then
1 1 1 x(loglogx) !
|Yr;x| ~ (5 - 2r+2) . r+1)! . log x (as x — 00), (10)
since

1
|{m:p1~-~p,+2 < x with primes p; <--- < pyjoand m =1 (m0d4)}| ~ ENX
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and
|{m = p1--- Pr42 < X with primes p; < --- < p,42 and each p; =1 (mod 4)}|
NWNX

Next we note that the m in (4) come from cases (i)—(iv) above, but m in cases (i)—(iii)
contribute only o(x (log logx)’“/logx) to |Ay.x]. So

|Arxl ~ Yrx]  (as x — 00). an

Then for r =4 or 5, we define

Y, 3.x ={K €Y,,,: the 4-class rank sg = 3}, (12)
er3;x ={K €Y, 3.,: the Hilbert 2-class field tower of K is infinite}. (13)

From [5, Proposition 5.1],

x(loglog x)"+!
[Yr 30| > BT E—
ogx

(in the formula for | B; ... | in [5, Proposition 5.1], use t =r 42, e = 3, but sum over £ > 2
rather than £ > 0 to get |Y, 3. |). From (10) and from [7, Theorem 2 and Eq. 13],

x(loglogx) *!
Y. _.
| r,3,x| > logx

So we may disregard the m in cases (i)—(iii) when calculating asymptotic formulas for
|Ay3;x| and [A7 . | for r =4 or 5. In other words, for r =4 or 5,

|Ar,3;x| ~ |Yr,3;x| (as x — 00),

AT 3 ~ 17

r3;x r,3;x’ (as x — 00).
Then from (7) we get

3kl
r3:x

oy = liminf (14)

x=>00 ¥ 3. ¢|

forr =4 or 5.

We first consider r = 5. Since only the m in case (iv) are used in Y5 3., then the number
of ramified primes in Q(4/m ) is seven. From [10, Theorem 1], Q(y/m ) has infinite Hilbert
2-class field tower if seven primes ramify in Q(4/m ) and the 4-class rank of Q(y/m ) is 3.
So Y5*,3;x = Y5.3., and ag‘j =1.
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So we consider r = 4. For K = Q(/m) € Y4, we see that m = p; --- pg with odd
primes p; < p» < --- < pe and with a positive even number of p; =3 (mod 4). From [5,
Egs. 5.5 and 5.6],

sk =5 —rank Mg, (15)

where Mg is a 6 x 6 Rédei matrix over [F; whose entries a;; are defined by Legendre
symbols as follows:

Py iti £,

(—1) = (?f) i (16)
(p__,') ifi =j,

where P; = p; if p; =1 (mod 4), P; = —p; if p; =3 (mod 4), and P = m/ P;. Actually
the matrix Mg whose entries satisfy (16) is the transpose of the matrix Mg in [5], but the
transpose of Mk in [5] is used to derive other formulas in [5]. Also, the 4-class rank in
[5] is the 4-rank of the narrow ideal class group of K, but since some primes congruent to
3 (mod 4) divide m, then the 4-class rank of K in the usual sense is the same as the 4-class
rank of K in the narrow sense. We also note that from properties of Legendre symbols, the
sum of the entries in each column of Mg is zero.

Now since p; =1 or 3 (mod 4) for 1 <i < 6 and since a positive even number of p;
satisfy p; =3 (mod 4), there are () + (§) + (g) = 31 possible sets of these congruence
conditions: 15 with exactly two p; =3 (mod 4), 15 with exactly four p; =3 (mod 4), and
one with all six p; =3 (mod 4). For each of the 31 possible sets of congruence conditions,
there are 32768 possible matrices Mx whose entries satisfy (16). (These matrices are
determined by the 2!5 = 32768 possible values of the 15 Legendre symbols (%) for 1 <
i < j <6, given a set of congruence conditions (mod 4) for py, ..., ps.) Then cjombining
the possible sets of congruence conditions (mod 4) and the number of matrices for each
set of congruence conditions (mod 4), there are 31 - 32768 = 1015808 possibilities to
consider, and each is asymptotically equally likely to occur as x — oo. (This follows from
[5, Eq. 2.11 and Formula 2.12], which depend on character sum estimates similar to those
in Section 4 of [4] and Section 5 of [6]. Actually Eq. 2.11 and Formula 2.12 in [5] are
derived for imaginary quadratic fields, but the same arguments work for real quadratic
fields.)

Although there are 1015 808 possibilities to consider when analyzing Y4.,, we are ac-
tually interested in K € Y4 3.,. So we want the 4-class ranksx = 3. From (15), we want
rank Mk = 2. The condition rank Mg = 2 will substantially reduce the number of possi-
bilities to consider.

Case (a). Suppose that K = Q(/m ), where m = p; --- pg with odd primes p; < py <
-+ < pe and exactly two p; =3 (mod 4), and sx = 3.

For convenience we consider p; = p» =3 (mod 4) and p; =1 (mod 4) for 3 <i <6.
(Similar arguments work for other arrangements of the six primes with two of them con-
gruent to 3 (mod 4).) Since the sum of the entries in each column of Mg is zero, we may
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delete the first row of Mg without changing the rank. Then by adding columns 2 through
6 to column 1, we get a matrix of the form

; A7)

where A is a 1 x 1 matrix over Fa, B is a 1 x 4 matrix over Fa, BT is the transpose of B,
and C is a 4 x 4 symmetric matrix over [F, (cf. [5, Eq. 5.12]). We can calculate the number
of possible M in (17) with rank M = 2 by using the algorithm in the remark following
Proposition 5.10 in [5]. That calculation gives 90 matrices M in (17) with rank M = 2.
Since there are (S) = 15 arrangements of the six primes dividing m with exactly two of
them congruent to 3 (mod 4), there are 90 - 15 = 1350 possibilities to consider in Case (a).

We shall call a matrix Mg “good” if it corresponds to a field K that we know has infinite
Hilbert 2-class field tower. We shall need two preliminary lemmas. Although these results
are known to specialists, we shall sketch their proofs.

Lemma 1. Suppose L is a real quadratic field and suppose F is a quadratic extension of
L with at least ten primes ramified in F /L. Then F has infinite Hilbert 2-class field tower.

Proof. From genus theory the 2-class rank
re>t—1— disz(EL/(EL N NF/L(FX))),

where ¢ is the number of primes that ramify in F/L, Er is the group of units in
the ring of integers of L, and Np,, : F* — L* is the norm map. Since ¢ > 10 and
dimp, (Er /(EL N NF/L(FX))) < 2,then rg > 7. So rp satisfies (3) and hence F has infi-
nite Hilbert 2-class field tower. 0O

Lemma 2. Suppose L is a totally real field with [L : Q] = 4. Suppose q1, g2, q3 are rational
primes, each congruent to 1 (mod 4), that split completely in L. Let F = L(\/q19293)-
Then F has infinite Hilbert 2-class field tower.

Proof. Since q1, q2, g3 split completely in L, then twelve primes ramify in /L. Since
eachg; =1 (mod4), then —1 € (E, ﬂNF/L(FX)). So dimp, (EL/(EL ﬂNF/L(FX))) <3.
So the 2-class rank rg > 12 — 1 — 3 = 8. Then rg satisfies (3), and hence F has infinite
Hilbert 2-class field tower. O

Now if rank M = 2 in (17), then the rank of the submatrix [B” C] must be 1. Suppose
the first row of [BT C] consists entirely of zeros. From the way M was created from

the entries in (16), this means (%) =1 for all j # 3. Then py, p2, pa, ps, pe split in
J

L = Q(/P3), and then ten primes ramify in F/L, where F = L(y/m). By Lemma 1,
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F has infinite Hilbert 2-class field tower. Since F is contained in the Hilbert 2-class field
of K = Q(4/m), then K has infinite Hilbert 2-class field tower. A similar argument can be
used if any row of [BT C] consists entirely of zeros. So the matrix Mg is good if any row
of [BT C] consists entirely of zeros.

So suppose there are no rows of [BT C] consisting entirely of zeros. Since
rank[BT C] = 1, then every row of [BT C] is the same. One possibility is when
B =[111 1] and every entry in C is zero. From the way M was created from the en-

tries in (16), we see that (;%) =—1for 1 <i<2and3<j<6. Also (%) =1 for

4 < j < 6. Then py, ps, pe split completely in L = Q(+/P; P2, +/P3). Then we can ap-
ply Lemma 2 to conclude that F = L(/P4PsPg) has infinite Hilbert 2-class field tower.
Since L(y/m) = L(/P4P5Pg) = F, then F is contained in the Hilbert 2-class field of
K = Q(4/m), and hence K has infinite Hilbert 2-class field tower. So Mg is a good matrix
in this situation.

The other possibilities with rank[ BT C]= 1 and no row of zeros in [BT C] are B =
[000O0]or[l111],andevery entry in C is 1. In these situations we are not able to
determine whether K has infinite Hilbert 2-class field tower. Since A = [0] or [1] in (17),
there are 4 possible matrices M in (17) for which we are unable to determine whether the
field has infinite Hilbert 2-class field tower. Since there are (g) = 15 arrangements of the six
primes dividing m with exactly two of them congruent to 3 (mod 4), there are 4 - 15 = 60
of the 1350 possibilities in Case (a) in which we are unable to determine whether K has
infinite Hilbert 2-class field tower. For the other 1290 possibilities, K has infinite Hilbert
2-class field tower.

Case (b). Suppose that K = Q(/m ), where m = p; --- pg with odd primes p; < py <
-+ < pe and exactly four p; =3 (mod 4), and sg = 3.

For convenience we suppose p; =3 (mod 4) for 1 <i <4 and ps = ps =1 (mod 4).
(Similar arguments work for other arrangements.) Analogous to (17), we get a matrix

; (18)

where A =[A;;]is a 3 x 3 antisymmetric matrix over F> (i.e., A;; #Aj; if i # j), Bisa
3 x 2 matrix over F5, BT is the transpose of B, and C is a 2 x 2 symmetric matrix over I,.
If we use the algorithm in the remark following Proposition 5.10 in [5], we get 24 possible
matrices M in (18) with rank M = 2, and in each of them, rank[ BT C]= 0. Then (%) =1
for 1 < j <5.50 p1, p2, p3. pa, ps splitis L = Q(+/Ps ), and ten primes ramify in F/L,
where F = L(y/m). By Lemma 1, F has infinite Hilbert 2-class field tower. Since F is
contained in the Hilbert 2-class field of K = Q(4/m ), then K has infinite Hilbert 2-class

field tower. Since there are (2) = 15 arrangements of the six primes dividing m with exactly
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four of them congruent to 3 (mod 4), there are 24 - 15 = 360 possibilities in Case (b), and
all of them correspond to fields K which have infinite Hilbert 2-class field towers.

Case (c). Suppose K = Q(/m), where m = p;--- p¢ and each p; =3 (mod 4), and
SK = 3.

In this case the 6 x 6 matrix Mg is antisymmetric (i.e., a;; # aj; for all i # j in
(16)). From [5, Corollary 3.3], rank Mg > 3. Hence there are no fields K in Case (c)
with rank Mg = 2, and we may disregard this case.

Now tabulating the results from Cases (a) and (b), we see that there are 1350 4+ 360 =
1710 possibilities to consider, and for all but 60 of the possibilities we know that K has
mﬁmte Hilbert 2-class field tower. This implies that the density « 13 defined by (7) satisfies

4> igio’ which completes the proof of Theorem 1.
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