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1. Introduction

According to [1, pp. 293–294], there are two kinds of Cauchy numbers which may be 
defined respectively by

Cn =
1∫

0

〈x〉ndx and cn =
1∫

0

(x)ndx, (1.1)

where

〈x〉n =
{
x(x− 1)(x− 2) · · · (x− n + 1), n ≥ 1
1, n = 0

(1.2)

and

(x)n =
{
x(x + 1)(x + 2) · · · (x + n− 1), n ≥ 1
1, n = 0

(1.3)

are respectively called the falling and rising factorials. The coefficients expressing rising 
factorials (x)n in terms of falling factorials 〈x〉n are called Lah numbers. Lah numbers 
have an interesting meaning in combinatorics: they count the number of ways a set of n
elements can be partitioned into k nonempty linearly ordered subsets. Shortly speaking, 
Cauchy numbers play important roles in some fields, such as approximate integrals, 
Laplace summation formula, and difference-differential equations, and are also related 
to some famous numbers such as Stirling numbers, Bernoulli numbers, and harmonic 
numbers. Therefore, Cauchy numbers deserve to be studied.

It is known [1, p. 294] that Cauchy numbers of the second kind ck may be generated 
by

−t

(1 − t) ln(1 − t) =
∞∑

n=0
cn

tn

n! (1.4)

which is equivalent to

t

(1 + t) ln(1 + t) =
∞∑

n=0
(−1)ncn

tn

n! . (1.5)

The first few Cauchy numbers of the second kind ck are

c0 = 1, c1 = 1
2 , c2 = 5

6 , c3 = 9
4 , c4 = 251

30 ,

c5 = 475
, c6 = 19087

. (1.6)
12 84
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In this paper, we will establish an integral representation, find the complete mono-
tonicity, minimality, and logarithmic convexity, and present some inequalities of Cauchy 
numbers of the second kind cn.

2. An integral representation of Cauchy numbers

We first establish an integral representation of Cauchy numbers of the second kind cn.

Theorem 2.1. For n ∈ {0} ∪ N, Cauchy numbers of the second kind cn have an integral 
representation

cn = n!
∞∫
0

du
u[π2 + (ln u)2](1 + u)n . (2.1)

Proof. Recall from [8] that the function

F (z) =

⎧⎨
⎩

z

(1 + z) ln(1 + z) , z ∈ C \ (−∞,−1] \ {0}

1, z = 0
(2.2)

has the integral representation

F (z) =
∞∫
0

u + 1
u[(ln u)2 + π2]

du
u + 1 + z

, z ∈ C \ (−∞,−1], (2.3)

where C is the set of all complex numbers. Differentiating n times on both sides of (1.5)
and (2.3) yields

F (n)(t) =
∞∑

k=n

(−1)kck
tk−n

(k − n)! =
∞∑
k=0

(−1)k+nck+n
tk

k!

and

F (n)(t) = (−1)nn!
∞∫
0

u + 1
u[(ln u)2 + π2]

du
(u + 1 + t)n+1 .

Hence,

∞∑
k=0

(−1)k+nck+n
tk

k! = (−1)nn!
∞∫
0

u + 1
u[(ln u)2 + π2]

du
(u + 1 + t)n+1 .

Further letting t → 0 on both sides of the above equation gives the integral representa-
tion (2.1). The proof of Theorem 2.1 is complete. �
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3. Complete monotonicity and minimality of Cauchy numbers

Basing on the integral representation (2.1), we now find complete monotonicity and 
minimality of Cauchy numbers of the second kind cn.

Recall from monographs [5, pp. 372–373] and [11, p. 108, Definition 4] that a sequence 
{μn}0≤n≤∞ is said to be completely monotonic if its elements are non-negative and its 
successive differences are alternatively non-negative, that is

(−1)kΔkμn ≥ 0 (3.1)

for n, k ≥ 0, where

Δkμn =
k∑

m=0
(−1)m

(
k

m

)
μn+k−m. (3.2)

Recall from [11, p. 163, Definition 14a] that a completely monotonic sequence {an}n≥0
is minimal if it ceases to be completely monotonic when a0 is decreased.

Theorem 3.1. The infinite sequence of Cauchy numbers of the second kind{
cn
n!

}
n≥0

(3.3)

is completely monotonic and minimal.

Proof. It was stated in [5, pp. 372–373] and [11, p. 108, Theorem 4a] that a necessary 
and sufficient condition that the sequence {μn}∞0 should have the expression

μn =
1∫

0

tndα(t) (3.4)

for n ≥ 0, where α(t) is non-decreasing and bounded for 0 ≤ t ≤ 1, is that it should be 
completely monotonic. Theorem 14a in [11, p. 164] states that a completely monotonic 
sequence {μn}n≥0 is minimal if and only if the integral representation (3.4) is valid for 
n ≥ 0 and α(t) is a non-decreasing bounded function continuous at t = 0.

From (2.1), it follows that for n ∈ N

cn
n! =

∞∫
0

1
u[(ln u)2 + π2]

du
(u + 1)n

=
0∫ 1

(− ln t){[ln(− ln t)]2 + π2}
d(− ln t)

(1 − ln t)n

1
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=
1∫

0

dt
t(− ln t){[ln(− ln t)]2 + π2}(1 − ln t)n

=
1∫

0

tn
dt

tn+1(− ln t){[ln(− ln t)]2 + π2}(1 − ln t)n

=
1∫

0

tnd
[ t∫

0

1
un+1(− ln u){[ln(− ln u)]2 + π2}(1 − ln u)n du

]
.

This implies the complete monotonicity and minimality of the sequence (3.3).
The complete monotonicity may be alternatively proved as follows. In [5, p. 373], it was 

stated that if a function f(t) is completely monotonic on [0, ∞), that is, (−1)kf (k)(t) ≥ 0
for k ≥ 0, then the sequence {(−1)nf (n)(n)} is completely monotonic. It is clear that 
the function of x

∞∫
0

1
u[(ln u)2 + π2]

du
(u + 1)x

is completely monotonic on [0, ∞). Hence, by the integral representation (2.1), the se-
quence (3.3) is completely monotonic. The proof of Theorem 3.1 is complete. �
4. Positivity of determinants for Cauchy numbers

With the help of the integral representation (2.1), we now present the positivity of 
two determinants of Cauchy numbers of the second kind cn.

Theorem 4.1. Let m ∈ N and let n and ak for 1 ≤ k ≤ m be nonnegative integers. Then

∣∣(−1)ai+aj cn+ai+aj

∣∣
m

≥ 0 (4.1)

and

(−1)mn|cn+ai+aj
|m ≥ 0, (4.2)

where |akj |m denotes a determinant of order m with elements akj.

Proof. From the proof of Theorem 2.1, we observe that

cn
n! = lim

t→0+
hn(t), (4.3)

where
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hn(t) =
∞∫
0

u + 1
u[(ln u)2 + π2]

du
(u + 1 + t)n+1 (4.4)

is completely monotonic on [0, ∞) and

h(k)
n (t) = (−1)k (n + k)!

n! hn+k(t) → (−1)k (n + k)!
n!

cn+k

(n + k)! = (−1)k cn+k

n! (4.5)

as t → 0+.
In [3], or see [5, p. 367], it was obtained that if f is a completely monotonic function 

on [0, ∞), then

∣∣f (ai+aj)(x)
∣∣
m

≥ 0 (4.6)

and

∣∣(−1)ai+ajf (ai+aj)(x)
∣∣
m

≥ 0. (4.7)

Applying f in (4.6) and (4.7) to the function hn(x) yields

∣∣h(ai+aj)
n (x)

∣∣
m

≥ 0 (4.8)

and

∣∣(−1)ai+ajh(ai+aj)
n (x)

∣∣
m

≥ 0. (4.9)

Letting x → 0+ in (4.8) and (4.9) and making use of (4.5) produce

∣∣∣∣(−1)ai+aj
cn+ai+aj

n!

∣∣∣∣
m

≥ 0 (4.10)

and

∣∣∣∣(−1)n
cn+ai+aj

n!

∣∣∣∣
m

≥ 0. (4.11)

Further simplifying (4.10) and (4.11) leads to (4.1) and (4.2). The proof of Theorem 4.1
is complete. �
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5. Inequalities for products of Cauchy numbers

In this final section, by virtue of the integral representation (2.1), we discover some 
inequalities and, as a consequence, the logarithmic convexity of Cauchy numbers of the 
second kind cn.

Let λ = (λ1, λ2, . . . , λn) ∈ R
n and μ = (μ1, μ2, . . . , μn) ∈ R

n. The sequence λ is said 
to be majorized by μ (in symbols λ 
 μ) if

k∑
�=1

λ[�] ≤
k∑

�=1

μ[�]

for k = 1, 2, . . . , n − 1 and

n∑
�=1

λ� =
n∑

�=1

μ�,

where λ[1] ≥ λ[2] ≥ · · · ≥ λ[n] and μ[1] ≥ μ[2] ≥ · · · ≥ μ[n] are rearrangements of λ and 
μ in a descending order. A sequence λ is said to be strictly majorized by μ (in symbols 
λ ≺ μ) if λ is not a permutation of μ.

Theorem 5.1. Let m ∈ N and let λ and μ be two m-tuples of nonnegative integers such 
that λ 
 μ. Then

m∏
i=1

cλi
≤

m∏
i=1

cμi
. (5.1)

Proof. In [10, p. 106, Theorem A] and [5, p. 367, Theorem 2], a minor correction of 
[2, Theorem 1], it was obtained that if f is a completely monotonic function on (0, ∞)
and λ 
 μ, then

∣∣∣∣∣
n∏

i=1
f (λi)(x)

∣∣∣∣∣ ≤
∣∣∣∣∣

n∏
i=1

f (μi)(x)

∣∣∣∣∣. (5.2)

The equality in (5.2) is valid only when λ and μ are identical or when f(x) = e−cx for 
c ≥ 0. Applying the inequality (5.2) to hn(x) creates

∣∣∣∣∣
m∏
i=1

h(λi)
n (t)

∣∣∣∣∣ ≤
∣∣∣∣∣
m∏
i=1

h(μi)
n (t)

∣∣∣∣∣.
Taking the limit t → 0+ on both sides of the above inequality and making use of (4.5)
reveal
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∣∣∣∣∣
m∏
i=1

(−1)λi
cn+λi

n!

∣∣∣∣∣ ≤
∣∣∣∣∣
m∏
i=1

(−1)μi
cn+μi

n!

∣∣∣∣∣ (5.3)

which is equivalent to (5.1). The proof of Theorem 5.1 is complete. �
Corollary 5.2. The infinite sequence {cn}n≥0 is logarithmically convex.

Proof. This follows from the majorization relation (i + 2, i) � (i + 1, i + 1) for i ≥ 0 and 
Theorem 5.1.

This may also be verified as follows. In [5, p. 369] and [6, p. 429, Remark], it was 
stated that if f(t) is a completely monotonic function such that f (k)(t) 
= 0 for k ≥ 0, 
then the sequence

si(t) = ln
[
(−1)i−1f (i−1)(t)

]
, i ≥ 1 (5.4)

is convex. Applying this result to the function hn(t) and making use of (4.5) figures out 
that the sequence

si(t) = ln
[
(−1)i−1h(i−1)

n (t)
]
→ ln cn+i−1

n! , t → 0+ (5.5)

for i ≥ 1 is convex. Hence, the sequence {cn}n≥0 is logarithmically convex. �
Corollary 5.3. For � ≥ 0 and n > k > 0, we have

(c�+k)n ≤ (c�+n)k(c�)n−k. (5.6)

Proof. As done in [2], considering the majorization relation

( n︷ ︸︸ ︷
k, k, . . . , k

)
≺

( k︷ ︸︸ ︷
n, . . . , n,

n−k︷ ︸︸ ︷
0, . . . , 0

)
for n > k, the inequality (5.2) becomes

(−1)nk
[
f (k)(t)

]n ≤ (−1)nk
[
f (n)(t)

]k[
f(t)

]n−k
, n > k > 0.

Substituting h�(t) for f in the above inequality, letting t → 0+, and utilizing (4.5) procure

(−1)nk
[
h

(k)
� (t)

]n ≤ (−1)nk
[
h

(n)
� (t)

]k[
h�(t)

]n−k
,

(−1)nk
[
(−1)k c�+k

�!

]n
≤ (−1)nk

[
(−1)n c�+n

�!

]k(
c�
�!

)n−k

for n > k > 0 and � ≥ 0. This may be simplified as (5.6). The required proof is 
complete. �
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Theorem 5.4. If � ≥ 0, n ≥ k ≥ m, k ≥ n − k, and m ≥ n −m, then

c�+kc�+n−k ≥ c�+mc�+n−m. (5.7)

Proof. In [9, p. 397, Theorem D], it was recovered that if f(x) is completely monotonic 
on (0, ∞) and if n ≥ k ≥ m, k ≥ n − k, and m ≥ n −m, then

(−1)nf (k)(x)f (n−k)(x) ≥ (−1)nf (m)(x)f (n−m)(x). (5.8)

Replacing f(x) by the function h�(t) in the above inequality leads to

(−1)nh(k)
� (t)h(n−k)

� (t) ≥ (−1)nh(m)
� (t)h(n−m)

� (t).

Further taking t → 0+ and employing (4.5) find

(−1)n(−1)k c�+k

�! (−1)n−k c�+n−k

�! ≥ (−1)n(−1)m c�+m

�! (−1)n−m c�+n−m

�! .

Simplifying this inequality leads to (5.7). The proof of Theorem 5.4 is complete. �
Theorem 5.5. For n, m ∈ N and � ≥ 0, let

Gn,m,� = c�+n+2m(c�)2 − c�+n+mc�+mc� − c�+nc�+2mc� + c�+n(c�+m)2,

Hn,m,� = c�+n+2m(c�)2 − 2c�+n+mc�+mc� + c�+n(c�+m)2,

In,m,� = c�+n+2m(c�)2 − 2c�+nc�+2mc� + c�+n(c�+m)2.

Then

Gn,m,� ≥ 0, Hn,m,� ≥ 0, (5.9)

Hn,m,� � Gn,m,� when m ≶ n, (5.10)

and

In,m,� ≥ Gn,m,� ≥ 0 when n ≥ m. (5.11)

Proof. In [10, Theorem 1 and Remark 2], it was obtained that if f is completely mono-
tonic on (0, ∞) and

Gn,m = (−1)n
{
f (n+2m)f2 − f (n+m)f (m)f − f (n)f (2m)f + f (n)[f (m)]2}, (5.12)

Hn,m = (−1)n
{
f (n+2m)f2 − 2f (n+m)f (m)f + f (n)[f (m)]2}, (5.13)

In,m = (−1)n
{
f (n+2m)f2 − 2f (n)f (2m)f + f (n)[f (m)]2} (5.14)

for n, m ∈ N, then Gn,m ≥ 0, Hn,m ≥ 0, and
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Hn,m � Gn,m when m ≶ n, (5.15)

In,m ≥ Gn,m ≥ 0 when n ≥ m. (5.16)

Replacing f(t) by h�(t) in Gn,m, Hn,m, and In,m and simplifying produce

Gn,m = (−1)n
{
h

(n+2m)
� h2

� − h
(n+m)
� h

(m)
� h� − h

(n)
� h

(2m)
� h� + h

(n)
�

[
h

(m)
�

]2}
,

Hn,m = (−1)n
{
h

(n+2m)
� h2

� − 2h(n+m)
� h

(m)
� h� + h

(n)
�

[
h

(m)
�

]2}
,

In,m = (−1)n
{
h

(n+2m)
� h2

� − 2h(n)
� h

(2m)
� h� + h

(n)
�

[
h

(m)
�

]2}
.

Further taking t → 0+ and employing (4.5) discover

(�!)3Gn,m = Gn,m,�, (�!)3Hn,m = Hn,m,�, (�!)3In,m = In,m,�.

The proof of Theorem 5.5 is complete. �
Theorem 5.6. If m ≥ 1 and a0, a1, . . . , am be nonnegative integers, then

(
ca0

a0!

)m−1 c∑m
k=0 ak

(
∑m

k=0 ak)!
≥

m∏
k=1

ca0+ak

(a0 + ak)!
(5.17)

and ∣∣∣∣ cai+aj

(ai + aj)!

∣∣∣∣
m

≥ 0. (5.18)

Proof. In [4] and [5, pp. 369 and 374], it was obtained that if f is completely monotonic 
on [0, ∞) and m ≥ 1, then

[
f(x0)

]m−1
f

(
m∑

k=0

xk

)
≥

m∏
k=1

f(x0 + xk) (5.19)

and ∣∣f(xi + xj)
∣∣
m

≥ 0. (5.20)

We consider the function (4.4) from an alternative viewpoint

h(t, s) =
∞∫
0

u + 1
u[(ln u)2 + π2]

du
(u + 1 + t)s+1 (5.21)

and find that h(t, s) is a completely monotonic function of s ∈ [0, ∞). Replacing the 
function f and nonnegative numbers x0, x1, . . . , xm in (5.19) and (5.20) by the function 
h(t, s) and nonnegative integers a0, a1, . . . , am respectively yields
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[
h(t, a0)

]m−1
h

(
t,

m∑
k=0

ak

)
≥

m∏
k=1

h(t, a0 + ak) (5.22)

and

∣∣h(t, ai + aj)
∣∣
m

≥ 0. (5.23)

By virtue of (4.3), we obtain

lim
t→0

h(t, ai) = cai

ai!
. (5.24)

Therefore, taking t → 0 in (5.22) and (5.23) leads to (5.17) and (5.18). The proof of 
Theorem 5.6 is complete. �
Remark 5.7. This paper is a slightly revised and corrected version of the preprint [7].
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