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G.L. Watson [13,14] introduced a set of transformations,
called Watson transformations by most recent authors, in his
study of the arithmetic of integral quadratic forms. These
transformations change an integral quadratic form to another
integral quadratic form with a smaller discriminant, but
preserve many arithmetic properties at the same time. In
this paper, we study the change of class numbers of positive
definite ternary integral quadratic formula along a sequence
of Watson transformations, thus providing a new and effective
way to compute the class number of positive definite ternary
integral quadratic forms. Explicit class number formulae for
many genera of positive definite ternary integral quadratic
forms are derived as illustrations of our method.
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1. Introduction

Determining the class number of a positive definite integral quadratic form is a
classical and important problem in number theory. Ternary integral quadratic forms re-
ceive much attention because of their many connections to other areas of mathematics.
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A notable one among all these connections is the correspondence between ternary inte-
gral quadratic forms and orders in quaternion algebras. In the case of ternary quadratic
forms over Z, this correspondence leads to a bijection between similarity classes of posi-
tive definite ternary quadratic forms over Z and isomorphism classes of orders in definite
quaternion algebras over Q. Because of this bijection, computing the class numbers of
positive definite ternary quadratic forms over Z is tantamount to determining the type
numbers of orders in definite quaternion algebras over Q. By applying the Selberg Trace
Formula, Pizer [11] obtains explicit formulae for the type numbers of all Eichler or-
ders (they are called canonical orders in [11]). A formula for all orders is obtained by
Körner [6], but for numerical applications his formula requires the computation of the
so-called restricted embedding numbers of quadratic orders into quaternion orders, which
can be achieved only for some special orders using results of [4,9–11].

In this paper, we look at the problem of computing the class number of positive definite
ternary quadratic form from a different perspective. The backbone of our approach is
a set of transformations, now called Watson Transformations, which is first used by
Watson in his doctoral thesis [13] and is first in print in his paper [14]. They have been
reformulated in the geometric language of quadratic spaces and lattices by many recent
authors (see, for example [1,2]), and it is this language we will be using to conduct our
discussion throughout this paper. Unexplained notation and terminology from the theory
of quadratic spaces and lattices will follow those of O’Meara’s book [7]. For convenience,
a quadratic space is always a positive definite quadratic space over the field of rational
numbers Q, and the term “lattice” always refers to a Z-lattice on a (not necessarily fixed)
quadratic space. For a lattice L, gen(L) will denote the genus of L, and gen(L)/∼ is the
set of (isometry) classes in gen(L). The latter is a finite set and its cardinality is called
the class number of L, denoted h(L). The class of L in gen(L) is denoted by [L]. The
lattice L is integral if its scale ideal s(L) is inside Z, and is “primitive” if its scale ideal
s(L) is exactly Z. The norm ideal of L, denoted n(L), is the ideal of Z generated by the
set Q(L). We write L ∼= A whenever A is a Gram matrix of L, and the discriminant dL

is defined to be the determinant of A. A diagonal matrix with a1, . . . , an on the diagonal
is denoted by 〈a1, . . . , an〉.

Let L be a primitive ternary lattice, and m be a positive integer. The Watson trans-
formation at m first takes a sublattice Λm(L), and then scales the quadratic form on
this sublattice so that the end result is a primitive ternary lattice λm(L). The precise
definition of these transformations and some of their basic properties will be reviewed
in Section 2. For any ternary lattice, associated to it is a set of data called the label (see
Definition 6.1), which is a class invariant depending only on the order of the orthogonal
group of the lattice and the symmetries inside. The basic strategy of our method of
computing h(L) is:

(I) Transform L, via a finite sequence of Watson transformations, to a stable lattice K

(see Definition 2.3):
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(∗) L = L0
λm1−−−→ L1

λm2−−−→ · · · λmn−−−→ Ln = K,

where each mi is either 4 or a prime divisor of dL.
(II) Determine the labels of all the classes in gen(K), and hence obtain h(K).

(III) For each i � n, use the labels of the classes in gen(Li), . . . , gen(Ln) to determine
the labels of all the classes in gen(Li−1). In particular, h(Li−1) is computed.

These three steps together provide an effective procedure to compute h(L). The initial
input are the labels of the classes in gen(K), and the procedure itself will terminate after
a finite number of iterations.

Step (I) will be explained in Section 2, especially in Corollary 2.4. Step (II) will be the
content of Section 8. For Step (III), in this paper we will only deal with the case when each
of the Watson transformation in (∗) is at an odd prime. So, fix an odd prime p, and let us
consider the situation when we apply Λp to a ternary lattice L. For any N ∈ gen(Λp(L)),
let ΓL

p (N) be the set of lattices M ∈ gen(L) such that Λp(M) = N . Then gen(L)/∼
is the disjoint union of the classes in ΓL

p (N), where N runs through a complete set
of class representatives in gen(Λp(L)). Theorem 6.2 provides explicit formulae for the
size of each ΓL

p (N)/∼ in terms of the label of N . As a matter of fact, we obtain much
more in Theorem 6.2: we have explicit formulae for the number of classes of lattices in
ΓL
p (N) whose isometry groups are of a given order. In Section 7, we will describe how

to determine the labels of the lattices in ΓL
p (N) using only the labels of the classes in

gen(N). An illustration of our method can be found in Example 7.3, in which we derive
an explicit class number formula for the lattice⎛⎝ 2 0 −1

0 2 −1
−1 −1 6 · 72n + 1

⎞⎠
for every n � 0. In that example, all the Watson transformations needed are λ7, and the
total number of steps performed in our procedure is n.

The remaining task is to obtain the analogs of all the aforementioned results for the
Watson transformations at the prime 2 or at 4. Although the line of attack in this case
will be essentially the same, different tactics will be employed at various steps of the
proof due to the lack of uniqueness of Jordan structures at the prime 2. We will address
them in a second paper.

2. Watson transformations

Let m be a positive integer. For any integral lattice L, let

Λm(L) =
{
x ∈ L: Q(x + y) ≡ Q(y) mod m for all y ∈ L

}
,

and for every prime number q, let

Λm(Lq) =
{
x ∈ Lq: Q(x + y) ≡ Q(y) mod m for all y ∈ Lq

}
.
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It is clear that Λm(L) is a sublattice of L and Λm(L) ⊆ {x ∈ L: Q(x) ≡ 0 mod m}.
Moreover, Λm(L)q = Λm(Lq) for every prime number q, and Λm(L)q = Lq whenever
q � m. The readers are referred to [1] and [2] for more properties of the operators Λm. We
denote by λm(L) the primitive lattice obtained by scaling the quadratic map on Λm(L)
suitably. The mappings λm collectively are called the Watson transformations.2 Note
that ordq(dL) = ordq(dλm(L)) if q � m.

We now describe what Λm does to L when m is a prime or 4, although only the case
when m is an odd prime will be used heavily in this paper. In what follows, q is always
a prime number. Furthermore, we write Lq = Mq ⊥ Uq, where Mq is the leading Jordan
component and s(Uq) ⊆ qs(Mq).

Lemma 2.1. Suppose that Mq is even unimodular and n(Uq) ⊆ 2qZq. Then

Λeq(L)q = qMq ⊥ Uq,

where e = 2 if q = 2, and 1 otherwise. In particular,

(a) if ordq(dL) � 2, then ordq(dλeq(L)) < ordq(dL);
(b) if m is an odd squarefree positive integer and ordq(dL) � 1 for all q | m, then

λ2
m(L) = L.

Proof. The first assertion is essentially [1, Lemma 2.3] or [2, Lemma 2.1], which has the
other assertions as direct consequences. �
Lemma 2.2. Suppose that L is a ternary integral lattice with n(L2) = Z2.

(a) If rank(M2) = 2 and s(U2) ⊆ 2Z2, then

λ2(L)2 ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
M2 ⊥ U

1
2
2 if dM ≡ 1 mod 8;

M3
2 ⊥ U

1
2
2 if dM ≡ 5 mod 8;

P ⊥ U
1
2
2 if dM ≡ 3 mod 4,

where P is an even unimodular Z2-lattice.
(b) If rank(M2) = 1 and s(U2) ⊆ 4Z2, then λ2(L)2 ∼= M2 ⊥ U

1
4
2 .

(c) If rank(M2) = 1 and s(U2) = 2Z2, then λ2(L)2 ∼= M2
2 ⊥ U

1
2
2 .

In particular, if ord2(dL) � 2, then ord2(dλ2(L)) < ord2(dL); and if ord2(dL) = 1, then
λ2(L)2 is unimodular.

2 Note that the Watson transformations λm defined in [1] and [2] are slightly different than the ones we
use here: the lattices L and λm(L) in [1] and [2] are even primitive, that is, their norm ideals are 2Z. But
this difference can be easily rectified by scaling the quadratic maps by suitable 2-powers.
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Proof. The last two assertions are easy consequences of parts (a), (b), and (c), which
can be deduced from [2, Lemmas 2.3 and 2.4]3 except the case when ord2(dL) = 1
in part (a). In that case, L2 has a Jordan decomposition of the form 〈a, b, 2c〉, where
ab ≡ 1 mod 4. Therefore, Λ2(L)2 ∼= 〈a + b, ab(a + b), 2c〉 with ord2(a + b) = 1, and so
λ2(L)2 is unimodular. �
Definition 2.3. A primitive ternary lattice K is called stable if ordq(dK) � 1 for all
primes q, and ord2(dK) = 1 if and only if K is even.

Corollary 2.4. A primitive ternary lattice L can be transformed, via a finite sequence of
Watson transformations at the primes dividing dL or at 4, to a stable lattice.

Proof. We first set L0 to be L. Suppose that we have constructed ternary lattices
L0, . . . , Li. If Li is not stable, then we proceed to construct a primitive ternary lattice
Li+1 as follows:

• Suppose that q is an odd prime and ordq(dLi) � 2; or q = 2, ord2(dLi) = 1 and Li

is odd. Then set Li+1 to be λq(Li).
• If q = 2, ord2(dLi) � 2 and Li is even, then set Li+1 to be λ4(Li).

By Lemmas 2.1 and 2.2, we see that ordq(dLi+1) < ordq(dLi) and ord�(dLi+1) =
ord�(dLi) for all primes � �= q. Therefore, the above procedure will terminate after
at most

∑
q|dL ordq(dL) steps, and it will produce a finite sequence of primitive ternary

lattices L0, L1, . . . , Ln with the last lattice being stable. �
3. The cardinality of ΓL

p (N)

From now on, p is a fixed prime number.

Lemma 3.1. Let L be an integral lattice on a quadratic space V . Then σ◦Λp(L) = Λp◦σ(L)
for every σ ∈ O(V ).

Proof. Let x ∈ Λp(L) and z ∈ σ(L). Take w ∈ L such that σ(w) = z. Then

Q
(
σ(x) + z

)
= Q(x + w) ≡ Q(x) = Q

(
σ(x)

)
mod p,

hence σ(x) ∈ Λp(σ(L)). The lemma follows immediately from the observation that
σ(Λq(L)) and Λp(σ(L)) have the same discriminant. �
3 There is a mistake in [2, Lemma 2.3(2)]. When dM2

4 ≡ 5 mod 8, λ4(L)2 should be M3
2 ⊥ N

1
2
2 . This

affects neither the results in [2] nor the conclusion we draw here.
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Corollary 3.2. For any integral lattice L, the restriction map induces an injective group
homomorphism from O(L) into O(Λp(L)).

Proof. This is clear. �
Henceforth, L will always be a primitive ternary lattice on a quadratic space V . It

is easy to see that every lattice in gen(Λp(L)) is of the form Λp(M) for some M ∈
gen(L). Therefore, Λp induces a surjective function from gen(L) onto gen(Λp(L)), and
by Lemma 3.1 it induces a surjective function from gen(L)/∼ to gen(Λp(L))/∼. Since
Λp(L) and λp(L) are only different by a scaling on the quadratic maps, λp also induces
surjective functions from gen(L) onto gen(λp(L)) and from gen(L)/∼ onto gen(λp(L))/∼,
respectively.

Let ΓL
p (N) be the set of lattices M ∈ gen(L) such that Λp(M) = N , and ΓL

p (N)/∼
be the set of classes [M ] in gen(L) such that Λp(M) = N . Clearly,

h(L) =
∑

[N ]∈gen(Λp(L))

∣∣ΓL
p (N)/∼

∣∣.
For simplicity, we let h2d(N) be the number of classes in ΓL

p (N) having an isometry
group of order 2d, but keep in mind that this number depends also on Lp. It is clear that∣∣ΓL

p (N)/∼
∣∣ =

∑
d

′
h2d(N), (3.1)

where in the summation
∑′, d runs through all the positive divisor of |O+(N)|.

Let σ ∈ O(N) and M ∈ ΓL
p (N). Since Λp(σ(M)) = σ(Λp(M)) = σ(N) = N , σ(M)

belongs to ΓL
p (N). So, O(N) acts on the set ΓL

p (N). Moreover, Lemma 3.1 implies that
if τ(M) ∈ ΓL

p (N) for some isometry τ of V , then τ is in O(N). Therefore,∑
d

′
h2d(N) = 1

|O+(N)|
∑

σ∈O+(N)

∣∣ΓL
p (N)σ

∣∣, (3.2)

where ΓL
p (N)σ is the set of fixed points of σ. The last equality comes from the observation

that ΓL
p (L)σ = ΓL

p (L)−σ.
Since the size of the orbit containing M ∈ ΓL

p (N) under the action of O(N) is
|O(N)|/|O(M)|, we have the equation∑

d

′ |O+(N)|
d

h2d(N) =
∣∣ΓL

p (N)
∣∣. (3.3)

Proposition 3.3. For any N ∈ gen(Λp(L))

∣∣ΓL
p (N)

∣∣ = w(L)
w(Λp(L)) ,

where w(L) and w(Λp(L)) are the mass of gen(L) and gen(Λp(L)) respectively.
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Table 1
Values of w(L)

w(Λp(L)) .

α, β w(L)
w(Λp(L)) α, β w(L)

w(Λp(L))

(1) α = 0, β = 2 p(p+e12)
2 (2) α = 0, β � 3 p2

(3) α = β = 1 1 (4) α = 1, β = 2 p−e13
2

(5) α = 1, β � 3 p (6) α = β = 2 p(p+e23)
2

(7) α = 2, β � 3 p(p−e12)
2 (8) α � 3 p2

Proof. Since O(N) acts on the set ΓL
p (N), we have

∣∣ΓL
p (N)

∣∣ =
∑

[M ]∈ΓL
p (N)

|O(N)|
|O(M)| .

However, if N ′ is another lattice in gen(Λp(L)), then it is easy to see that there is a
bijection between ΓL

p (N) and ΓL
p (N ′). Therefore, |ΓL

p (N)| is independent of the choice
of N in gen(Λp(L)), and hence

w
(
Λp(L)

)∣∣ΓL
p (N)

∣∣ =
∑

[N ′]∈gen(Λp(L))

1
|O(N ′)|

∑
[M ]∈ΓL

p (N)

|O(N)|
|O(M)|

=
∑

[N ′]∈gen(Λp(L))

∑
[M ]∈ΓL

p (N ′)

1
|O(M)|

=
∑

[M ]∈gen(L)

1
|O(M)|

= w(L). �
From now on, till the end of the paper, the prime p is always assumed to be odd and

ordp(dL) � 2. Using the Minkowski–Siegel mass formula [5, Theorem 6.8.1], we have

w(L)
w(Λp(L)) =

(
dL

d(Λp(L))

)2
αp(Λp(L)p, Λp(L)p)

αp(Lp, Lp)
,

where αp( , ) are the local densities. These local densities can be computed by [5, The-
orem 5.6.3]. The values of w(L)

w(Λp(L)) are displayed in Table 1. They are arranged by the
Jordan decomposition of Lp. The quantity eij in the table is defined as follows. Suppose
that Lp 
 〈ε1, pαε2, pβε3〉, where α � β and εi ∈ Z×

p for all i. Then

eij =
{ 1 if − εiεj ∈ (Z×

p )2,

−1 otherwise.
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4. Isometry groups

We digress in this section to collect some results concerning the isometries of a ternary
lattice which are useful for the subsequent discussion. Throughout this section, K is a
primitive ternary lattice. Given a nonzero vector x in the quadratic space underlying K,
the associated symmetry of the space is denoted by τx. We let S(K) be the set of
symmetries of K. Since the conjugate of a symmetry of K by any isometry in O(K)
is still a symmetry, S(K) is decomposed into finitely many disjoint conjugacy classes
under the conjugate action by O(K). In this section, when we present S(K) explicitly
by listing its elements, we will do so by presenting it as the disjoint union of these
conjugacy classes.

By a result of Minkowski [8], |O(K)| cannot be larger than 48. Let I be the standard
cubic lattice, A be the root lattice of Type A3, and J be the primitive adjoint of A;
so

I ∼= 〈1, 1, 1〉, A ∼=

⎛⎝ 2 1 0
1 2 1
0 1 2

⎞⎠ and J ∼=

⎛⎝ 3 −1 −1
−1 3 −1
−1 −1 3

⎞⎠ .

The isometry groups of all three lattices have order 48 – in fact, they are isomorphic –
and they are generated by −I and symmetries. If {x1, x2, x3} is the basis which yields
any one of the above Gram matrices, then

S(I) = {τx1 , τx2 , τx3} ∪ {τxi±xj
: 1 � i < j � 3},

S(A) = {τx1 , τx2 , τx3 , τx1−x2 , τx2−x3 , τx1−x2+x3} ∪ {τx1−x3 , τx1+x3 , τx1−2x2+x3},

and

S(J) = {τxi+xj
: 1 � i < j � 3}

∪ {τx1−x2 , τx1−x3 , τx2−x3 , τx1+2x2+x3 , τx1+x2+2x3 , τ2x1+x2+x3}.

It is direct to check that Λ2(J) = 2I and Λ2(I) = A; so λ2(J) = 1
2Λ2(J). Now, suppose

that L is a ternary lattice such that Λp(L) = pJ. Let M = λ2(L) and E = λ2(M). It is
not hard to see that Λp(M) = pI and Λp(E) = pA, and the λ2 transformation induces
bijections

ΓL
p (pJ)/∼ → ΓM

p (pI)/∼ → ΓE
p (pA)/∼. (4.1)

For every G ∈ ΓE
p (pA), define a ternary lattice G∗ by setting G∗

2 = 2G	
2, where �

denotes the dual, and G∗
q = Gq for all q �= 2. Then, E∗ = L, and ∗ induces a bijection

from ΓE
p (pA)/∼ back to ΓL

p (pJ)/∼ such that O(G) = O(G∗) for all G ∈ ΓE
p (pA). It

then follows from Corollary 3.2 that O(U) = O(λ2(U)) for any U in either ΓL
p (pJ) or

ΓM
p (pI).
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Suppose that every element in O(K) has order � 2. If σ �= −I, then either σ or
−σ is a symmetry. As a result, O(K) is an elementary 2-group which is generated by
−I and the symmetries. Let τu and τv be two different symmetries in O(K). Since τu
and τv commute, u and v must be orthogonal. This shows that |O(K)| is at most 8.
Particularly, if |O(K)| = 8, O(K) contains exactly three symmetries τw, τu, τv, and w,
u, v are mutually orthogonal in K. In particular, O(K) is isomorphic to the abelian
2-group Z2 ⊕ Z2 ⊕ Z2.

Now, suppose that O(K) has an isometry σ of order 3. As a Z[σ]-module, K is
isomorphic to either (Z[ζ3], 1) or Z[ζ3] ⊕ Z, where ζ3 is a primitive third root of unity
(see [3]). Accordingly, K has a basis {x1, x2, x3} such that

σ(x1) = x2, σ(x2) = −x1 − x2 and σ(x3) = x1 + x3

or

σ(x1) = x2, σ(x2) = −x1 − x2 and σ(x3) = x3,

and the associated symmetric matrix (B(xi, xj)) is

K1(a, b) :=

⎛⎝ 2a −a −a

−a 2a 0
−a 0 b

⎞⎠ or K2(a, b) :=

⎛⎝ 2a −a 0
−a 2a 0
0 0 b

⎞⎠
for a pair of relatively prime positive integers a and b. In the three special cases when
K1(1, 1) ∼= I, K1(1, 2) ∼= A, and K1(4, 3) ∼= J, the isometry groups have order 48.

Lemma 4.1. Let a, b be relatively prime positive integers. Then

(a) |O(K2(a, b))| = 24;
(b) |O(K1(a, b))| = 12 unless (a, b) = (1, 1), (1, 2), or (4, 3).

Proof. Part (a) is clear, since K2(a, b) is the orthogonal sum of Zx1 + Zx2 and Zx3.
For part (b), note that b > 2a/3 because K1(a, b) is positive definite. Let G be the

subgroup of O(K1(a, b)) that is generated by τx1 , τx2 , τx1+x2 , and −I. Our goal is to
show that O(K1(a, b)) is equal to this subgroup G, which has order 12, unless (a, b) is
one of the three exceptional cases.

We first handle the case when b > 2a. In this case, {x1, x2, x3} is a Minkowski reduced
basis, and therefore the minimal vectors in K1(a, b) are ±x1,±x2, and ±(x1 + x2). Let
σ be an isometry of K1(a, b). Since σ must permute the minimal vectors, σ induces an
isometry on the sublattice Zx1 + Zx2, and hence we may assume that σ(xi) = xi for
i = 1, 2. Since z := 2x1 + x2 + 3x3 spans the orthogonal complement of Zx1 + Zx2,
therefore σ(z) = ±z. A direct computation shows that σ(z) = −z is impossible, thus
σ(z) = z and so σ = I ∈ G.
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Now, let us assume that b < 2a. The Gram matrix of K1(a, b) with respect to the new
basis y1 = x1 + x3, y2 = x1 + x2 + x3, y3 = x3 is⎛⎝ b b− a b− a

b− a b b− a

b− a b− a b

⎞⎠ .

Suppose that u := αy1 + βy2 + γy3 is a primitive vector of K1(a, b) with Q(u) = b, that
is

b = b
(
α2 + β2 + γ2) + 2(b− a)(αβ + βγ + γα).

If α2 + β2 + γ2 = |αβ + βγ + γα|, then α = β = γ ∈ {0, 1,−1}. As a result, 4b = 3a and
so (a, b) = (4, 3) which is a contradiction. Thus, we may assume that

α2 + β2 + γ2 � |αβ + βγ + γα| + 1.

Then

b = b + b
(
α2 + β2 + γ2 − 1

)
+ 2(b− a)(αβ + βγ + γα)

=
{
b + (2a− b)(α2 + β2 + γ2 − 1) if b > a;

b + (3b− 2a)(α2 + β2 + γ2 − 1) if b < a.

This shows that if (a, b) is not one of the three exceptional pairs, then ±y1,±y2,±y3 are
all the vectors u ∈ K1(a, b) such that Q(u) = b. It is direct to check that both G and
O(K1(a, b)) act on these six vectors, and G permutes them transitively. Therefore, for
any σ ∈ O(K1(a, b)), there exists τ ∈ G such that στ = I. Thus σ ∈ G as desired. �

Excluding the three special cases K1(1, 1), K1(1, 2) and K1(4, 3), O(K1(a, b)) and
O(K2(a, b)) are generated by −I and symmetries, and we have

S
(
K1(a, b)

)
= {τx1 , τx2 , τx1+x2},

and

S
(
K2(a, b)

)
= {τx1 , τx2 , τx1+x2} ∪ {τx1+2x2 , τ2x1+x2 , τx1−x2} ∪ {τx3}.

Note that τx3 is the only symmetry in the center of O(K2(a, b)). Also, O(K1(a, b)) ∼=
Z2 ⊕ D3 and O(K2(a, b)) ∼= Z2 ⊕ Z2 ⊕ D3. As a result, both groups do not have any
element of order 4.

The following is an immediate consequence of the proof of Lemma 4.1.

Corollary 4.2. Let K be a primitive ternary lattice whose isometry group has order 48.
Then K ∼= I, A, or J.
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Now suppose that the order of the isometry σ is 4. Then by [12, Proposition 4], there
is a basis {z1, z2, z3} of K with respect to which σ is represented by one of the following
four matrices:⎛⎝ 1 0 0

0 0 −1
0 1 0

⎞⎠ ,

⎛⎝−1 0 0
0 0 −1
0 1 0

⎞⎠ ,

⎛⎝ 1 0 1
0 0 −1
0 1 0

⎞⎠ ,

⎛⎝−1 0 −1
0 0 1
0 −1 0

⎞⎠ .

For the first two matrices, it is easy to see that there is a basis {x1, x2, x3} of K such
that

σ(x1) = −x2, σ(x2) = x1, σ(x3) = ±x3,

which means that K is isometric to

K3(a, b) := 〈a, a, b〉.

For the third matrix, let x1 = z1 − 2z2, x2 = −z1 + 2z3, and x3 = z2 − z3. Then

σ(x1) = −x2, σ(x2) = x1, σ(x3) = x2 + x3,

implying that K is isometric to

K4(a, b) :=

⎛⎝ 2a 0 −a

0 2a −a

−a −a b

⎞⎠ .

For the fourth, we take x1 = z1, x2 = −z3, and x3 = z1 − z2 so that

σ(x1) = x2, σ(x2) = x3, σ(x3) = −x1 − x2 − x3;

thus K is isometric to⎛⎝ a b −a− 2b
b a b

−a− 2b b a

⎞⎠ ∼=

⎛⎝ 2a + 2b 0 −a− b

0 2a + 2b −a− b

−a− b −a− b a

⎞⎠ = K4(a + b, a).

Note that K3(1, 1) ∼= I, K4(1, 2) ∼= A, and K4(2, 3) ∼= J. It is not hard to see that these
are the only cases for which |O(K3(a, b))| and |O(K4(a, b))| are equal to 48.

Lemma 4.3. The isometry groups of K3(a, b) and K4(a, b) have order 16, except for
K3(1, 1), K4(1, 2), and K4(2, 3).
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Proof. Suppose that K is either K3(a, b) or K4(a, b), but not one of the three exceptional
lattices. Then O(K) contains at least five symmetries (see below); thus |O(K)| > 8. Then,
by [12], |O(K)| = 12, 16 or 24. Suppose that |O(K)| is either 12 or 24. This means that
K must be also of the form Ki(c, d), for i = 1 or 2. But then, as indicated earlier, O(K)
would not have any element of order 4, which is a contradiction. Therefore, |O(K)| = 16
as claimed. �

Excluding the special cases O(K3(1, 1)), O(K4(1, 2)), and O(K4(2, 3)), both
O(K3(a, b)) and O(K4(a, b)) are also generated by −I and the symmetries, and

S
(
K3(a, b)

)
= {τx1 , τx2} ∪ {τx1+x2 , τx1−x2} ∪ {τx3},

and

S
(
K4(a, b)

)
= {τx1 , τx2} ∪ {τx1+x2 , τx1−x2} ∪ {τx1+x2+2x3}.

In either case, the center of the orthogonal group contains one and only one symmetry,
namely τx3 for K3(a, b) and τx1+x2+2x3 for K4(a, b). Moreover, both O(K3(a, b)) and
O(K4(a, b)) are isomorphic to Z2 ⊕D4.

Definition 4.4. An orthogonal system of a ternary lattice K is a set of three mutually
commuting symmetries in O(K).

If {σ1, σ2, σ3} is an orthogonal system and σi = τzi for all i, then z1, z2, z3 are mutually
orthogonal vectors.

Proposition 4.5. Suppose that |O(K)| is divisible by 8. Every symmetry of K belongs to
an orthogonal system of K.

Proof. This is done by checking the set of symmetries S(K) for all possible cases. �
We can say more about orthogonal systems when |O(K)| = 16 or 24. In these two

cases, there is a unique symmetry τ that is in the center of O(K). If σ is another
symmetry of K which is not τ , then σ belongs to one and only one orthogonal system,
and this orthogonal system contains another symmetry σ′, uniquely determined by σ of
course, and τ . All of these can be proved by examining the set of symmetries S(K) and
writing down all the orthogonal systems of K. For K2(a, b), the orthogonal systems are

{τx1 , τx1+2x2 , τx3}, {τx2 , τ2x1+x2 , τx3}, {τx1+x2 , τx1−x2 , τx3}.

For K3(a, b) and K4(a, b), their orthogonal systems are

{τx1 , τx2 , τx3}, {τx1+x2 , τx1−x2 , τx3}
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and

{τx1 , τx2 , τx1+x2+2x3}, {τx1+x2 , τx1−x2 , τx1+x2+2x3}

respectively.

5. Formulae for |ΓL
p (N)σ|

In this section, we always assume that L is a primitive ternary lattice and N = Λp(L).
We will obtain information regarding the cardinality of the set of fixed points ΓL

p (N)σ
for each nontrivial isometry σ of N . In the case when σ is a symmetry we will obtain
explicit formulae to compute |ΓL

p (N)σ|.

5.1. Fixed points of isometries

Let K be a ternary lattice with |O(K)| = 12 or 24; so K is K1(a, b) or K2(a, b)
according to Section 4. Let σ be an isometry of K of order 3. By Section 4, K has a
basis {x1, x2, x3} such that σ(x1) = x2, σ(x2) = −x1 − x2, and σ(x3) = x1 + x3 or x3.
The characteristic polynomial of σ is always x3 − 1, which implies that the fixed points
of σ in K, denoted by Kσ, is a rank 1 sublattice. Indeed, a straightforward calculation
shows that Kσ = Zw, where

w =
{

2x1 + x2 + 3x3 if K = K1(a, b),

x3 if K = K2(a, b),
(5.1)

and Q(w) = 3(3b− 2a) or b accordingly.
The primitive sublattice Zx1 + Zx2 ∼=

(
2a −a
−a 2a

)
of K is orthogonal to Kσ, and so it

is in fact the orthogonal complement of Kσ in K. Thus, [K : Zw ⊥ (Zx1 + Zx2)] = 3 if
|O(K)| = 12, whereas K = Zw ⊥ (Zx1 + Zx2) if |O(K)| = 24.

Proposition 5.1. Suppose that |O(N)| is divisible by 3, and that p �= 3 if |O(N)| = 24.

(a) If |O(N)| < 48, then there is at most one lattice M ∈ ΓL
p (N) such that |O(M)| is

divisible by 3. Moreover, O(M) = O(N) in this case.
(b) If |O(N)| = 48, then there is at most one class of lattices M in ΓL

p (N) such that
|O(M)| is divisible by 3. If, in addition, N = pI, then every one of these lattices is
isometric to K1(1, p2+2

3 ) or K1(p2, 2p2+1
3 ), when dM is p2 or p4 accordingly.

Proof. We first handle the case when |O(N)| is either 12 or 24. Suppose that M ∈ ΓL
p (N)

has an isometry σ of order 3. If |O(N)| = 12, then of course O(M) = O(N). Let us
assume that |O(N)| = 24 but |O(M)| = 12. Since p �= 3 under this assumption, we have
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N3 = M3 and hence Nσ is not an orthogonal summand of N , a contradiction. Thus
O(M) = O(N) whenever 3 divides |O(M)|.

Let M and M ′ be lattices in ΓL
p (N) such that O(M) = O(M ′) = O(N). Let σ be

an isometry of order 3 in O(N). Suppose that |O(N)| = 24. Then M = K2(a, b) and
M ′ = K2(c, d) for some integers a, b, c, d. Note that, since p �= 3 when |O(N)| = 24,
p | a if and only if p | c by considering the local structures of Mp and M ′

p. Therefore, if
p divides a, then

〈
p2d

〉 ∼= Λp

(
M ′)

σ
= Nσ = Λp(M)σ ∼=

〈
p2b

〉
.

Thus, b = d and, since dM = dM ′, we have a = c as well. This shows that M is iso-
metric to M ′. But every isometry from M to M ′ must lie in O(N); therefore M = M ′.
The argument for the case p � a is similar, except that we have Λp(M)σ ∼= 〈b〉 in that
case.

If |O(N)| = 12, then M = K1(e, f) and M ′ = K1(g, h) for some integers e, f , g, h.
Since dM = dM ′, therefore e2(3f − 2e) = g2(3h − 2g). When p �= 3, we may argue
as before to show that M = M ′. When p = 3, 3 | e (and hence 3 | g as well) since
ord3(dM) � 2. Then we may use (5.1) to conclude that Mσ is in Λp(M). Therefore,

〈
3(3e− 2f)

〉 ∼= Λp(M)σ = Nσ = Λp

(
M ′)

σ
∼=

〈
3(3h− 2g)

〉
,

which implies e = g and f = h. As is argued before, we have M = M ′ as consequence.
We now assume that |O(N)| = 48. By the bijections in (4.1), it suffices to deal with

the case when N = pI. So, suppose that Λp(M) = pI and that M has an isometry of
order 3. Thus M itself cannot be similar to I or A. Therefore, M is either K1(a, b) or
K2(c, d) for some suitable integers a, b, c, d. Note that Mp is in Case (1) or Case (6)
described in Table 1. Suppose that M = K2(c, d). Since dM = 3c2d in this case and
gcd(c, d) = 1, we have p = 3 and M is K2(1, 27) or K2(1, 3). Both possibilities lead to a
contradiction since neither 〈2, 27〉 nor 〈2, 3〉 is represented by M3. If M = K1(a, b), then
a similar analysis on discriminant and local representations – over Zp this time – shows
that M is either K1(1, p2+2

3 ) or K1(p2, 2p2+1
3 ), depending on whether dL is p2 or p4. �

Let G be a ternary lattice with an isometry σ of order 4. By replacing σ by −σ if
necessary, we can always assume that the characteristic polynomial of σ is (x2 +1)(x−1)
and Gσ is a rank 1 sublattice. Suppose that |O(N)| = 16. Then G = K3(a, b) or K4(a, b)
for some integers a, b, and G has a basis {x1, x2, x3} such that σ(x1) = −x2, σ(x2) = x1,
and σ(x3) = x3 or x2 + x3. So,

Gσ =
{
Zx3 ∼= 〈b〉 if G ∼= K3(a, b),

Z(x + x + 2x ) ∼ 〈4(b− a)〉 if G ∼ K (a, b).
1 2 3 = = 4
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In any case, Zx1 + Zx2 ∼= 〈2a, 2a〉 is the orthogonal complement of Gσ. As a result,
G = Gσ ⊥ (Zx1 + Zx2) if G = K3(a, b), whereas [G : Gσ ⊥ (Zx1 + Zx2)] = 2 if
G = K4(a, b).

Proposition 5.2. Suppose that N has an isometry of order 4.

(a) If |O(N)| < 48, then there is at most one lattice M ∈ ΓL
p (N) such that M has

an isometry of order 4. Furthermore, if |O(N)| = 16, then M = K3(a, b) for some
a, b ∈ Z if and only if N = K3(c, d) for some c, d ∈ Z.

(b) If |O(N)| = 48, then there is at most one class of lattices M ∈ ΓL
p (N) such that

each of these M has an isometry of order 4. If, in addition, N = pI, then all these
lattices M are isometric to K3(1, p2) if dM = p2, or K3(p2, 1) if dM = p4.

Proof. Suppose that |O(N)| = 16, and that M is a lattice in ΓL
p (N) with an isometry σ of

order 4 such that Mσ �= 0. If M = K3(a, b), then of course N = K3(c, d) for some c, d ∈ Z.
If M = K4(a, b), then M2 = Λp(M)2 = N2 and (Nσ)2 = (N2)σ = (M2)σ = (Mσ)2. So,
Nσ is not an orthogonal summand of N , which means that N is K4(c, d) for some c, d ∈ Z.
The rest of the proof is the same as the one for Proposition 5.1, and we leave it for the
readers.

Now, suppose that |O(N)| = 48. As in Proposition 5.1, we may assume that N = pI.
Suppose that M ∈ ΓL

p (N) is a lattice which has an isometry σ of order 4. As a result,
M is either K3(a, b) or K4(a, b). We can rule out K4(a, b) by discriminant consideration.
So, M must be either K3(1, p2) ∼= 〈1, 1, p2〉 when dM = p2 or K3(p2, 1) = 〈p2, p2, 1〉
when dM = p4. �

The following corollary is a direct consequence of Proposition 5.1 and Proposition 5.2.

Corollary 5.3. Suppose that p �= 3 when |O(N)| = 24. If |O(N)| < 48, then |ΓL
p (N)σ| � 1

for any σ ∈ O(N) of order at least 3.

Remark 5.4. When |O(N)| = 48, Propositions 5.1 and 5.2 show that

h12(N) = (1 − δ3p)
(1 + (3d0

p )
2

)
, h16(N) =

1 + (d0
p )

2 , (5.2)

where δij is Kronecker’s delta, d0 is the discriminant of a unimodular Jordan component
of Lp, and (p ) is the Legendre symbol.

5.2. Special symmetries

Lemma 5.5. Let M be an R-lattice, where R is either Z or Zp. Suppose that τw is a
symmetry in O(M) with w a primitive vector in M . If Q(w) is odd or R = Zp, then Rw

is an orthogonal summand of M .
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Proof. Since w is primitive in M , there exist vectors x2, . . . , xn in M such that M =
Rw + Rx2 + · · · + Rxn. Since τw ∈ O(M), τw(xi) ∈ M for each i = 2, . . . , n, and it
follows that there exists ai ∈ R such that B(w, aiw + xi) = 0. Then M = Rw ⊥ M ′,
where M ′ = R(a1w + x2) + · · · + R(a1w + xn). �

Let M be a ternary lattice. Every symmetry σ in O(M) is of the form τx, where x is
a primitive vector of M . We define QM (σ) to be Q(x). Note that QM (σ) is well-defined.
The next technical definition, which depends on the prime p we fix at the outset, is
tailored for later discussion.

Definition 5.6. Let σ be a symmetry of a ternary lattice M . We call σ special to M if

QM (σ)
{ �≡ 0 mod p if the unimodular component of Mp has rank 1;

≡ 0 mod p otherwise.

Note that in the definition if σ = τx is special to M with x primitive in M , then Zpx

must be either the leading or the last component of a Jordan decomposition of Mp.

Proposition 5.7. Suppose that Λp(L) = N and σ is a symmetry of N . Then there exists
at most one lattice in ΓL

p (N)σ to which σ is special.

Proof. Suppose that σ is special to a lattice M ∈ ΓL
p (N). Choose a primitive vector w

of M for which σ = τw, and let G be the orthogonal complement of w in M . Then
Mp = Zpw ⊥ Gp and

Np = Λp(Mp) =
{
Zppw ⊥ Gp if Q(w) �≡ 0 mod p,

Zpw ⊥ pGp otherwise.

Let M ′ be another lattice in ΓL
p (N) to which σ is special. Then M ′

p = Zpw
′ ⊥ G′

p, where
σ = τw′ with w′ primitive in M ′. Since Mp

∼= M ′
p, it follows from the definition of special

symmetry that Zpw
′ = Zpw. Moreover, Np is also equal to Λp(M ′

p), which implies that
G′

p = Gp, whence M ′ = M . �
Proposition 5.8. Suppose that Λp(L) = N and |O(N)| is divisible by 8. Let M be a lattice
in ΓL

p (N). Then |O(M)| is divisible by 8 if and only if there is a symmetry in O(M)
which is special to M .

Proof. Suppose that O(M) has a symmetry σ which is special to M . Let w be a primitive
vector in M such that σ = τw, and let G be the orthogonal complement of w in M . Then
Mp = Zpw ⊥ Gp, and

Np = Λp(Lp) =
{
Zppw ⊥ Gp if Q(w) �≡ 0 mod p,

Z w ⊥ pG otherwise.
p p
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Since |O(N)| is divisible by 8, Proposition 4.5 shows that there exist symmetries τu, τv ∈
O(N) where w, u, v are mutually orthogonal. Then τu and τv must be isometries of Gp,
which means that both of them are isometries of Mp. Since Nq = Lq for any prime q

not equal to p, therefore both τu and τv are isometries of M . The subgroup of O(M)
generated by σw, σu, σv is of order 8.

Conversely, suppose that |O(M)| is divisible by 8. It follows from Proposition 4.5 that
there are three mutually orthogonal primitive vectors x, y, z in M such that τx, τy, and
τz are in O(M). Since Mp = Zpx ⊥ Zpy ⊥ Zpz by Lemma 5.5, exactly one of τx, τy, and
τz is special to M . �
Proposition 5.9. Let M ∈ ΓL

p (N) and suppose that |O(M)| = 12. Then there is no
symmetry in O(M) that is special to M .

Proof. From Section 4, M = K1(a, b) with relatively prime positive integers a and b.
The discriminant of M is a2(3b − 2a), and QM (σ) = 2a for each symmetry σ ∈ S(M).
If p �= 3, then Lp

∼= 〈2a, 6a, 3(3b − 2a)〉 and so none of the symmetries is special
to M .

Suppose that p = 3. Since Λ3(M) = N , 3 divides the discriminant of M . Hence 3
divides a, and so 3 does not divide b. This implies L3 ∼= 〈b, 2a, 2ab(3b − 2a)〉, and thus
none of the symmetries is special to M . �
5.3. Fixed points of a symmetry

Let Lp = 〈ε1, pαε2, pβε3〉 as in Table 1. Recall that

eij =
{ 1 if − εiεj ∈ (Z×

p )2,

−1 otherwise.

In addition, we define

ηij =
1 + ( εiεjp )

2 , and η′ij =
1 − ( εiεjp )

2 .

In Table 2 below, Cases (1) to (8) are divided as in Table 1, QN (σ) is defined in Def-
inition 5.6, and Δ is a nonsquare unit in Zp. For a pair of p-adic integers a and b, we
write a ∼ b if ab−1 ∈ (Z×

p )2. A boldface 1 indicates that there is one lattice in ΓL
p (L)σ

to which σ is special, under the specified conditions on QN (σ).

Proposition 5.10. Let σ be a symmetry in O(N). Then the values of |ΓL
p (N)σ| are given

in Table 2.

Proof. We will provide the detail only for Case (4) since the arguments used in this
case can be applied to prove the other cases. So, Lp

∼= 〈ε1, pε2, p2ε3〉, and Np
∼=

〈p2ε1, pε2, p
2ε3〉. Let σ = τw be a symmetry in O(N) with w a primitive vector in N . Thus,
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Table 2
Values of |ΓL

p (N)σ|.

(1) condition QN (σ) ∼ p2ε3 QN (σ) ∼ p2Δε3

|ΓL
p (N)σ| p−e12

2 + 1 p+e12
2

(2) condition ordp(QN (σ)) � 3 ordp(QN (σ)) = 2
|ΓL

p (N)σ| 1 p

(3) condition QN (σ) ∼ p2ε1 ordp(QN (σ)) = 1
|ΓL

p (N)σ| 1 1

(4) condition QN (σ) ∼ p2Δε1 QN (σ) ∼ p2ε1 ordp(QN (σ)) = 1
|ΓL

p (N)σ| η′
13 η13 + 1 p−e13

2

(5) condition ordp(QN (σ)) � 3 ordp(QN (σ)) = 2 ordp(QN (σ)) = 1
|ΓL

p (N)σ| 1 1 p

(6) condition QN (σ) ∼ p2ε1 QN (σ) ∼ p2Δε1

|ΓL
p (N)σ| p−e23

2 + 1 p+e23
2

(7) condition ordp(QN (σ)) � 3 QN (σ) ∼ p2ε1 QN (σ) ∼ p2Δε1

|ΓL
p (N)σ| p−e12

2 pη12 + 1 pη′
12

(8) condition ordp(QN (σ)) � 3 ordp(QN (σ)) = 2
|ΓL

p (N)σ| p 1

QN (σ) = Q(w), which has only the three possibilities listed in Table 2. By Lemma 5.5,
Np = Zpw ⊥ Gp where G is the orthogonal complement of w in N . In below, for any
a ∈ Zp we write a to denote the canonical image of a in Zp/pZp

∼= Fp.
Suppose that QN (σ) ∼ pε2. Then Zpw ∼= 〈pε2〉 and Gp

∼= 〈p2ε1, p
2ε3〉. The number

of M ∈ ΓL
p (N)σ is then equal to half of the number of representations of ε1 by the

quadratic space 〈ε1, ε3〉 over Fp, which is p−e13
2 by [5, Lemma 1.3.2].

Now, suppose that QN (σ) ∼ p2ε1. It is clear that there is exactly one lattice in ΓL
p (L)σ

to which σ is special, namely the one whose p-adic completion is Zp(p−1w) ⊥ Gp. If σ is
not special to an M ∈ ΓL

p (N)σ, then Zpw ∼= 〈p2ε1〉 would be a Jordan component of Lp

and hence ε1 ∼ ε3. If that is the case, then the number of lattices in ΓL
p (N)σ to which

σ is not special is equal to the number of over-lattices of 〈pε2, p2ε3〉 that are isometric
to 〈pε2, ε3〉. This number is 1 because 〈pε2, ε3〉 is a Zp-maximal lattice on an anisotropic
quadratic space over Qp.

Finally, let us assume that QN (σ) ∼ p2Δε1. It is easy to see that if Δε1 � ε3,
then |ΓL

p (N)σ| = 0. Suppose that Δε1 ∼ ε3. Then |ΓL
p (N)σ| is equal to the number of

over-lattices of 〈p2ε1, pε2〉 that are isometric to 〈ε1, pε2〉, which is 1 as is explained in the
last paragraph. �
5.4. Another equation

Suppose that N = Λp(L). We define s = s(N,L) to be the number of symmetry
σ ∈ O(N) with a lattice M ∈ ΓL

p (N)σ to which σ is special. The next corollary gives us
another equation involving the h2d(N)’s.
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Proposition 5.11. Suppose that N = Λp(L), and that p �= 3 when |O(N)| = 24. If |O(N)|
is divisible by 8, then

s =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h8(N) if |O(N)| = 8,

h16(N) + 2h8(N) if |O(N)| = 16,

h24(N) + 3h8(N) if |O(N)| = 24,

3h16(N) + 6h8(N) if |O(N)| = 48.

(5.3)

Furthermore, suppose that σ is a symmetry in O(N), 48 > |O(N)| > 8, and M ∈ ΓL
p (N)σ

to which σ is special. Then O(M) = O(N) if and only if σ is contained in the center
of O(N).

Proof. Let σ be a symmetry in O(N), and suppose that M ∈ ΓL
p (L)σ to which σ is

special. Then |O(M)| is divisible by 8 by Proposition 5.8. So, it follows from Section 4
that either |O(M)| = 8 or M = Ki(a, b) for some i ∈ {2, 3, 4} and positive integers a, b.
Note that |O(M)| cannot be 48. If |O(M)| = 8, then O(M) has exactly three symmetries
τw, τu, τv, and w, u, v are mutually orthogonal. So, exactly one of these three symmetries
is special to M . Suppose that M = Ki(a, b). Following the notations used in Section 4,
one can check that τx3 for K2(a, b) or K3(a, b) and τx1+x2+2x3 for K4(a, b) is the only
symmetry that is special to M (note that this requires p �= 3 for K2(a, b)). This symmetry
is the only symmetry in the center of O(M). This proves (5.3) and the “only if” part of
the second assertion.

For the “if” part of the second assertion, note that the proof of Proposition 5.8 actually
shows that any symmetry in O(N) which commutes with σ is in O(M). So, if σ is in the
center of O(N), then O(M) contains all the symmetries in O(N), and therefore O(M)
is equal to O(N). �
Remark 5.12. Embedding in the statement (and the proof) of Proposition 5.11 is the
fact that if M has a special symmetry, then that symmetry is the only special symmetry
of M .

The value of s depends on the Jordan decomposition of Lp and QN (σ) for all symme-
tries σ of N . Suppose that Lp

∼= 〈ε1, pαε2, pβε3〉 as in Table 1, and εi ∈ Z×
p for i = 1, 2, 3.

Define an integer t and ε ∈ Z×
p by

(t, ε) =
{

(β, ε3) when α = 0,

(2, ε1) otherwise,
(5.4)

and let

S(N,L) =
{
σ ∈ S(N): ordp

(
QN (σ)

)
= t and p−tQN (σ)ε ∈

(
Z×
p

)2}
.
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Table 3
Values of h2d(N).

|O(N)| h2(N) h4(N) h8(N) h12(N) h16(N) h24(N)
2 w 0 0 0 0 0

4 w−f
2 f 0 0 0 0

8 w−f+2s
4

f−3s
2 s 0 0 0

12 w−f+2[w]3
6

f−3[w]3
3 0 [w]3 0 0

16 w−f+2s+2[w]2
8

f−3s−2[w]2
4

s−[w]2
2 0 [w]2 0

24 w−f+2s+4[w]3
12

f−3s−4[w]3
6

s−[w]3
3 0 0 [w]3

Proposition 5.13. Suppose that N = Λp(L) and |O(N)| is divisible by 8. Then s is the
cardinality of the set S(N,L).

Proof. When α = 0, Np
∼= 〈p2ε1, p

2ε2, p
βε3〉. Let τw be a symmetry of O(N) with w

primitive in N . By Proposition 4.5, O(N) contains two other symmetries τu, τv such
that Np = Zpw ⊥ Zpu ⊥ Zpv. Thus τw is special to a lattice M ∈ ΓL

p (N) if and only
if ordp(Q(w)) = β and p−βQ(w) and ε3 are in the same square class. This proves the
proposition when α = 0. The remaining cases can be proved by similar consideration. �
6. Class numbers

Definition 6.1. Let K be a ternary lattice, and σ1, . . . , σt be all the symmetries of K

arranged so that QK(σi) � QK(σi+1) for i = 1, . . . , t− 1. The label of K is defined as

label(K) :=
�∣∣O(K)

∣∣;QK(σ1), . . . , QK(σt)
�
.

For example, if K has trivial isometry group, then label(K) = [[2]]. For K2(a, b) when
b > 6a, its label is [[24; 2a, 2a, 2a, 6a, 6a, 6a, b]].

Let L be a primitive ternary lattice and N = Λp(L). We define

w =
∣∣ΓL

p (N)
∣∣ and f =

∑
σ∈S(N)

∣∣ΓL
p (N)σ

∣∣.
Furthermore, for any positive integer n, we let [w]n be the remainder of w when divided
by n. The values of w, f , and s can be effectively determined by Table 1, Table 2, and
Proposition 5.13 respectively, using only the label of N and a Jordan decomposition
of Lp. In the subsequent discussion, the order of an isometry σ is denoted by o(σ).

Theorem 6.2. Suppose that Λp(L) = N and p �= 3 when |O(N)| = 24. Then for each
positive divisor d of |O+(N)|, h2d(N), the number of classes in ΓL

p (N) with isometry
group of size 2d, is determined by the label of N as shown in Table 3.

When |O(N)| = 48, h24(N) = h48(N) = 0, h12(N) and h16(N) are determined
by (5.2), h8(N) = s−3h16(N) ,
6
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h4(N) = f − 18h8(N) − 12h12(N) − 15h16(N)
12 ;

h2(N) = w − f + 12h8(N) + 8h12(N) + 12h16(N)
24 .

Proof. We will provide the proofs for the cases |O(N)| = 24 and |O(N)| = 48; the other
cases are easier and can be proved by the same argument.

Suppose that |O(N)| = 24. By Proposition 5.1, we know that h12(N) = 0 and
h24(N) � 1. Also, if M is a ternary lattice whose isometry group has order 24, then
O+(M) ∼= Z2 ⊕D3 contains two elements of order 3 and two elements of order 6. This
implies ∑

o(σ)=3,6

∣∣ΓL
p (N)σ

∣∣ = 4h24(N).

Therefore, by (3.2), (3.3), and (5.3), we have a system of three equations

h2(N) + h4(N) + h8(N) + h24(N) = 1
12

(
w + f + 4h24(N)

)
,

12h2(N) + 6h4(N) + 3h8(N) + h24(N) = w,

3h8(N) + h24(N) = s.

The second equation shows that h24(N) = [w]3, and by the third we obtain h8(N) =
s−[w]3

3 . Substituting these back into the first two equations results in a system of two
linear equations in h2(N) and h4(N) which has the unique solution as presented in
Table 3.

Now suppose that |O(N)| = 48. Again, we may assume that N = pI. The values of
h12(N) and h16(N) are determined by (5.2); both are either 0 or 1. By (5.3), we have
s = 6h8(N)+3h16(N), and hence h8(N) = s−3h16(N)

6 . Eq. (3.3) leads us to the equation

h2(N) + h4(N)
2 = 1

24
(
w − 6h8(N) − 4h12(N) − 3h16(N)

)
.

If M ∈ ΓL
p (N) has an isometry group of order 12, then O+(M) contains exactly two

isometries of order 3. So, ∑
o(σ)=3

∣∣ΓL
p (N)σ

∣∣ = 8h12(N).

Similarly, if |O(M)| = 16, then O+(M) contains exactly two isometries of order 4, which
means ∑ ∣∣ΓL

p (N)σ
∣∣ = 6h16(N).
o(σ)=4
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Putting everything in (3.2) gives us another equation

h2(N) + h4(N) = 1
24

(
w + f − 24h8(N) − 16h12(N) − 18h16(N)

)
.

So, now we have two linear equations in the unknowns h2(N) and h4(N). One can check
easily that the unique common solution to these two equations is the one in Table 3. �
Remark 6.3. Suppose that N = pI. It has three symmetries σ with QN (σ) = p2, and six
symmetries σ with QN (σ) = 2p2. Therefore, s is 0, 3, 6, or 9. Since h16(N) = 0 or 1, we
must have

h8(N) = s− 3h16(N)
6 =

{
0 when (s, h16(N)) = (0, 0) or (3, 1),

1 when (s, h16(N)) = (6, 0) or (9, 1).

Example 6.4. Let p > 3 and L be a lattice of discriminant p2 such that Lp
∼= 〈1, 1, p2〉.

Therefore, Λp(L) = pI which has class number one. Since |O(I)| = 48, it follows
from (5.2) that

h16(N) = 1 and h12(N) =
1 + ( 3

p )
2 .

The three quantities s, w, and f are easy to obtain, since we know the symmetries
in O(pI) well. There are three symmetries σ of pI with QpI(σ) = p2, and another six
symmetries τ with QpI(τ) = 2p2. Therefore,

s = 3 + 3
(

1 +
(

2
p

))
,

and thus

h8(N) =
1 + ( 2

p )
2 .

From Table 1 and Table 2, the values of w and f are given by

w =
p(p + (−1

p ))
2 ,

and

f = 9
(
p− (−1

p )
+ 1

)
+ 6

((−1
)
− 1

)(1 − ( 2
p ))
2 p 2
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respectively. The exact values of h2(N) and h4(N) can be determined by Table 3. Adding
all the h2d(N) together we have the class number of L as

h(L) = 1
48

(
p2 + p

(
9 +

(−1
p

))
− 3

(−1
p

)
+ 6

(
2
p

)
− 6

(−2
p

)
+ 8

(
3
p

)
+ 32

)
.

Example 6.5. Let L be a ternary lattice with the Gram matrix⎛⎝ 2 0 −p

0 2 −p

−p −p 7p2

⎞⎠ ,

where p > 3. It is easy to see that Lp
∼= 〈2, 2, 6p2〉 and N = Λp(L) is the lattice

K4(p2, 7p2); in particular, K4(1, 7) is the primitive lattice λp(L). It is known that
h(N) = 1, and by Section 4 the label of N is [[16; 2p2, 2p2, 4p2, 4p2, 24p2]]. To simplify
the discussion, let us further assume that p ≡ 7 mod 24, which means that 2 is a square
in Zp but 3 and −1 are not. Then s = 1, w = p(p−1)

2 , and f = 5(p−1
2 ) + 2. As a result,

h16(N) = 1, h8(N) = 0,

h4(N) = 5p− 11
8 , and h2(N) = p2 − 6p + 9

18 .

Adding all these h2d(N) together yields

h(L) = p2 + 4p + 3
16 .

Similar calculations show that

h(L) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

p2+6p+9
16 if p ≡ 1, 5, 13, 17 mod 24,

p2+4p+3
16 if p ≡ 7 mod 24,

p2+6p+11
16 if p ≡ 11, 19 mod 24,

p2+4p+19
16 if p ≡ 23 mod 24.

7. Labels of classes

Suppose that Λp(L) = N . We have seen in Theorem 6.2 that the class number of L
is determined only by the label of every class in gen(N) and a Jordan decomposition
of Lp. In order to apply that theorem successively, we need to show that the labels of
all the classes in ΓL

p (N) are also determined by the label of N and the structure of Lp.
For each class of lattices in ΓL

p (N), we define its label to be the label of any one of its
lattices. The label of ΓL

p (N) is defined to be the multi-set which contains all the labels
of classes in ΓL

p (N). More generally, for a subset X of ΓL
p (N), we define the label of X

to the multi-set containing all the labels of classes of lattices in X.
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Table 4
Values of QM (σ).

(1) and (2) (3) to (8)
σ: special to M QN (σ) 1

p2 QN (σ)
σ: not special to M 1

p2 QN (σ) QN (σ)

7.1. Preliminary lemmas

Let σ be a symmetry in O(N), and suppose that M ∈ ΓL
p (N). Then QM (σ) is

determined by QN (σ) as shown in Table 4; this follows directly from the definition of
special symmetry. Cases (1) to (8) are divided as in Table 1.

For any positive integer d > 1, let H2d be the set of lattices M ∈ ΓL
p (N) whose

isometry group has order 2d. For each symmetry σ in O(N), let H2d(σ) be the set
H2d ∩ ΓL

p (N)σ, that is, the set containing all lattices M ∈ ΓL
p (N) such that σ ∈ O(M)

and |O(M)| = 2d. Clearly,

H2d =
⋃

σ∈S(N)

H2d(σ). (7.1)

The number of classes in H2d(σ) is denoted by h2d(σ). In general, (7.1) may not be a
disjoint union.

Lemma 7.1. Let M and M ′ be two lattices in ΓL
p (N). If M ∼= M ′, then O(M) and O(M ′)

are conjugate inside O(N).

Proof. Suppose that φ : M → M ′ is an isometry. Then φ is necessarily an isometry of N ,
by Lemma 3.1. In that case, O(M ′) = φO(M)φ−1. This proves the lemma. �
Lemma 7.2. Let σ and σ′ be two symmetries of N .

(a) If φσφ−1 = σ′ for some φ ∈ O(N), then for all d, φ induces a bijection from
H2d(σ) onto H2d(σ′). Consequently, the classes in H2d(σ) coincide with the classes
in H2d(σ′).

(b) If there is an isometry from a lattice M ∈ H4(σ) to another lattice M ′ ∈ H4(σ′),
then σ and σ′ are conjugate in O(N).

Proof. For part (a), it is obvious that M �→ φ(M) is an injective function from H2d(σ)
to H2d(σ′). It has an inverse, which is induced by φ−1. For the other assertion, note that
if M1,M2 ∈ H2d(σ) and ψ : M1 → M2 is an isometry, then ψφψ−1 is an isometry from
φ(M1) to φ(M2).

For part (b), suppose that φ : M → M ′ is an isometry. Then φ is an isometry
on O(N), by virtue of Lemma 3.1. It is straightforward to see that φσφ−1 is a symmetry
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in O(M ′). But since M ′ ∈ H4(σ′), it has one and only one symmetry, namely σ′. Thus
σ′ = φσφ−1. �
Corollary 7.3. Let C be a complete set of representatives of conjugacy classes of symme-
tries of O(N). Then the label of H4 is the (multi-set) union of the labels of H4(σ), for
all σ ∈ C.

Lemma 7.4. Suppose that |O(N)| = 16. Let τ be the symmetry in the center of O(N),
and σ and σ′ be two symmetries of N , which are not τ and are not conjugate in O(N).
Then the label of H8 is the disjoint union of the labels of H8(σ) and H8(σ′), and it is
also equal to the label of H8(τ).

Proof. Since |O(N)| = 16, N has exactly two orthogonal systems; see Section 4. If M
is a lattice in H8, then S(M) is one of the orthogonal systems. Since σ and σ′ are not
conjugate in O(N), they belong to different orthogonal systems (see Section 4), and
hence the label of H8 is the disjoint union of the labels of H8(σ) and H8(σ′).

The last assertion is clear since τ is in both orthogonal systems, and hence H8 is just
H8(τ). �
Lemma 7.5. Suppose that |O(N)| = 24. Then the label of H8 is equal to the label of H8(σ)
for any σ ∈ S(N).

Proof. From Section 4, S(N) is decomposed into three conjugacy classes. There are
three orthogonal systems in O(N), each of them is of the form {σ, σ′, τ}, where σ and
σ′ belong to different conjugacy classes in O(N) and τ is the unique symmetry in the
center of O(N). Since each symmetry other than τ is contained in one and only one
orthogonal system, all three orthogonal systems of O(N) are conjugate. Therefore, if
O is an orthogonal system and H8(O) denote the set of lattices M ∈ H8 such that
S(M) = O, then the label of H8 is equal to the label of H8(O).

The symmetry τ is in all three orthogonal systems. Therefore, H8 is just H8(τ), and
hence their labels are the same. Now, let σ ∈ S(N) which is not τ , and O be the unique
orthogonal system containing σ. Then H8(σ) must be equal to H8(O), and so the label
of H8(σ) is just the label of H8. �

For any σ ∈ S(N) and any M ∈ ΓL
p (N)σ, let

GM (σ) =
{
φ ∈ O(N): σ ∈ O

(
φ(M)

)}
.

Although GM (σ) is not necessarily a subgroup of O(N), it contains the normalizer
of O(M). Moreover, the size of the coset space GM (σ)/O(M), denoted gM (σ), is the
number of lattices in cls(M)∩ΓL

p (N)σ. If gM (σ) is the same for every M in H2d(σ), then
|H2d(σ)| = gM (σ)h2d(σ).
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Lemma 7.6. Let σ ∈ S(N) and M be a lattice in H4(σ). Then gM (σ) is the group index
[C(σ): {±I,±σ}], where C(σ) is the centralizer of σ in O(N).

Proof. Clearly, O(M) is {±I,±σ} which contains a unique symmetry, namely σ. For any
φ ∈ O(N), φ−1σφ is also a symmetry. Therefore, φ ∈ GM (σ) if and only if φ−1σφ = σ,
that is φ ∈ C(σ). �
7.2. Main theorem

Theorem 7.7. Suppose that Λp(L) = N . Then the label of ΓL
p (N) can be computed effec-

tively by using the label of N and a Jordan decomposition of Lp.

Proof. The proof is a case-by-case analysis according to the size of O(N). For each
case, the proof will show how we can determine the label of ΓL

p (N). For simplicity, we
write h2d for h2d(N) and Γ for ΓL

p (N) in the following discussion. We recall that all
the numbers h2d can be obtained from Theorem 6.2. To determine the label of Γ , it
suffices to determine the label of H2d for each possible d. For H4, it suffices to determine
the label of H4(σ), where σ runs through a complete set of representatives of conjugacy
classes of symmetries in O(N). Note that these conjugacy classes are explicitly described
in Section 4.

|O(N)| = 4 : For the unique σ ∈ S(N), h4(σ) is simply |Γσ|, which can be determined
by Table 2. By Proposition 5.7, there is at most one lattice in Γσ to which σ is special,
and whether or not such a lattice exists is determined by Table 2. Therefore, the label
of H4 = H4(σ) can be determined.

|O(N)| = 8 : In this case, O(N) contains exactly three symmetries, and these symmetries
commute with each other. Thus each symmetry forms its own conjugacy class in O(N).
Clearly, h8(σ) is just h8 for each σ ∈ S(N). If σ is special to some M ∈ Γσ, then
M ∈ H8(σ) by Proposition 5.8. Moreover σ will be the only symmetry special to M .
Using Table 2 we can determine which σ is special to M . Therefore, the label of H8 is
determined.

If M ∈ H4(σ), then GM (σ) = O(N) because O(M) is normal in O(N). Therefore,

|Γσ| = 2h4(σ) + h8(σ),

and hence h4(σ) can be determined. Since σ is not special to any lattice in H4(σ), the
label of H4(σ) is determined.

|O(N)| = 12 : First of all, h12, which is either 0 or 1, is known. Moreover, none of the
symmetries in O(N) is special to any M ∈ H12. Therefore, the label of H12 can be
computed.

Let σ be a symmetry in O(N). Then C(σ) is {±I,±σ}. Therefore,

|Γσ| = h4(σ) + h12,
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and so h4(σ) is determined. From Table 2 we can decide if σ is special to any lattice
in Γσ. Therefore, the label of H4(σ) can be determined.

|O(N)| = 16 : We denote the unique symmetry in the center of O(N) by τ . Let M be
a lattice in Γ . Then, by Proposition 5.11, |O(M)| = 16 if and only if τ is special to M .
This shows that the label of H16 is determined.

For the label of H8, it suffices to compute the label of H8(σ) for any symmetry σ of N
which is not in the center. Let {σ, σ′, τ} be the orthogonal system that contains σ. From
the description of orthogonal systems and conjugacy classes of symmetries in Section 4,
we see that σ and σ′ are conjugate in O(N). Therefore, by Propositions 5.7 and 5.8,
h8(σ) is either 0 or 1, and it is 1 if and only if σ is special to a lattice in H8(σ). This can
be determined by computing |Γσ| using Table 2. So, the label of H8 can be determined.
Note also that O(M) is normal in O(N) whenever M ∈ H8. Therefore, |H8(σ)| = 2h8(σ).

Suppose that M ∈ H4. Then M ∈ H4(σ) for some σ ∈ S(N), and σ is not special
to M by Proposition 5.8. Therefore, the label of M is determined. It remains to compute
h4(σ) for every σ in S(N). Suppose that σ is not τ . Then C(σ) is {±I} × {1, τ, σ, στ}
which has order 8. Therefore,

|Γσ| = 2h4(σ) + 2h8(σ) + h16, (7.2)

which shows that h4(σ) can be determined. On the other hand, for the symmetry τ , we
have the equation

|Γτ | = 4h4(τ) + 2h8(τ) + h16 (7.3)

because C(τ) = O(N). Since τ is in O(M) whenever M ∈ H8, therefore h8(τ) = h8. This
shows that h4(τ) is also determined.

|O(N)| = 24 : Let τ be the unique symmetry in the center of O(N). Whether or not τ is
special to any lattice can be determined by Table 2, and by Proposition 5.11 it is indeed
special to some lattice M ∈ Γ if and only if M ∈ H24. Since h24 is 0 or 1, the label of
H24 is determined.

Let σ ∈ S(N) which is not τ , and let {σ, σ′, τ} be the orthogonal system containing σ.
Again, from the description of orthogonal systems in Section 4, we see that σ and σ′

belong to different conjugacy classes in O(N). It follows from Propositions 5.7 and 5.8
that every lattice in H8(σ) must have either σ or σ′ as its unique special symmetry.
Therefore, the label of each lattice in H8(σ) can be determined once we know whether
σ or σ′ is special to any lattice. The latter can be checked by using Table 2. So, the
label of H8(σ), and hence the label of H8, can be determined. Furthermore, C(σ) is
{±I} × {I, σ, τ, τσ}, which has order 8. Therefore, |H8(σ)| = h8(σ),

|Γσ| = 2h4(σ) + h8(σ) + h24, (7.4)



248 W.K. Chan, B.-K. Oh / Journal of Number Theory 135 (2014) 221–261
and from this equation we can determine h4(σ). Since σ is not special to any lattice
in H4(σ), the label of H4(σ) is determined.

For the symmetry τ , C(τ) is O(N) because τ is in the center of O(N). Therefore,
|H8(τ)| = 3h8(τ) = 3h8 and |H4(τ)| = 6h4(τ); hence

|Γτ | = 6h4(τ) + 3h8(τ) + h24, (7.5)

and h4(τ) can be determined. Since τ is not special to any lattice in H4, the label of
H4(τ) is determined.

|O(N)| = 48 : We only present the argument for the case N = pI. Let {x1, x2, x3} be an
orthogonal basis of N . We distinguish the symmetries of N into two types:{

Type I: τx1 , τx2 , τx3 ,

Type II: τxi+xj
and τxi−xj

, 1 � i < j � 3.

So, QN (σ) = p2 if σ is a Type I symmetry; otherwise QN (σ) = 2p2.
By Theorem 6.2, h24 = h48 = 0, and both h12 and h16 are either 0 or 1. The lattices

in H12 and H16, if they exist, are isometric to⎧⎪⎨⎪⎩K1

(
1, p

2 + 2
3

)(
disc = p2) or K1

(
p2,

2p2 + 1
3

)(
disc = p4) for H12,

K3
(
1, p2)(disc = p2) or K3

(
p2, 1

)(
disc = p4) for H16.

The labels of K1(1, p2+2
3 ) and K1(p2, 2p2+1

3 ) are [[12; 2, 2, 2]] and [[12; 2p2, 2p2, 2p2]] re-
spectively, whereas the labels of K3(1, p2) and K3(p2, 1) are [[16; 1, 1, 2, 2, p2]] and
[[16; 1, p2, p2, 2p2, 2p2]] respectively. Thus, the labels of H12 and H24 are determined.
The symmetries of K1(1, p2+2

3 ) and K1(p2, 2p2+1
3 ) are all Type II. However, for either

K3(1, p2) or K3(p2, 1), it has three Type I symmetries and two Type II symmetries.
From Remark 6.3, we see that h8 is 0 or 1. If h8 = 1, the lattices in H8 are isometric

to ⎛⎝ 1 0 0
0 2 1
0 1 p2+1

2

⎞⎠(
disc = p2) or

⎛⎝ 2 1 0
1 p2+1

2 0
0 0 p2

⎞⎠(
disc = p4).

The labels of these two lattices are [[8; 1, 2, 2p2]] and [[8; 2, p2, 2p2]] respectively. As a result,
the label of H8 is determined. The orthogonal system of either lattice consists of one
Type I symmetry and two Type II symmetries. Exactly one of the Type II symmetries
is special to the lattice.

Let σ be a Type I symmetry. Then h12(σ) = 0, and h16(σ) = h16. If h16 = 1, then
there are three lattices in H16(σ), permuted transitively by an order 3 isometry of N , and
σ is special to exactly one of these three lattices. Suppose that there exists M in H8(σ).
If φ ∈ O(N) and φσφ−1 = σ, then clearly φ(M) ∈ H8(σ). Conversely, if φ(M) ∈ H8(σ),
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then φσφ−1 is the unique Type I symmetry in O(M) and hence φσφ−1 = σ. This shows
that GM (σ) is in fact equal to C(σ). A straightforward computation shows that C(σ)
has order 16. Therefore, |H8(σ)| = 2h8 and |H4(σ)| = 4h4(σ). Consequently,

|Γσ| = 4h4(σ) + 2h8 + 3h16,

and so h4(σ) is determined. Since σ is not special to any lattice in H4(σ), the label of
H4(σ) is determined.

Now, let τ be a Type II symmetry. Note that O(N) acts, by conjugation, transitively
on the set of Type II symmetries. So, h12(τ) = h12 and h8(τ) = h8. Now, if h16 = 1,
τ must be a symmetry of at least one of the three lattices in H16. But, since each lattice
in H16 has exactly two Type II symmetries, |H16(τ)| must be 1, whence |H16(τ)| = h16.

For the rest of the discussion, we may assume that τ = τx1+x2 . A direct calculation
shows that the centralizer of τ has order 8. Suppose that M ∈ H12(τ). The other two
symmetries in O(M) are either {τx2−x3 , τx1+x3} or {τx2+x3 , τx1−x3}. Let φ be the isom-
etry of N which fixes x3 and switches x1 and x3. Then φ(M) �= M but τ ∈ O(φ(M)).
Therefore, |H12(τ)| = 2h12.

If M ∈ H8(τ), the orthogonal system of M must be {τx3 , τx1+x2 , τx1−x2}. So, τ ∈
φ(M) if and only if φ is in the centralizer of τx3 which has order 16. This shows that
|H8(τ)| = 2h8. Consequently,

|Γτ | = 2h4(τ) + 2h8 + 2h12 + h16.

Therefore, h4(τ) is determined. Since τ is not special to any lattice in H4, the label of
H4(τ) is determined. �
7.3. An example

We illustrate the discussion thus far by computing the labels of all the classes in the
genus of the lattice K(n) := K4(1, 6 · 72n + 1), n � 0. This of course will lead to a class
number formula for K(n).

For n � 0,

K(n) ∼=

⎛⎝ 2 0 −7n
0 2 −7n

−7n −7n 72n+1

⎞⎠ ∼=

⎛⎝ 2 0 −1
0 2 −1
−1 −1 6 · 72n + 1

⎞⎠ .

One can easily check that dK(n) = 24 · 72n and N(n − 1) := Λ7(K(n)) is the lattice
K(n − 1)72 . So, λ7(K(n)) = K(n − 1). The class number of K(0) = K4(1, 7) is 1. The
label of K(n) is [[16; 2, 2, 4, 4, 24 · 72n]], and the label of N(n − 1) is [[16; 2 · 72, 2 · 72,

4 · 72, 4 · 72, 24 · 72n]].
For n � 1, let G2i(n) be the set of lattices in gen(K(n)) whose isometry groups have

order 2i, and g2i(n) be the number of classes in G2i(n). From Example 6.5, we see that

g2(1) = 1, g4(1) = 3, g8(1) = 0, g16(1) = 1.
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It is clear that K(1) represents the only class in G16(1). Using row (1) of Table 2 and
Eqs. (7.2) and (7.3), we can show that h4(σ) = 1 for each σ ∈ S(N(0)). Thus the labels
of the three classes in G4(1) are

[[4; 2]], [[4; 4]], [[4; 24]].

Lemma 7.8. For n � 1,

(a) g16(n) = 1, and K(n) represents the only class in G16(n);
(b) g8(n) = 0.

Proof. We will provide a proof for part (a); part (b) can be proved in a similar manner.
Part (a) for n = 1 is already explained. For n � 2, let M ∈ G16(n). Then Λ7(M) ∼=

N(n). But for n � 2, the w for N(n) is 72 = 49 from Table 1. Therefore, by Table 3,

g16(n) = h16
(
N(n− 1)

)
= [49]2 = 1.

Clearly, K(n) represents the only class in G16(n). �
For � = 4 or 16, let

G�
4(n + 1) =

{
M ∈ G4(n + 1): λ7(M) ∈ G�(n)

}
.

Lemma 7.9. For n � 1,

(a) the label of G4
4(n + 1) is the multi-set containing the label of each class in G4(n)

repeated 7 times;
(b) the label of G16

4 (n + 1) is the multi-set containing 3 copies of [[4; 2]] and 3 copies of
[[4; 4]].

Proof. (a) First of all, an induction argument shows that the label of each class in G4(n)
is one of the following: [[4; 2]], [[4; 4]], and [[4; 24]]. So, if M ∈ G4

4(n + 1), then the label of
Λ7(M) is of the form [[4; d]], where ord7(d) = 2. From row (2) in Table 2, we see that
each of these lattices will produce 7 classes in G4(n + 1) with the same label.

(b) All the classes in G16
4 (n + 1) descend via Λ7 to the class containing N(n). If τ is

the symmetry in the center of O(N(n)), then |Γτ | = 1 from row (2) of Table 2, and so
h4(τ) = 0 by Eq. (7.3). If σ is any other symmetry in O(N(n)), then using row (2) of
Table 2 and Eq. (7.2) we can see that h4(σ) = 3. �

As a corollary, we obtain the following recursive formula for g4(n):

g4(n + 1) = 7 · g4(n) + 6, n � 1,
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with the initial condition g4(1) = 3. Therefore,

g4(n) = 4 · 7n−1 − 1, n � 1.

As for g2(n+1), note that all the lattices in G2(n+1) descend via λ7 to G2(n), G4(n),
and G16(n). Using Table 3 (after calculating the w, f , and s in each case), we can calculate
the contribution from each of these sets: 49g2(n) from G2(n), 21g4(n) from G4(n), and
3 from G16(n). Therefore,

g2(n + 1) = 49g2(n) + 21g4(n) + 3, n � 1,

which implies

g2(n) = 3 · 72(n−1) − 2 · 7n−1 − 3
8
(
72(n−1) − 1

)
, n � 1.

So, finally, the class number of K(n) is

g2(n) + g4(n) + g16(n) = 3 · 72(n−1) + 2 · 7n−1 − 3
8
(
72(n−1) − 1

)
.

8. Labels of stable lattices

Recall from Definition 2.3 that a primitive ternary lattice K is called stable if
ordq(dK) � 1 for all primes q, and ord2(dK) = 1 if and only if K is even. It is clear that
a stable lattice is maximal but not vice versa. Moreover, if M is another stable lattice
such that dM = dK, then for any prime q, Mq

∼= Kq if and only if their Hasse symbols
are the same.

Henceforth, K is always a stable ternary lattice. In this section, we will show that the
labels of gen(K) can be effectively determined. Let H =

( 0 1
1 0

)
and A =

( 2 1
1 2

)
. Then

K2 ∼=
{
A ⊥ 〈3dK〉 if K2 is anisotropic,

H ⊥ 〈−dK〉 otherwise.

If K is even, then K2 is always isotropic and

K2 ∼= A ⊥ 〈3dK〉 ∼= H ⊥ 〈−dK〉.

For any integer a, let ν(a) be the number of distinct prime divisors of a. If q is a
prime, we define

eq(a) :=
{ 1 if q divides a;

0 otherwise.

Let P be the product of odd prime divisors q of dK such that Kq is anisotropic, and
Q be the product of odd prime divisors q of dK such that Kq is isotropic. Note that
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dK = 2e2(dK)PQ. For any positive integer t, let bt(K) be the number of classes in gen(K)
whose isometry groups are of order t.

For positive integers α, β, γ, we define

ΦK(α) =
∏
q|P

(
1 −

(−α

q

))∏
q|Q

(
1 +

(−α

q

))
,

and

ΦK(α, β, γ) =
∏
q|P

(
1 +

(−βγ

q

))(
1 +

(−γα

q

))(
1 +

(−αβ

q

))

×
∏
q|Q

(
1 −

(−βγ

q

))(
1 −

(−γα

q

))(
1 −

(−αβ

q

))
.

In below, the Hasse symbol of K at a prime q is denoted by Sq(K).

Lemma 8.1. Up to isometry, there is at most one lattice in gen(K) whose isometry group
is of order 24. Furthermore,

b24(K) =
{

0 if K is odd and S2(K) = −1;
e3(dK)

2ν(PQ)−1ΦK(3) otherwise.

Proof. Suppose that M is a stable lattice with |O(M)| = 24. Since dM is squarefree, we
have

M = M(b) :∼=
(

2 1
1 2

)
⊥ 〈b〉,

for some positive integer b. Note that different choices of b yield lattices in different gen-
era. If M(b) is odd, then M(b)2 is anisotropic, which happens if and only if S2(M(b)) = 1.
Therefore, if S2(K) = −1 and K is odd, then M(b) is not in gen(K) for any positive
integer b.

Now suppose that either K is even or S2(K) = 1. It is clear that M(b) /∈ gen(K) for
any positive integer b if 3 � dK or A does not split Kq for all primes q, which is the same
as e3(dK)ΦK(3) = 0. So, we further assume that e3(dK)ΦK(3) �= 0. Let b0 be chosen
such that dK = 3b0. It is straightforward to check that M(b0) is in gen(K). �
Remark 8.2. In the proof of Lemma 8.1, the label of any M(b) in gen(K) is known since
b = dK

3 .

Lemma 8.3. Up to isometry, there is at most one lattice in gen(K) whose isometry group
is of order 12, and its label is [[12; 2, 2, 2]]. Furthermore,
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b12(K) =
{

0 if K is odd and S2(K) = −1;
1−e3(dK)
2ν(PQ) ΦK(3) otherwise.

Proof. From Section 4, a stable lattice whose isometry group is of order 12 must be of
the form

K1(a, b) =

⎛⎝ 2a −a −a

−a 2a 0
−a −a b

⎞⎠
for some positive integers a and b. Its discriminant is a2(3b − 2a), which should be
squarefree. Therefore, a = 1 and the discriminant is 3b − 2 ≡ 1 mod 3. Note that
K1(1, b)2 ∼= A ⊥ 〈3(3b − 2)〉. This, in particular, shows that if K1(1, b)2 is odd, then
it is anisotropic and its Hasse invariant is 1. The label of any one of these lattice is
[[12; 2, 2, 2]].

Suppose that K is even. It is clear that gen(K) does not contain any K1(1, b) when
(1 − e3(dK))ΦK(3) = 0. Now, suppose that e3(dK) �= 1 and ΦK(3) �= 0. Then 3 � dK

and (−3
q

)
=

{
−1 if q | P,

1 if q | Q.

By the Quadratic Reciprocity, (dK3 ) = (−1)|P|+1. Since K2 is always isotropic, it follows
that |P | must be even, and hence dK ≡ 1 mod 3. Thus, there exists b1 such that
M := K1(1, b1) has discriminant dK. It is direct to check that M is in gen(K).

The proof of the case when K is odd is similar, and we leave it to the readers. �
Lemma 8.4. Up to isometry, there is at most one lattice in gen(K) whose isometry group
is of order 16, and its label is [[16; 1, 1, 2, 2, dK]]. Furthermore,

b16(K) = 1 − e2(dK)
2ν(PQ) ΦK(1).

Proof. Note that any ternary lattice with an isometry group of order 16 is isometric to

K3(a, b) = 〈a, a, b〉 or K4(a, b) =

⎛⎝ 2a 0 −a

0 2a −a

−a −a b

⎞⎠ ,

for some suitable integers a, b. Note that d(K3(a, b)) = a2b and d(K4(a, b)) = 4a2(b−a).
Thus, if M is a stable lattice with |O(M)| = 16, then M ∼= K3(1, b) with b > 1. We may
now proceed as in the proofs of the previous two lemmas. �

Let M be a ternary lattice with |O(M)| = 8. Then the symmetries in O(M) form an
orthogonal system {τz1 , τz2 , τz3}, with primitive mutually orthogonal vectors z1, z2, z3.
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Let L be the sublattice spanned by z1, z2, z3. By Lemma 5.5, Mp = Lp for all odd
primes p. In addition, it is direct to check that 2v ∈ L for every v ∈ M . Therefore, M is
obtained from L by adjoining one or more vectors of the form ε1z1+ε2z2+ε3z3

2 , εi = 0 or
1 for each i. As a result, M is isometric to one of the following lattices

M1(a, b, c) = 〈a, b, c〉, M2(a, b, c) = 〈a〉 ⊥
( b+c

2
b−c
2

b−c
2

b+c
2

)
or

M3(a, b, c) =

⎛⎝ 2a 0 a

0 2b b

a a a+b+c
2

⎞⎠ , M4(a, b, c) =

⎛⎝ 4a 2a 2a
2a a + b a

2a a a + c

⎞⎠ ,

for some suitable integers a, b, and c. A simple calculation shows that the discriminants
of M3(a, b, c) and M4(a, b, c) are divisible by 4. Thus, if M is stable, then M ∼= M1(a, b, c)
or M2(a, b, c) for some suitable positive integers a, b, c.

For the convenience of discussion, let T be the set of triples (a, b, c) of positive integers
such that abc = dK, and we define

R1 =
{
(a, b, c) ∈ T: a > b > c

}
,

R2 =
{
(a, b, c) ∈ T: b > c, (b, c) �= (3, 1), a ≡ 2 and 4, and bc ≡ 3 and 4

}
,

R3 =
{
(a, b, c) ∈ T: b > c, and (b, c) �= (3, 1)

}
.

Lemma 8.5. If K is even, then

b8(K) =
∑

(a,b,c)∈R2

1
2ν(PQ)ΦK(a, 2b, 2c),

and if K is odd, then

b8(K) =
∑

(a,b,c)∈R1

1
2ν(PQ)ΦK(a, b, c) +

∑
(a,b,c)∈R3

1
2ν(PQ)ΦK(a, 2b, 2c).

Proof. Suppose that there is a lattice M in gen(K) such that |O(M)| = 8. We first
assume that K is even. Then M ∼= M2(a, b, c) for a unique triple (a, b, c) ∈ R2. Since
Mq

∼= 〈a, 2b, 2c〉 for any prime q dividing PQ, therefore

2ν(PQ) = ΦK(a, 2b, 2c).

Conversely, suppose that (a, b, c) ∈ R2 and ΦK(a, b, c) = 2ν(PQ), and let M be
M2(a, b, c). Then Kq

∼= 〈a, 2b, 2c〉 ∼= Mq for every prime q dividing PQ. By the Hilbert
Reciprocity, K2 is also isometric to M2, hence M ∈ gen(K).

The proof of the case when K is odd is similar, and we leave it to the readers. �
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Remark 8.6. The label of any M ∈ gen(K) with |O(M)| = 8 can be determined. For, if
M ∼= M1(a, b, c) with (a, b, c) ∈ R1, then the label of M is [[8; c, b, a]]. On the other hand,
M ∼= M2(a, b, c) with (a, b, c) ∈ R2 or R3, then QM (σ) = a, 2b, or 2c for any σ ∈ S(M),
and hence the label of M can also be determined.

Let τx be a symmetry of K, where x is a primitive vector in K. If Q(x) is odd, then
Zx splits K by Lemma 5.5. If Q(x) = 2m for some integer m, then either Zx splits K

or there is a basis x = x1, x2, x3 of K such that

(
B(xi, xj)

)
=

⎛⎝ 2m m 0
m Q(x2) B(x2, x3)
0 B(x2, x3) Q(x3)

⎞⎠ . (8.1)

Therefore m divides PQ.
From now on, δ is either 1 or 2. For any integer t and lattice L, r(t, L) denotes the

number of representations of t by L.

Lemma 8.7. Let m be a positive odd squarefree integer. There exists τx ∈ O(K) such that
Q(x) = δm if and only if δ is represented by λm(K). Furthermore

∣∣{τx ∈ O(K): x ∈ K, Q(x) = δm
}∣∣ = 1

2r
(
δ, λm(K)

)
.

Proof. Suppose that τx ∈ O(K) and Q(x) = δm. If Zx splits K, then K = 〈δm〉 ⊥ K̃ for
some binary sublattice K̃ of K. Since gcd(m, dK̃) = 1, Λm(K) = 〈δm〉 ⊥ mK̃ and hence
λm(K) = 〈δ〉 ⊥ K̃m. On the other hand, if Zx does not split K, then clearly δ = 2, and
there is a basis x1, x2, x3 of K satisfying (8.1). In this case,

λm(K) ∼=

⎛⎝ 2 m 0
m mQ(x2) mB(x2, x3)
0 mB(x2, x3) mQ(x3)

⎞⎠ ,

which clearly represents 2.
Conversely, suppose that δ is represented by λm(K). We assume that 〈δ〉 does not

split λm(K); the other case can be done similarly. Thus, δ = 2 and there is a basis
x1, x2, x3 of λm(K) such that

(
B(xi, xj)

)
=

⎛⎝ 2 1 0
1 a b

0 b c

⎞⎠ ,

for some integers a, b, c. If q is a prime dividing m, then ordq(dK) = 1 and hence
λm(K)q ∼= 〈ε1, qε2, qε3〉, where εi ∈ Z×

q for every i, by Lemma 2.1. So, whenever q

is a prime divisor of m, Zqmx1 would be an orthogonal summand of Λm(λm(K))q.
Consequently,
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Table 5
Values of tm,δ.

λm(K)2 δ tm,δ λm(K)2 δ tm,δ

〈1, 1, 3〉 1 3 〈3, 3, 3〉 1 1
〈1, 1, 7〉 1 2 dK ≡ 1 (mod4) 1 1

2

A ⊥ 〈2〉 2 4 A ⊥ 〈14〉 2 1
A ⊥ 〈6〉 2 1 A ⊥ 〈10〉 2 2
odd 2 1

2

Λm

(
λm(K)

)
q

=
{
λm(K)q if q � m,

Zqmx1 ⊥ (Zq(x1 − 2x2) + Zqx3) if q | m.

This implies

Λm

(
λm(K)

)
= Z(mx1) + Z

(
m− 1

2 x1 + x2

)
+ Zx3

∼=

⎛⎝ 2m2 m2 0
m2 m2−1

2 + a b

0 b c

⎞⎠ .

However, since m is squarefree and odd, K ∼= λ2
m(K) by Lemma 2.1, and the latter is

Λm(λm(K)) 1
m . It is easy to see that τmx1 is a symmetry in O(K) with Q(mx1) = 2m

(note that the quadratic form on K is the one on λm(K) scaled by 1
m ). �

Lemma 8.8. The mass of K, w(K), is equal to

ε

2ν(PQ)

∏
p|P

(p− 1)
∏
p|Q

(p + 1),

where ε = 1
16 , 1

48 or 1
24 if K2 is odd isotropic, odd anisotropic, or even, respectively.

Proof. Then lemma follows directly from the Minkowski–Siegel mass formula. For the
computation of local densities, see [5, Theorem 5.6.3]. �

Let hE be the class number of the quadratic field E = Q(
√
−δd(λm(K))), and μE be

the number of roots of unity in E.

Lemma 8.9. Suppose that δ is represented by gen(λm(K)). Then

∑
[Ki]∈gen(λm(K))

r(δ,Ki)
|O(Ki)|

= tm,δ · 2ν(m)−ν(PQ) · hE

μE
,

where tm,δ is given in Table 5.
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Proof. This follows from a direct computation, using the Minkowski–Siegel mass formula
for representations of integers by ternary quadratic forms and

hE

μE
= (2π)−1|d| 12L

(
1,
(
dE
.

))
,

where dE is the discriminant of E. Note that w(K) = w(λm(K)) and h(K) = h(λm(K))
for any integer m dividing PQ. For the computation of local densities, see [15]. �

We define

bk,δm =
∑

[K̃]∈gen(K)
|O(K̃)|=k

∣∣{τx ∈ O(K̃): Q(x) = δm
}∣∣.

Suppose that δ is represented by gen(λm(K)). Since

2
4b4,δm + 2

8b8,δm + 2
12b12,δm + 2

16b16,δm + 2
24b24,δm = tm,δ · 2ν(m)−ν(PQ) · hE

μE
,

by Lemma 8.7, we may effectively compute the number of classes of lattices in gen(K)
with label [[4; δm]] once we know the labels of all the classes of lattices whose isometry
groups are of order greater than 4.

At last, in order to determine the number of classes in gen(K) with label [[2]], all we
need now is the class number of K which is given by the following lemma.

Theorem 8.10. The class number h(K) of K is equal to

2w(K) +
∑

m|PQ, δ∈{1,2}
δ→ gen(λm(K))

tm,δ · 2ν(m)−ν(PQ) · hE

μE
+ 1

3
(
b12(K) + b24(K)

)
+ 1

4b16(K).

Proof. Note that

∑
m|PQ, δ∈{1,2}

bk,δm = sk · bk(K),

where sk is the number of symmetries of a lattice in gen(K) whose isometry group has
order k. The values of sk are 1, 3, 3, 5 or 7 according to k = 4, 8, 12, 16 or 24, respectively.
Hence

1
2b4 + 3

4b8 + 1
2b12 + 5

8b16 + 7
12b24 =

∑
m|PQ, δ∈{1,2}

tm,δ · 2ν(m)−ν(PQ) · hE

μE
.

δ→ gen(λm(K))
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Here bk = bk(K) for each k. Therefore

h(K) = b2 + b4 + b8 + b12 + b16 + b24

= 2w(K) + 1
2b4 + 3

4b8 + 5
6b12 + 7

8b16 + 11
12b24

= 2w(K) +
∑

m|PQ, δ∈{1,2}
δ→ gen(λm(K))

ηm,δ · 2ν(m)−ν(PQ) · hE

μE

+ 1
3
(
b12(K) + b24(K)

)
+ 1

4b16(K).

This completes the proof. �
Appendix A. p = 3 and |O(N)| = 24

In this appendix, we treat the case p = 3 and |O(N)| = 24. So, Λ3(L) = N ∼= K2(a, b),
and we let L3 ∼= 〈ε1, 3αε2, 3βε3〉 for some ε1, ε2, ε3 ∈ Z×

3 . Recall that ord3(dL) = α+β � 2
is always assumed, and that for 1 � i < j � 3 the integer eij is defined to be 1 or −1,
depending on whether −εiεj is a square or not.

Now, dN = 3a2b, and N3 ∼= 〈2a, 6a, b〉 which is isometric to Λ3(L)3. This implies that
both a and b are divisible by 3, and that Cases (1) and (6) in Table 1 cannot occur.

For simplicity, we denote each hi(N) by hi. Inside O+(N) ∼= Z2 ⊕D3, there are two
isometries of order 3 and two isometries of order 6. If M ∈ ΓL

3 (N) and |O(M)| = 12,
then O+(M) ∼= D3 does not contain any isometry of order 6. Hence, by (3.2) and (3.3),

h2 + h4 + h8 + h12 + h24 = 1
12(w + f + 4h12 + 4h24), (A.1)

12h2 + 6h4 + 3h8 + 2h12 + h24 = w. (A.2)

There are seven symmetries σ in O(N): three of them with QN (σ) = 2a, three of them
with QN (σ) = 6a, and one of them, which is in the center of O(N), with QN (σ) = b.
This, in particular, means that the number f can be determined by using Table 2. The
value of w is determined in Table 1.

Lemma A.1. Suppose that M ∈ ΓL
3 (N). If |O(M)| = 24, then M = K2(a, b

9 ) or K2(a3 , b).
Moreover,

(a) if M = K2(a3 , b), then ord3(a) = 1 and α + 1 = β;
(b) if M = K2(a, b

9 ), then ord3(b) = 2 and α = 1;
(c) K2(a3 , b) and K2(a, b

9 ) are in the same genus if and only if ord3(a) = 1, ord3(b) = 2,
and a

3 �≡ b
9 mod 3, which happens only in Case (4) of Table 1.
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Proof. Since |O(M)| = 24, there are relatively prime positive integers c and d such that
M = K2(c, d). Since dM = 3c2d and ord3(dM) = ord3(dL) � 2, either 3 | c or 3 | d. In
the first case,

N = Λ3(M) = K2(c, 9d).

So, a = c and b = 9d; hence M = K2(a, b
9 ). On the other hand, if 3 | d, then Λ3(M) =

K2(3c, d), which means that a = 3c and d = b. Thus, M = K2(a3 , b) in this case.
Parts (a), (b), and (c) are direct consequences of an examination of the local structure

of the lattices at the prime 3. �
Lemma A.2. Suppose that M ∈ ΓL

3 (N). If |O(M)| = 12, then M = K1(a, 6a+b
9 ),

ord3(6a + b) = 2, and α + 1 = β.

Proof. From Section 4, it follows that M = K1(c, d) for some relatively prime integers c
and d. Since dM = c2(3d − 2c) and ord3(dM) � 2, c is divisible by 3 but d is not.
Consequently,

Λ3(M) ∼=

⎛⎝ 2c −c −3c
−c 2c 0
−3c 0 9d

⎞⎠ ∼= K2(c, 9d− 6c),

hence a = c and b = 9d− 6c. �
It follows from Table 1 (and the fact that p = 3 here) that w � 9. So, we can deduce

from (A.2) that h2 is always zero. By Lemmas A.1 and A.2, h12 � 1 and h24 � 2;
furthermore, h24 � 1 unless we are in Case (4).

Suppose that we are not in Case (3) or in Case (4). Then, from Table 1, w is divisible
by 3. Therefore, 2h12 + h24 ≡ 0 mod 3 by (A.2), and hence (h12, h24) = (0, 0) or (1, 1).
It is now ready to determine the remaining hi for all the cases in Table 1. We remind
the readers that Case (1) and (6) cannot occur.

Case (2). In this case, α = 0 and β � 3. Therefore, by Lemmas A.1 and A.2, both
h12 and h24 are 0. Now, since Λ3(L)3 = N3 = 〈2a, 6a, b〉, we must have β = 3 and
ord3(a) = ord3(b) = 2. So, by Table 2, f = 15. Also, w = 9 from Table 1. Thus, by (A.1)
and (A.2), both h4 and h8 are equal to 1.

Case (3). We know from Table 1 that w = 1. Therefore, by (A.2), h4 = h8 = h12 = 0
and h24 = 1. The only lattice in ΓL

3 (N) is either K2(a3 , b) or K2(a, b
9 ), and we choose

the one which is in gen(L).
Case (4). If e13 = 1, then w = 1 from Table 1, which implies that h24 = 1 and

h4 = h8 = h12 = 0. As in Case (3), the only lattice in ΓL
3 (N) can be determined.

On the other hand, if e13 = −1, then w = 2 from Table 1. Moreover, a
3 �≡ b

9 mod 3.
Thus, if b

9 and ε1 are in the same square class in Q3, then h24 = 2 and h4 = h8 = h12 = 0
by (A.2). Otherwise, h12 = 1 and h4 = h8 = h24 = 0.
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Case (5). In this case α = 1 and β � 3. By Table 1, w = 3. Since Λ3(L)3 = N3,
therefore ord3(a) = 1 and ord3(b) � 3. So, by Table 2, f = 13. Using (A.1) and (A.2),
we can deduce that h12 = h24 = 1 and h4 = h8 = 0. The lattice with isometry group of
order 24 is K2(a3 , b).

Case (7). In this case, α = 2 and β � 3. Because of Λ3(L)3 = N3, we can deduce that
β = 3, ord3(a) = ord3(b) = 2, and w = 3 or 6 depending on whether e12 = 1 or −1.

If w = 3, then h4 = 0 and

(h8, h12, h24) =
{

(0, 1, 1) if K2(a, b
9 ) ∈ gen(L);

(1, 0, 0) otherwise.

If w = 6, then L3 must be isometric to 〈a3 , 2b, 6a〉 and ab is not a square in Q3. Thus,
f = 6 by Table 2, and

(h4, h8, h12, h24) =
{

(0, 1, 1, 1) if K2(a, b
9) ∈ gen(L);

(1, 0, 0, 0) otherwise,

by (A.1) and (A.2).
In any case, if h24 = 1, then the only lattice in ΓL

3 (N) with isometry group of order
24 is K2(a, b

9 ).
Case (8). Again, using the fact that Λ3(L)3 = N3, one can show that α = 3,

ord3(a) = 2, and ord3(b) � 3. This implies that h12 = h24 = 0, and that f = 15
form Table 2. Since w = 9, we can use (A.1) and (A.2) to obtain h4 = h8 = 1.

We now turn our attention to the labels of the classes in ΓL
3 (N). For those lattices in

H12 or H24, their labels are determined by Lemmas A.1 and A.2. There are only three
cases, namely Cases (2), (7), and (8), in which h4 and h8 are not zero. We will determine
the labels of these classes in these three cases separately.

Case (2). Since h8 = 1, it is clear that L3 ∼= 〈 b9 ,
2a
9 , 6a〉. Moreover, for any M ∈ H8,

the values of QM (σ), σ ∈ S(M), are b
9 ,

2a
9 , and 6a respectively. Using (7.4), we find that

if σ ∈ S(N) with QN (σ) = 2a, then h4(σ) = 1. Since h4 = 1, therefore the label of H4 is
[[4; 2a

9 ]].
Case (7). Suppose that w = 3. It suffices to deal with the case when K2(a, b

9 ) /∈ gen(L).
Since h8 = 1, L3 must be isometric to 〈2a

9 , b, 6a〉; hence the label of H8 is determined as
in Case (2).

Suppose that w = 6. If K2(a, b
9 ) ∈ gen(L), then L3 ∼= 〈 b9 , 2a, 6a〉 and the label of H8

is determined. However, if K2(a, b
9 ) /∈ gen(L), then L3〈a9 , 2b, 6a〉 with ab not a square

in Q3. By (7.4), h4(σ) = 1 when QN (σ) = 6a. Thus the label of H4 is [[4; 6a]].
Case (8). In this case, α = 3 � β, ord3(a) = 2, and ord3(b) � 3. This shows that

L3 ∼= 〈2a
9 , 6a, b〉. Hence the label of H8 is determined. It follows from (7.4) that h4(σ) = 1

if QN (σ) = 6a. Therefore, the label of H4 is [[4; 6a]].
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