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L-functions associated with families of toric exponential sums

C. Douglas Haessig* Steven Sperber

May 9, 2014

Abstract

We consider arbitrary algebraic families of lower order deformations of nondegenerate toric exponential
sums over a finite field. We construct a relative polytope with the aid of which we define a ring of coefficients
consisting of p-adic analytic functions with polyhedral growth prescribed by the relative polytope. Using this
we compute relative cohomology for such families and calculate sharp estimates for the relative Frobenius
map. In applications one is interested in L-functions associated with linear algebra operations (symmetric
powers, tensor powers, exterior powers and combinations thereof) applied to relative Frobenius. Using methods
pioneered by Ax, Katz and Bombieri we prove estimates for the degree and total degree of the associated L-
function and p-divisibility of the reciprocal zeros and poles. Similar estimates are then established for affine

families and pure Archimedean weight families (in the simplicial case).

1 Introduction

Symmetric power L-functions and their variants have long been objects of study and have been valuable in many
number theoretic applications. In the function field case, these L-functions are associated with families of varieties
or families of exponential sums defined over a base space S which is itself a variety over F,, the finite field of
q = p® elements having characteristic p. For each closed point s of S, there is a zeta function or L-function for the
fibre over this point. This is a rational function for each such s, and the collection A(s) of reciprocal zeros and
poles of this function is a finite set of algebraic integers. Interesting new L-functions may be created by taking
Euler products as follows. Let Ay(s) C A(s) be an interesting well-chosen subset for each point s € |S/F,|, the
set of closed points of S. For example, some choices include taking the subset of A(s) consisting of all p-adic
units, or all elements of A(s) having a fixed archimedean weight. Once chosen, we can form symmetric, tensor,
or exterior powers (or combinations thereof) of the elements of Ay(s) and denote the resulting set by LAq(s).

Then the Euler product we are interested in has the general form

L(,C.A(), S/Fq,T) = H H (1 _ 7.(S)Tcleg(s))—17 (1)

s€|S/Fq| T(s)ELAo(s)

*Partially supported by NSF grant DMS-0901542



where deg(s) := [F,(s) : F,] is the degree of the point.

The p-adic study of symmetric power L-functions begins with Dwork [18], whose work was itself inspired by
Thara [22] and Morita [27]. As Ihara indicates in his introduction, he himself is following a substantial line of
work linking the Ramanujan-Petersson conjectures and the Weil conjectures, due at least in part, to Kuga, Sato,
Eichler and Shimura. Implicit in their work were symmetric power L-functions for a suitable family of elliptic
curves. In [18], Dwork explicitly considered symmetric power L-functions associated with the Legendre family of
elliptic curves, applying p-adic cohomology to obtain important information about this L-function. This study
was continued by Adolphson [2] to obtain congruence information. Adolphson also considered symmetric power
L-functions for the family of elliptic curves with level three structure [3]. Based on Dwork’s p-adic cohomology
theory of the Bessel function [16], Robba [28] p-adically studied the symmetric power L-functions of the family
of Kloosterman sums. A similar study was made in Haessig [21] for cubic exponential sums.

Symmetric, tensor, and exterior power L-functions have also been studied using ¢-adic techniques going back
at least to the work of Deligne. Katz [25] has studied symmetric power L-functions of families of elliptic curves
and their monodromy behavior. In recent work, Fu and Wan have obtained very detailed information on sym-
metric power L-functions of hyper-Kloosterman sums [19] [20]. In [13], Haessig and Rojas-Leén studied the k-th
symmetric power L-functions for a one-parameter family of exponential sums in one variable.

In another direction, Wan [29] [30] [31] proved a conjecture of Dwork’s that unit root L-functions which come
from geometry are p-adically meromorphic by relating the unit root L-function to symmetric, tensor, and exterior
power L-functions via Adams operations and then employing a suitable p-adic limiting argument.

In the present work, we consider a general family of nondegenerate toric exponential sums. Let

G(z,t) := f(x) + P(x,t) € B[z, ..., at ¢, .. tF]

where f(x) is nondegenerate with respect to Ao (f), its Newton polyhedron at co. We assume as well that the

monomials in the a-variables in P(z,t) have strictly smaller (polyhedral) weight than the leading monomials

*S

g0 an F,-rational point of G3,

in f, and that the dim A, (f) = n. As a consequence, for each choice A € F

where Fq is an algebraic closure of [y, the Newton polyhedron at oo of G(z, \) is nondegenerate with respect

to A (G(7,))) = Ax(f). Let Fy(\) be the field of definition of A and deg()\) := [F,()\) : Fy] its degree. Let

Cone(A) be the cone over A := Ay (f), and M(A) :=Z" N Cone(A). Fix an additive character © of F,, and set

Ox =00 Trg (nr,. Let Gi(z) := G(z, ). Define the exponential sums

ST(G_'A,@,G:;/Fq()\)) = Z ®>‘OTT]qudeg()\)/Fq(/\)GA(x)

C”’5(]F:,-d,eg(,\) )"
and the associated L-function

L(Gy,0,G", [F,(\),T) := exp (i S,(Gh, 0, GZ;/Fq(A))j:) :

r=1



When there is no confusion, we will denote the above exponential sums by S;.(\) and the associated L-functions
by L(Gx,T). L-functions of this type have been studied in [5] where it was shown that L(Cfl,\,T)(_l)n+1 is a
polynomial of degree N := n! vol A, (f) whose coefficients lie in the cyclotomic field Q(¢,) of p-th roots of unity,
and the reciprocal zeros are algebraic integers. Using the p-adic absolute value normalized at the fiber over A by

requiring ordy (¢*9™) = 1, then the lower bound for the Newton polygon of L(G), T)(*l)n+l

, calculated using
ordy, is independent of A and given in [5], as well as in (51) below. Denef and Loeser [12] have given a precise
description of the distribution of archimedean weights for the reciprocal zeros of L(G), T)(*l)nﬂ. The results of

Denef-Loeser are independent of A\ as well.

We write then for each A\ € F;S,
LG, T) V"™ = (1= m(WT) - (1 — an (N)T).

Let A(A) := {m;(\)}Y,. To fix ideas, we present some examples of L-functions of the form (1). The k-th tensor

power L-function of the toric family above is the Euler product

LA®*, Gy /e, T) = [ IO = mi )mi (N - i, (NTH9)
AE|Gs, [Fq|

where the inner product on the right runs over all k-tuples (iy,...,i;) € S¥ with S := {1,2,..., N}. Similarly

the k-th symmetric power L-function is given by

L(Sym* A, G5, /F, T) =[] JI —m) - an (A Tdesy -1
AE[GS, /Fq]
where the inner product runs over N-tuples of non-negative integers (iy,...,iy) satisfying iy + -+ + iy = k.

Another variant of interest focuses on the subset Ag(A) C A(N) consisting of the unique p-adic unit root, say

mo(A), in A(N). Then the k-th moment unit root L-function is defined by

Lunie(k, G, G}, [Fg, T) = J[ (1= mo(W)FTo9™) =1, (2)
X€IG3, /Fq|

™m

We may also denote by W; () the subset of A(A) consisting of reciprocal zeros m(A) having archimedean weight

equal to 4, that is, [7(\)|c = ¢%9MN¥/2. Then, we define

L(LW;, G}, /F,, T) =[] [T a-rerdest)=t,
AE|GS, /Fq| T(N)ELW;(N)
We now state our main result for the full toric family A := [ ¢c: JF,| A(A). Similar statements about other
families may be found in the following sections. Section 4.1 looks at a family of affine exponential sums (in fact
it deals more generally with mixed toric and affine sums), Section 4.2 looks at a family of pure weight (in the

archimedean sense), and Section 4.3 looks at a p-adic unit root family. Let LN denote the cardinality of the set



LA()); this number is independent of the choice of A\. Let I' C R® be the relative polytope of G, as defined as

follows (see also (19)). Let w be the polyhedral weight function defined by A (f) in R™. Define

I' := Convex hull in R* of the points {0} U {( ) vyeQ® | (v,p) € Supp(P)} . (3)

b
1 —w(p)

Let § denote the dimension of the smallest linear subspace of R* which contains I', and denote by vol(T') the
volume of I" in this linear subspace with respect to Haar measure normalized so that a fundamental domain of the
integer lattice in the subspace has unit volume. Lastly, we define the order |£] := r of a linear algebra operation

L as the least positive integer r such that £ is a quotient of an r-fold tensor product.

Theorem 1.1. For each linear algebra operation L, the L-function L(LA, G, /F,,T) is a rational function:

m

L(LA,GS, [F,, T)D" = m € Q(G)(T).

Furthermore, writing this in reduced form (o; # B; for every i and j):

(a) The reciprocal zeros and poles «; and B; are algebraic integers. For each reciprocal pole B; there is a

reciprocal zero oy, and a positive integer m; such that f; = ¢™ ay; .

(b) The degree R — S of the L-function as a rational function is bounded as follows. If § < s then R =S, else
if $=s then

0<R—-S5<slvol(I')LN.
(¢) The total degree R+ S of the L-functions is bounded above by

R+ S < LN -§lvol(T) - 25T+ 5nILl (1 4 91453,

Next, we consider the L-function defined over affine s-space. To this end, we assume P(z,t) € F, [z, ... nE ...

1P

Set M(T") := Z* N Cone(T'), where Cone(T") is the union of all rays from the origin through I'. With wr the poly-

hedral weight function defined by I' in R®, define

w(l') == min{wr(u) | v e M(I')NZ,}.

Let A C {1,2,...,5}. Let G4 be the polynomial obtained from G by setting ¢; = 0 for each i € A. In precisely
the same manner as T, let I'4 be the relative polytope of G 4 and define its volume vol(T"4) with respect to Haar
measure normalized so that a fundamental domain of the integer lattice in the smallest subspace containing I' 4

has unit volume.

Theorem 1.2. Suppose G € Fq[xf,.., xt t1,...,ts]. For each linear algebra operation L, the L-function

s n



L(LA,A°/F,,T) is a rational function:

s+1 _ Hf:l(l - OéiT)

L(LA,A®JF,, T)"Y
! I, (1 = 5,T)

€ Q(&)(T).

Writing this in reduced form (a; # B; for every i and j):

(a) The reciprocal zeros and poles satisfy

ordg (), ordy(B;) > w(l).
(b) The degree is bounded by

- > (= lADwol(Ta) < R=S< > (s—|AD wol(Ta).
AC{1,2,...,s} AC{1,2,...,s}
|Alodd [Aleven

(¢) The total degree is bounded by

R+ 8§ < 25t0+3mILl6s £N . 1 yol(T)

Lastly, we look at the case of an affine family over an affine base. Suppose G now is a polynomial in
Fy[21,. . %n,t1,. .., ts], and f is convenient and nondegenerate. For each A € |A®/F,|, let A(\) = {m()\)}f-v:l be
the set of reciprocal zeros of L(G\, @,A'”/Fq()\),T)(*D"H. Define w(A) for A = Ao (f) in a similar way to that
of w(I'), so that w(A) = min{w(y) | y € M(A) NZ%,}.

Theorem 1.3. Suppose the conditions of the previous paragraph. For each linear algebra operation L, the L-

function L(LA, A®JF,,T) is a rational function:

L(LA, A*JF,, T)D" = IHIE%ZJJT”; € Q(¢)(T).

Writing this in reduced form, then ordy(c;) and ordy(B3;) > w(I') + w(A)LN.

We note that the upper bound on the degree in Theorem 1.1(b) and the lower bound on the p-adic order of
the roots in Theorem 1.2(a) are sharp in the sense that there are examples where the bounds are obtained (e.g.
[21] and [13]).

When we work with proper subsets Ay C A, we in general do not expect rationality of the L-function, for
example in the case when Ay is the unit root family. As mentioned earlier, Wan’s proof of Dwork’s conjecture
uses a p-adic limiting argument of L-functions associated to Adams operations. Since Adams operations may be
viewed as a virtual linear algebra operation, we may apply the lower bound in Theorem 1.2(a) to this sequence of

L-functions to obtain a similar result for the unit root L-function (2). This is discussed in Sections 2.2 and 4.3.



We view the main contributions of the present study to be the discovery of the role played by the relative
polytope I for very general families of nondegenerate toric exponential sum. Previous p-adic studies have mainly
been one parameter families in which the parameter appears linearly. In the present study we remove these
restrictions. We are able nevertheless to compute relative cohomology, and the relative polytope provides a
sufficiently good weight function so that the general results obtained are sharp in cases where the L-functions
have previously been computed. In other earlier work (see [1] and [5]), understanding the weight function was an
essential step in enabling the calculation of p-adic cohomology. It is our hope that the relative polytope provides
a similar key step here. In a future article, we intend to treat families of Kloosterman-like sums, including the
calculation of the relevant p-adic cohomology. It should be noted that while our main application has been
to families of toric nondegenerate exponential sums these results have broader application to o-modules with
polyhedral growth, the content of which is in Section 2.

Acknowledgment: We thank Nick Katz for providing the ¢-adic proof of an upper bound for the p-adic

order of eigenvalues of Frobenius used in Section 3.

2 [L-functions

Let T" denote a fixed polytope in R® with rational vertices which contains the origin, perhaps on its boundary.
Let § denote the dimension of the smallest linear space in R® containing I'. We will assume § > 1. Let Cone(I")
be the union of all rays from the origin through I" and set M (I") := Z* N Cone(I"). For each u € M, we define the
weight w(u) of u as the smallest nonnegative real number such that v is in the dilation w(u)I'. Since the values
of w on M(I') may be described using rational linear forms coming from a finite number of top dimensional faces
of the polytope, there exists a positive integer D = D(T") such that w(M(T")) C (1/D)Z>¢. With g = p*, let Q,
denote the unramified extension of Q,, of degree a, and Z, its ring of integers.

With an eye toward obtaining p-adic estimates for the Frobenius below, we fix m, a zero of the series
E;io y?’ /P’ having ord,m = 1/(p — 1). We are most interested in the extension Q,(¢,) of Qp(¢,). These
fields have ring of integers respectively Z,[r] and Z,[r]. At various points in the exposition we will want to take
totally ramified extensions of Q4(¢,) and Q,(¢,). We will accomplish this by adjoining an appropriate root 7
of m, say m = /D for some positive integer D. The Frobenius automorphism o of Gal(Q,/Q,) is extended to

Gal(Qq(7)/Qp (7)) by setting o(7) = 7. Let us take then K = Q,(7) and assume the ramification index of K/Q,

is e.
Denote by Z4[7] the ring of integers of K. Using the multi-index notation t* := ¢{*---t%, where u =
(u,...,us), we define the overconvergent power series ring Olt as
ord,(a
O} = Z ayt® | ay € Zy[7], liminf orda(au) >0
w(u)—o0 ’U_)(U)
ueM(T)
Let A := (A; ;)i jer be a square (possibly infinite) matrix with entries in O;. We assume the index set is



countable (or finite) and we take it to be I = {0,1,2,...}. We will assume that A is nuclear, meaning here
its columns tend to zero p-adically (i.e. sup;|A4; ;| — 0 as j — o0o0). When A is a finite square matrix it is
automatically nuclear since the nuclear condition is vacuous. Let € (@;)S be the Teichmiiller lifting of a point
te (F;)S, and let deg(t) := [Fy(f) : F,]. We extend o to an automorphism of (’)lt by acting on the coefficients of

the power series. Define the matrix

a—1 —1

B(t) := A" (#*" 7). AT(tP) A(t).

Following Dwork [15], we may associate to B the L-function

1
det(1 = B0 ) B BT 0]

L(B7an/Fq7T) = H

te|Gy, /Fq]

€ 1+ TZ,[r][[T]], (4)

where the product runs over all closed points of the algebraic torus G;, over F,. This may be generalized so
that the product runs over closed points of an algebraic variety; of particular interest is when the polytope I lies
within the first quadrant R, so that we may define the L-function over affine s-space A®.

As it stands, L(B, G, /F,,T) is not in general a rational function. In fact, it is not even p-adic meromorphic in
general (see [32, Theorem 1.2]). However, we will either insist on its rationality or assume a uniform overconvergent
condition (5) which will guarantee p-adic meromorphy of the L-function.

It is useful to measure the nuclear condition on A as follows. For each integer j > 0, let d; be the smallest
nonnegative integer such that A; ; = 0 mod(7#7) for all j' > d;, where we say A;; = 0 mod(77) if 7/ divides
every coefficient of the series A;; = Ay;(t). That is, A; q;, A q, 41, Ai,a;+2, .. is divisible by 77. Note that dy = 0.
Define h; := d;1 — d;j. This means that the first hy columns of A are divisible by at least 79 =1, the next h;
columns are divisible by at least 7, the next hy columns by 72, and so forth. Next, we need a function which will
provide us with how divisible the j-th column is according to these h;. Set s(0) := 0, and for each integer j > 1,
let s(j) denote the largest integer such that j > dy(;). That is, s(j) = ¢, where £ is the minimum integer such
that j € [0, ho + hy + - - - + h¢]. This means that column j of the matrix A is divisible by at least 75(7).

Now let A(t) be a square matrix indexed by I (possibly infinite) with entries series in Oiﬂ with coefficients in

K. Let b € Ryg, p € R. Dwork defined spaces

L(b; p) := Z cut® | ey € Qq(7), ordy(cy) > bw(u) + p
ueM(T)
L(b) := [ J L(b; p).
pER

Write A(t) = 3, cprr) aut" where ay = (au(i, )i jer is a matrix with coefficients in Zg[7]. When I is infinite

we shall assume that

 r—s()
lminf 20T

i,j€I and w(u)—ro00 w(u)

>0, (5)



a uniform overconvergent condition. We note that w(u) provides the polyhedral growth of the coefficients a,, (%, j)
with respect to t* while 7°() describes the weight placed on each column index j. When A satisfies (5), including
the case when [ is finite, then there exists a positive real number b in which all entries of A lie within the Dwork
space L(b). Furthermore, there exists a real number p such that A; ; € L(b; % + p) for all i,j € I. In this case,

we may define the matrix A’ := p~?A whose entries A} ; € L(b; s(j)/e) for all i,j € I, and
L(A', G, [Fq,T) = L(p~" A, G}, /Fy, T) = L(A, G}, [Fq, p~"T).

Thus, we may at various points throughout the paper assume that A has been normalized such that p = 0, or
equivalently, hg # 0.

Write B(t) = 3, carr but". Define Fip as the matrix (bgu—v)(u,0), where u and v run over M(I'), and we set
bgu—v = 0 if gu —v & M(I"). That is, the (u,v) block entry of Fiz is the matrix bg,—,. Note, even if B is a finite
dimensional matrix, Fz is infinite dimensional. Dwork’s trace formula [32, Lemma 4.1] says

L(B,G%, /F,, 7)) = H det(1 — ¢ FpT) V' (0)
i=0

= det(1 — FpT)*", (6)

where 0 sends an arbitrary function g(7") to the quotient g(1")/g(¢T’). Since the entries a, satisfy (5), so do
the entries b,; in particular, if A;; € L(b) then B;; € L(b/p®~!). Consequently, the Fredholm determinant
det(1 — ¢'FpT) is p-adic entire by [32, Proposition 3.6], and thus L(B, G, /F,,T) is p-adic meromorphic on C,
by (6).



2.1 Main theorems on general L-functions

In this section we prove two main results about L-functions of overconvergent matrices defined over (’)lt. We recall

the following definitions and associated data from the previous section:

I, a rational polytope in R® with volume vol(T")

3, the dimension of the smallest linear space in R® containing I'

Cone(T"), the cone in R® over I'

M(T) :=Z° N Cone(I)

K = Qq(7), with ord,(7) =1/e

A = (A;;)ijer, a matrix with entries satisfying A; ; € L(b; s(j)/e) for some fixed b € Qx¢
B, a matrix defined by B(t) := AT (tpafl) < AT (EP)A(t)

w(I') ;== min{w(u) | v e M(T)NZ}

ord,(A) :=min{s(i)/e | i € I}.

It is convenient to assume that the field K is sufficiently ramified so that the denominator of b and D(T")
divide e. This does not for example change ordy,(A). Suppose A, and hence B, are N x N matrices and write

dim(B) := N. Suppose L(B,G?,/F,,T) is a rational function:

R
o _ iz (1 — i)

L(B,G3, /F,, T) !
! 1., (1= B7T)

(7)
written in reduced form (i.e. o; # j3; for every i and j). Let Z := {a,...,ar} be the multiset of reciprocal zeros
and P := {f4,..., s} the multiset of reciprocal poles of (7). Two elements 71,72 € ZU P are said to be g-related
if there is an integer 7 such that v; = ¢",. This defines an equivalence relation on ZU P. Let £ := {Ey,..., E;}

be the set of equivalence classes. Focussing on a fixed F € &, define

)s+1 L HaEZﬁE(l — aT)

Lp(B,G:,/F,, T) V" = ;
p [Fa T) [sepne(l—BT)

and if Rp denotes the cardinality of Z N E and Sg the cardinality of P N E, then we may order the reciprocal
zeros and poles giving
Lp(B,GS,/F, T)D" = —H?l(l — o),
Hj£1 (1 - 5]’ T)
Clearly,

L(Bvan/]quT) = H LE(Bvan/quT)'
Ee&

Lemma 2.1. Under the conditions assumed above, then

1. for each E € £, Rp — Sg > 0. (Consequently, the degree R — S of L(B,G} /F,,T D™ 45 a rational
m q



function is nonnegative.)

2. For each E € £, there is a choice yg € {aq,...,ar,} such that there are nonnegative integers {m; 1'% and

strictly positive integers {nj} 2 with
a; =q"yp and B =q"p.

Proof. The following proof illustrates Bombieri’s method [9, Section 4, p.83]. For v € Z U P we write
H(y) = [ Q= qmyT)em
m=0

where ¢(m) == ("1 1). The §-structure (6) implies

[locz H(a)

det(lfFBT): Hﬁ PH(ﬂ)’

and this is p-adically entire as noted above. Note that for two elements 71,72 € Z U P, 71 and 7, are g-related if

and only if H(y;) and H(72) have a factor in common. As a consequence, if we write

[acznp H()

Pell) =11, o HB)

then

det(1 — FpT) = H Dg(T
Eecé&

and each Dg(T) is p-adically entire. If we fix 51 € ENP so that §; = ¢™5; with m; > 0 for j =2,...,Sg, then
we also have 31 = ¢'c; with ¢; a non-zero integer for i = 1,...,Sg. The precise divisibility of (1 — ¢™8T) in
HRE H(«v;), for m sufficiently large, is fol ¢(m+t;) which grows with m like a polynomial of the form RE(TT_I;, +
(lower order terms). Similarly, the precise divisibility of (1 — ¢™8:T) in Hfjl H(B;) is c(m) + 23952 c(m+my)
which grows like a polynomial of the form S E(T:_i;;, + (lower order terms). Since Dg(T') is p-adically entire, any
factor (1 — ¢™ /51 T) must have nonnegative exponent in Hfjl H(ay)/ Hfﬁl H(B;) so that for m sufficiently large,
we must have Rg — Sg > 0. This completes the proof of the first part of the theorem.

The proof of the second part is simpler. Note that Dg(T) is entire so that each factor (1 — 8T") must divide
HRE H(a;), as a consequence 3; = ¢™ ayj) for some m; > 1 and 1 < k(j) < Rp. The result then follows by

choosing v among {1, ...,apr,} so that a; = ¢"™yp for nonnegative integers {m;}=5. O

We note that it is an interesting question to determine an upper bound for the degree of Lg(B,G3,/F,,T),

as well as an estimate for the number of equivalence classes in €.

Theorem 2.2. Suppose A, and hence B, are N x N matrices and write dim(B) := N. In parts (a) through (c)

10



below, we assume that L(B, G

5 JFq.T) is a rational function:

15,6 e,y - L= 0D
Hj=1(1 — B;T)

written in reduced form (i.e. oy # B; for every i and j). In part (d), we assume condition (5) so that this

L-function is p-adic meromorphic. Then,

a) The reciprocal zeros and poles o; and (B; are algebraic integers. Also, for each reciprocal pole B; there is a

reciprocal zero oy, and a positive integer m; such that f; = ¢™ ay;.

b) If § < s then R =S, else if § = s then

0<R-S5< (b(pilfl)) - stwol(T") - dim(B)

¢) Let k be the smallest positive integer such that ordya; and ord,f; < k for all i and j. Then, with p :=

min{s, k}, we have

R+ 8 < dim(B) - §lvol(T") - 250 1+ D*=p) (1 4 9355 1+5))p,

d) Suppose I' C RS and b(p — 1) < 1. Write

L(B,A*/F,,T) = 728 - gjg

Here, A, and hence B, may be infinite dimensional, in which case «; and ; — 0 p-adically. Then ordgo;

and ordyB; > b(p — L)w(L') + ord,(A) for all i and j. A lower bound is also given when b(p — 1) > 1.

Proof of Theorem 2.2, part (a). That the reciprocal roots are algebraic integers follows directly from Dwork’s

argument found in Bombieri’s paper [9, Section 4, p.82]. The second part follows from Lemma 2.1. O

The proof of parts (b), (¢), and (d) will require various lemmas. We begin by obtaining a lower bound on
the g-adic Newton polygon of det(1 — FgT'). With this purpose in mind, we define a p-adic Banach space C(b, I)
over the field Ky := Q,(7), having orthonormal basis {"}/gf(u)tuel'}ugkf(r‘)_’igl where {e;}ier are formal symbols

and ordy,(y,) = b . Thus
O, I):= &= Z c(u,i)fy;ﬂ(“)t“’ei | e(u,i) € Ko, c(u,i) — 0 as (u,i) = 00
ielue M(T)

As usual, the norm on C(b,I) is given by |{| := sup{|e(u, )| : (u,i) € M (') x I}. The map v, o A(t) acts on
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& € C(b,I) via (recall the notation a,(7,j) from the sentence before equation (5))

(WpoANE= Y. > ali)e(w )y T 4 Otte.
i€l eM(T) \jel,utv=pl
Then ® 4 := o~ L o), 0 A(t) is a completely continuous endomorphism of C(b, I') over Ko, semi-linear with respect
to o1 over K. The map ®p := 1), o B(t) is a completely continuous endomorphism of C(b, I) over K satisfying
Op = 9. Let B := {t"e; | (u,i) € M(T') x I}. Then the matrix of ®p computed with respect to the basis
B is Fp. As is well-known, a completely continuous endomorphism has a well-defined Fredholm determinant
detg (1 — ®pT). This may be computed using the matrix of ® 5 with respect to 5.

Let {n1,...,ma} C Z4 be a lifting of a basis of I, over F),. Then {n;}%_, is a basis of Q, over Q, such that for
every ¢ € Qg, writing £ = Z;Zl &;n; with & € Q,, we have ord,(§) = min{ord,(§;)}. The Fredholm determinant
of ®,4 as a completely continuous endomorphism of the Ky-space C(b, I) may be calculated from the matrix of ® 4
with respect to the basis B’ := {n;t*e; : 1 < j < a,u € M(T'),i € I}. The relation the between detg,(1 — ®4T)

and detk (1 — ®pT) is given by the following lemma.

Lemma 2.3. (¢f. [14, Lemma 7.1]) Taking the graph of the p-adic Newton polygon of detr,(1 — ®4T) and

rescaling the abscissa and ordinate by 1/a yields the g-adic Newton polygon of detx (1 — ®T).

Proof. For convenience, write G(T') := detx (1 — ®pT). Then

detg, (1 —®pT) = Normg, k,G(T)

=G (T)- -G (T)G(T).

Next,
detKn(l — CI)BTG) = detKn(l - %Ta)
=[] detx,(1 = ¢@AT).
¢e=1
Thus,
G7 T GUTG(T?) = [] detw,(1 - CPAT). (8)
¢e=1

Let N denote the number of reciprocal roots of G(1') with slope ord, = m, which means ord, = am. Then the
lefthand-side of (8) has (aN)* number of reciprocal roots of ord, = m. Consequently, since ¢ does not affect the
Newton polygon of detg,(1 — (PaT), we see that dety,(1 — ®4T) has aN reciprocal zeros of ord, = m. The

lemma follows. U

We proceed now to an estimate for the p-adic Newton polygon of detg,(1 — ®4T). Recall, A(t) = (4;;)

satisfies A; ; € L(b;s(j)/e) for every j, with b a positive rational number. Let d be the smallest positive integer
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such that b(p — 1)w(u) + s(i)/e € LZ for all uw € M(I') and i € I. Note, this means db(p — 1) and ds(i)/e are

nonnegative integers for all ¢ € I. Define
. , s(i) _J
W(j):=#< (u,i) € M(T) x I |b(p—1w(u)+ e =l

Lemma 2.4. The p-adic Newton polygon of dety,(1 — ®4T) lies on or above the lower convex hull in R? of the

points

n

AN -
(0,0) and ajZ:%W(j),EZjW(j) n=0,1,2,....

j=0
Consequently, from Lemma 2.3, the q-adic Newton polygon of det(1— FpT) lies on or above the lower convex hull

in R? of the points

(0,0) and ZW(]’),%Z;’W(]’) n=01,2,.... (9)
=0 §=0

Proof. Write A(t) = ZuEM(F) a,t", where each a, = (ay(%,7))i jer is a matrix. For each basis element e;, write
Qg = ng ay (i, j)e; with a,(i,7) € K. We now compute the matrix of ®4 with respect to the basis B’. For

mtte; € B,

Da(mitte;) = ot o1y, (A(t)mt e;)

=0 tm) v [ DD D au(i )t e

veM(T) jel

= 0_1(771) : djp Z Z Ay (ivj)ej tu+v

veM(T) \jeT

=otm) -ty | D [ D ar—ulin) | eit”

reM(T) \jel

ot m) Y Y apuli)est”

reM(T) jel

For each i and j, write a,(i,7) = Y_i_; au(i, j; k)n, with a, (i, j; k) € Ko. Continuing the above calculation,

Da(mte) =0 ) D DY apr—uli, ji k)t"e;.

reM(D) jeI k=1

Next, for each [ and k, write o= () = > _; b(L, ks m)n,, with b(l, m; k) € Z,,. Then, continuing the calculation

Da(mitte;) = Z Z Z Qpr—u(t, 75 k) b(l, k; m)n,tTe;.

reM () jEI k,m=1

Hence,

Matrix of ® 4 with respect to the basis B’ is (Z apr—u (2,75 k) b, k; m)) .
k=1 (Lu,g),(m,r,5)
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Set d(l,u,i;m, 7, §) := >4 _ apr—u(i, j; k)b(l, k;m). Then

det g, (1 — ®4T) = Z T

where
Z Z sgn(r H l(Z)’u(Z)’i(Z);l(T(Z))7u(T(Z))7i(T(Z)))
TESm z=1
where the first sum runs over all m number of triples (l(1>,u(1),i(1)), R (l(m),u(m),i(m)) of distinct elements

of the set {1,2,...,a} x M(T') x I, and S,, is the symmetric group on the letters {1,2,...,m}. Recall that
ordy(ay(i,j)) > bwr(u) + S( ), and so by construction of the basis {n;}, the same holds true for each a, (i, j; k).

Since ord, (b(l, k;m)) > 0, we have

m

i7(2)
ordp(cm) > min min (bwp(pu(T(Z)) —u®) 4 M)

distinct (I,u,i) TE€ESm €
istinet (I,u,%) ()

S 10)
= i b(p— 1 @)y o SEDN L
- distig?tlr(ll,u’i) {ZE: < (p )wI‘ (u ) + o

1

It follows that the p-adic Newton polygon of detx, (1 — ®4T) lies on or above the lower convex hull in R? of the

points
n a n
0,0 d Wij), = W (5 =0,1,2,....
(0,0) an a; (7, 3> W@ | n=012
O

Proof of Theorem 2.2, part (b). Bombieri’s argument [9, Section IV] demonstrates that using the lower bound

(9) and the Dwork trace formula (6), one may obtain the inequality

deg L(B7anaj)( O +1 Z J .
S () S < ]17 .

As we show below, the righthand side may be asymptotically approximated by
j . dim(B)vol(I') ., s
z—= W]:~—vxs + O(z%), 10
X (e-3) v - S en s o ) 1o

which proves the result since § < s. The proof of this estimate is a modification of an argument of [1, §4], thus

we will only provide the relevant parts. First, we note that we may write

(4) =>_Wi(j) (11)

icl

where

Wi(j) := #{u € M(T) | b(p — Dw(u) + s(i)/e = j/d}.
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For convenience, set ' := b(p — 1) and ¢; := s(i)/e. Recall that w(M(T")) C (1/D)Z>¢. Now, if u satisfies
b'w(u) + ¢; = j/d then there exists a nonnegative integer j' such that w(u) = j’/D such that v/'j'/D + ¢; = j/d.

Hence, for each fixed 1,

Z Wi(j) =

1<y

Y #ue M) |w()=j'/D}

<z=c

il

= vol(T") (E)§ + 027,

where we have used the argument in [1, §4] for the second equality. A similar calculation gives

!l

S (D wo = ¥ (% +e) #tue M) vt - /D)

asw S
Svol(T) 7 a\5+1 s
= — O(x?%).
Ft+1 (b’) +0()
Then, (10) follows by combining these estimates with (11). ]

We now move on to an upper bound for the total degree. Like the degree, the proof is a modification of an
argument of Bombieri’s [10]. However, we will follow the argument in [1] since it applies to growth conditions

defined by polytopes.

Proof of Theorem 2.2, part (c¢). In fact, we prove the slightly stronger inequality
R+ 8 < dim(B) - 81 vol(T) - 25 5wt T 560 D E=0) (1 4 955 1+8))p, (12)

Inequality (12) follows from an almost identical argument to that in [1, §5] once one has the following rationality

result of the Poincaré series Y n_, W(N)TV:

> T
NZ::OW(N)TN = % (13)

where Q(T) is a polynomial with nonnegative integer coefficients and special value Q(1) = dim(B) - 5l vol(I"). We

prove this as follows. Define

W'(N) :=#{ue M(T) | w(u) = N/D}.
The Poincaré series of this, by [1, Lemma 5.1], satisfies

P(T)

S w(NHTN = a0y

N'=0

with P(7T) a polynomial in nonnegative integral coefficients, degree at most §D, and special value P(1) = §lvol(T").
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Using (11), observe that
o0 oo
SowTN =N win)TV.
N=0 iel N=0
For convenience, set b’ := b(p — 1) and ¢; := s(i)/e. Notice that W;(N) is a positive integer if and only if there
is a u € M(T') that satisfies b'w(u) + ¢; = N/d. By defining the integer N’ by w(u) = N'/D, we see that
N/

Wi(N) =W'(N') when & =¥ - &5 + ¢;. Thus,

) i Wy(N)TN =3 i W (N')Td(®' N’ /d)+e:)

i€l N=0 i€l N'=0

P(T) e, T
(1 — T3

Note, by the discussion before Lemma 2.4, db’ and dc; are nonnegative integers. Denoting the numerator of this

quotient by Q(T) proves (13). O

We remark that a more modern and accessible presentation of Ehrhart’s theory on polytopes (e.g. rationality
of the Poincaré series mentioned in the above proof) may be found in [8, Chapter 3].

Assume now that I lies entirely in R% so that the L-function may be defined over affine s-space A®. Define

S(B):=Y_ Tr(B(t)),
teFs

where t is an s-tuple in Z whose coordinates are the Teichmiiller representative of ¢ (or zero).

Theorem 2.5. Suppose I' lies entirely in R,. Here A may be infinite dimensional. Assume b(p—1) <1. Then
ordy S(B) > b(p — 1)w(I") + ord,(A). (14)

A lower bound is also given if b(p — 1) > 1.

Proof. The underlying idea of the following goes back to Katz [23]. Write B(t) = >_,cpy ) but". For € C

1,2,...,s}, define the matrix B b,
Yy

BY:= > bt
ueM(T)
u; >0 if ieC

We use the following version of the Dwork trace formula [32, Lemma 4.3]:

L(BvAS/IFq»T) = H det(l — qsflc‘FBcT)(*l)sf‘cl.
Ccc{1,2,...,s}
Hence,
S(B) = Z (—1)/Clg==1ClTp(Fge),
cc{1,2,...,s}
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and since ¢ = p®, we have

w<(@) ::#{(uJ)EECXI|b(p—1)w(u)+ﬂ:Z}‘ (15)

Using a similar argument to Lemma 2.4, the g-adic Newton polygon of detx (1 — FpeT) lies on or above the

points

k k
1
0,0 d wey), =Y W k=0,1,2,...
(0,0) an ;:0 () d;:o] ()

Let ko be the first nonnegative integer such that W (k) # 0. Then the first point away from the origin in the
above sequence is (W (ko), %"Wc(ko)), and thus, since detx (1 — FgeT) = 1 — Tr(Fge)T + O(T?), we obtain
the inequality

ko

ordy(Tr(Fpge)) > == (u,i)neliEncxI {b(p — Dw(u) + ?} .

Now, using [4, Lemma 4.5] for the second inequality below, we see that

ord, S(B)>  min {sf|c\+ min {b(pfl)w(u)Jr?}}

cc{1,2,...,s} (u,i)EEC XI

Ccc{1,2,...,s}

min {s —|C|+b(p—1) urggnc {w(u)}} + ordy(A)

> i - -1 r—(s— A
> min {5 [C+ b — 1) (u(D) — (5 = [C1))} + ordy (4)
b(p — Dw(I") + ord,(A) ifb(p—1)<1
s(1=b(p—1))+blp—NHw)+ord,(A) if1<blp-1),
taking |C| = s in the former and |C| = 0 in the latter. O

Proof of Theorem 2.2, part (d). For convenience, set k := b(p — 1)w(T) + ord,(A). With

Sk(B):= > Tr(B(t)),

te(F r)®
it follows from Theorem 2.5 that ord,(Si(B)) > kk for every k. Using the same idea as in [7], this is equivalent

to every reciprocal zero and pole of the L-function of B having p-adic order at least . O

2.2 Unit root c-modules

Using freely the terminology of [29] and [30], we will demonstrate that part (d) of Theorem 2.2 may be applied to

obtain a similar result for unit root o-modules. In Section 4.3, we will apply the following result to a particular unit
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root L-function coming from the nondegenerate toric family in Section 3. Let (M, ¢) be a finite rank, ordinary,
nuclear o-module. (Here, ordinary means that the fiber-by-fiber Newton polygon of ¢ equals the polygon defined
as the lower convex hull of the points (Zf:o hi, Z?:o ih;) in R?, where h; was defined in Section 2.) We assume

there exists a matrix A(t) such that the matrix B(t) of ¢ with respect to some orthonormal basis B satisfies

B(t) = A7 () - A7) A(t) (16)
with A(t) satisfying (5). The latter condition means there exists b > 0 such that the entries of A(t) all belong

to L(b). Let ¢; be the i-th slope unit root o-module coming from the Hodge-Newton decomposition of ¢. Wan’s

theorem [30] tells us that the L-function of ¢; is meromorphic:

with a5, 8; — 0 as 4,5 — oo.

Theorem 2.6. Assume the relative polytope (3) satisfies T' C RY,. Suppose b(p — 1) < 1. Then for all i and j,

ordga; and ordyf; > b(p — 1)w(I'). A lower bound may also be given if b(p — 1) > 1.

Proof. In the proof of Wan [30, Theorem 6.7] it was shown that there exists a sequence of matrices {B;(t)} with

the following properties. There exists matrices A;(t) for each j with entries in L(b), b independent of j, such that

Bj(t) = A" (#7" ) AZ(7) A1),
with

ordy(A;) > 0 for every j and lim ord,(A;) = oo
j—oo

satisfying

L(¢i, A° [Fy, T) = [ [ L(Bj, A /Fy, T)*,
j=1

where + means the factor lies in either the numerator or the denominator. The result now follows by applying

part (d) of Theorem 2.2 to each L-function in the product. O

When the unit root o-module is of rank one, then we may allow the matrix A(¢) to have possibly infinite

dimension. This is useful in applications, as we will see in Section 4.3.

Theorem 2.7. Let (M, ¢) be a possibly infinite rank nuclear o-module, ordinary up to and including slope j.
Suppose there exists b > 0 and a matriz A(t) with entries in L(b), I' C R, such that the matriz B(t) of ¢ with
respect to some orthonormal basis satisfies (16). Let ¢; be the unit root o-module coming from the j-th slope in
the Hodge-Newton decomposition of ¢. Suppose ¢; is of rank one. Then the same result as in Theorem 2.6 holds

Jor the unit root L-function L(¢;, A®/F,,T) by the proof of [29, Theorem 8.5].
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3 Families of nondegenerate toric sums

Notation. Let V be a finite subset of Q™ and define A(V') as the convex closure of VU{0} in R™. Let Cone(V') be
the union of all rays from the origin through A(V'). Set M (V') := Z™ N Cone(V), a monoid. The monoid-algebra
R(V) :=F4[M (V)] may be filtered using a (polyhedral) weight function as follows. For each p € M(V), let wy (u)
be the smallest non-negative rational number such that p € wy (@)A(V). Then wy (M (V)) C ﬁzzo for some

fixed positive integer D(V'). The following properties of wy hold.
(i) wy(u) = 0 if and only if © = 0.
(il) wy (cp) = cwy (p), if ¢ >0 and p e M(V).
(iil) wy(p+v) <wy(p) +wy(v) for all p,v e M(V).

Furthermore, equality holds in (iii) if and only if 4 and v are cofacial with respect to the same closed face of
A(V), i.e. the rays from 0 to p and from 0 to v intersect a common closed face of A(V).

The weight function wy imparts an increasing filtration to the ring R(V') defined by
Fi,R(V) :={g € R(V) | wy(p) < for all u € Supp(g)}

for each ¢ € ﬁzzo. The associated graded ring R(V) := gr R(V) has M (V) as a basis over F, and has

multiplication rules

a* if p and v are cofacial with respect to a common closed face of A(V)
hrV =
0 otherwise.
Toric family. Let f(z) = . A(u)a# € F,[zf, ..., 2] Define ¥ := Supp(f) := {u € Z" | A(u) # 0}. Using the

construction above we define A(f) := A(X), Cone(f) := Cone(%), M(f) = M(X), w:=wy, R:= R(X), and
R := R(X). We will assume throughout that

L. dimA(f) =

2. f is nondegenerate with respect to A(f). (Recall we write for a closed face o of A(f) not containing the

origin f7 = Zuea A(p)z*. Then f is nondegenerate with respect to A(f) if for every closed face o € A(f)

not containing the origin {z %, cey T af } have no common solutions in (f;)”)

Let G(x,t) = f(z) + P(z,t) € F o, .. ok tf, ... tF], with P(z,t) = Y7 P, (), where 5 runs over a finite

) n’

subset T' of Z*. We assume, in addition, that

0<w(v) <1 (17)
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for every v € |, . SuppP, (z). Note, condition (17) allows us to assume without loss that all monomials z# in

yeT
the support of f have weight w(u) = 1. (All monomials of weight less than 1 can be absorbed by the deforming

Laurent polynomial P.)

Relative polytope. Let U be a finite subset of Q°. As described above, any such set gives rise to data
A(U), Cone(U), M(U), and R(U) in R*, and the weight function wy. For simplicity we consider subsets with
Cone(U) = Cone(T), M(U) = M(T), with the property

wy(7) +w(p) <1 (18)

for all (y,p) € Z° x Z™ in Supp(P). Note that, since we are assuming (17), if U is chosen so that A(U) is
sufficiently large then (18) will hold. We now define one which is minimal among all such and therefore gives
optimal estimates.

Consider, for any U satisfying (18), the convex set
A(U) x A(f) c R™ ™=,

Consider

0= { (1) 7 € @ 10w € SumP) (19)

and let I' := A(Up). Then (18) implies for any such § = < )fy € Up that wy(6) < 1. As a consequence

1
1-w(p)
I' c A(U) and wr(y) > wy(y) for all v € M(T'). On the other hand, by very definition, if § = (#(u)) v e U
then wr () < 1 so that wr(y) +w(p) < 1 for all (4, 1) € Supp(P), and so (18) holds for U = Uy. Thus the choice
of I above makes wr optimal among weight functions wy satisfying (18). We call I" the relative polytope of the
family G(x,1).

We will assume from now on that U = Uy and our weight function W on M(T) x M(f) is

W (v, 1) := wr(y) +w(p). (20)

Note that W is the weight function for the polyhedron I' x A(f) in R"™*. The I" weight of a monomial (v, 1) in
M(T) x M(f) is wr(y). We set S := F,[M(I")] which is filtered using wr. Let S be the associated graded ring.
Similarly, set M := F,[M(T') x M(f)], filtered using W defined in (20). M is an S-algebra. If M is the associated

graded ring gr(M), then M is an S-algebra satisfying
SO @) prlita) (21)

with multiplication obeying the rule

) (tPx”) = 7Pty (22)
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if v and B are cofacial with respect to a common closed face of I' and p and v are cofacial with respect to a

common closed face of A(f), else the multiplication equals 0.

Rings of p-adic analytic functions. Let ¢, be a primitive p-th root of unity. Let Q; be the unramified
extension of Q, of degree a := [F, : F,], and denote by Z, its ring of integers. Then Z,[(,] and Z,[(,] are the ring
of integers of Q4(¢p) and Q,((p), respectively. Let m € Q,((,) be a zero of Z;’;O v’ /p? having ord,(7) = 1/(p—1).
We may have occasion to work over a purely ramified extension of Qg (containing Q4({p)). Say Q4(7) is a totally
ramified extension of Qg containing Qg (7) with uniformizer 7, a root of 7. In this situation we denote by Z,[7]
(resp. Zp[7]) the ring of integers of Qq(7) (resp. @,(7)), and by o the extension of the Frobenius generator of
Gal(Q,/Q,) defined by o(7) = 7. Set

Op:i=< > CNa*r) | C(v) € Zy[7],C(y) = 0 as v — o0
yeEM(T)

(We note again that the fractional powers of 7 are to be understood as integral powers of the uniformizer 7.)

Then Oy is a ring with a discrete valuation given by

> Cctrar = sup [C(y)].

~eM(T) veM(T)

Note, it is not a valuation ring. In fact, the reduction map

S Clrr e 3 G

~yeM(T) ~yeM(T)
identifies the rings
Oy /70y — S.

Let

Coi=9 Y &umWar|&(n) € O, &) = 0as p— oo p,

neM(f)

an Op-algebra. For & € Cy, write

E= 3 e =Y O,

neEM () (1) EM(T)x M(f)

The reduction map mod 7, taking

Y. o Om e — DRI CANIAET

(v,p)EM(T)x M (f) (v,p)EM(T)x M (f)
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identifies the S-algebras
Co/7Co — M. (23)

The associated complex. Define 7y := 1, and for i > 1

i J
R Pt
(N pj
3=0

o J

- Z P

= —T 1 —_—.
p]

j=i+1

Note that
pi+1 -1

S .

ordp (i) =

Let G(x,t) be the lifting of G(x,t) using the Teichmiiller units for all coefficients. Define
H(z,t) = Y %G (@ ")
i=0

Notice that G’ (xpi,tpl) has W-weight less than or equal to p* for all 4 > 1, and since

d oo oG P
o' (D" 4P — P’ 4P
X Bml (G (‘T at )) p (xl aml ) (x 7t )7

and
i

d Z_z_ — 2_1>0’
ordy(Ty:p") Pt A

we see that multiplication by mvl%fl’t) defines an endomorphism of Cy. Hence, we may define a complex of

Op-algebras Q°(Co, V) by
dl’kl A A dl’kl
Ty Tk,

0'(Co, V) = P

1<k <-<k;i<n

with boundary map

i

Valn D p . Wy (Z Dht(n)@) T

Ty L. =1 X Ty Tk
with

0 OH (z,1)
D=2 — —
1t =T 921 + ma; 91

In the following section we will see that this complex is acyclic except in top dimension n.
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3.1 Computing cohomology of Q°*(Cy, V)

The complex Q°(Co, V) is a complex of Op-algebras. The reduction modulo 7 of this complex may be identified

with the complex Q°(M, V&) of S-algebras, where

‘(M - d day,
Qz(M,VG) = @ Wi J?kl/\”./\ Tk,
1<ki<o<ki<n Tk T,
and
,dl‘]g dSCk dx] dl‘k d$k
Vea LA Dy (r day, N .
G( Tk, (Z lt ] > e o
where
AGW (z,t)
D, = —
T 1 o Ox;
Here

GV (z,t) == f(z) + PY(x,1)

in M consists of the terms in G having W-weight precisely equal to 1.
In order to compute the cohomology of the reduced complex it is useful to first compute the cohomology of

Q°* (M, V 4a0) ) where
dl’kl A A d.r/w
Ty Tk,

Qi(M,Vd@u)/\) = @ M

1<k <---<k;i<n

with boundary

_ n 8G(1> dx;
dGW) = — A
; Ox; x
Theorem 3.1. Assume hypotheses 1 and 2 at the beginning of Section 3 above. Then the complex Q®(M,V 4 )
is acyclic except in top dimension n. Furthermore, H™(Q*(M,Vam,)) s a free S-algebra of rank equal to
dimg, (R) Y1, i 2L R) = nlvol(A(f)).
If B is a basis of monomials such that the F,-vector space V' spanned by B in R satisfies

n

_ of -
R=V®Y xR,
P Ox

then

(1)
—Wa zmz oc (24)

where W is the free S-submodule of M generated by the same set of monomials .

Proof. For the first part of the theorem, we show that for every subset A of S := {1,2,...,n} the set {z; ax(l) Yica

forms a regular sequence in M. If so, then H!(Q®*(M,V am,)) = 0 for 0 < i < n since the complex is in this
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case the Koszul complex on M defined by the elements {xi%}ies. So, assume

oG _
> w5 —Ei2,1) =0 (25)
icA ¢
with & (z,t) in M. Since M is graded and the {mi%}ieg are homogeneous of W-weight 1, it suffices to consider
(25) in the case in which the {&;(2,t)}ica are homogeneous in M, say of W-weight k. We will prove that given

(25), there exists then a skew-symmetric set {7;;(x,¢)}iea in M®*=1) guch that

_ oG
Eilw,t) = @ o) (1) (26)

leA

for every i € A. Now we consider for 0 < p < k representations of {&;}sc4 of the form

_ L aG™
i, t) = & (@) +) = o it (2, t) (27)
r>p leA

where

g, )= > LT (@)

wr(y)=r
are terms of M®) with wp-weight equal to r, and w-weight equal to k — r, and where {Fir(x,t)}itca is a skew-
symmetric subset of M* 1 Of course, we get such a representation in the case p = 0 by taking 7;; = 0 for all 4
and [.
Let D be the least common multiple of D(T") and D(f) so that

W0, ) =wr(y) + w() € 5250 (28)

We proceed by induction on p. More precisely, we show that given such a representation (27) for {&;(x,t)}ica
with a given p = pg we may find another such representation but with p > pg + %7 so that in the end we produce
a representation with p > k hence of the form (26).

It is convenient to write

GV =f)+ > G0

0<r<1
r€(1/D)Z>o
where
GV (z,t)= >  PI(x).
wr (v)=r
But (25) and the skew-symmetry of 4;; then implies that the sum of terms in >, 4 xl%:)& (x,t) with wp-weight

equal to pg are precisely given by

ORRED DRl

wr(y)=po €A
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so that for each v € M(I'), wr(y) = po, we have

Of -
Z 5( Po)( ) =0.
i€A
Recall [5] that {z; 2L 5a- Hizy forms a regular sequence in R. Thus, there are for each v € M(T") with wr(y) = po a

skew symmetric set {wivl;ﬁ,(aﬂ)}i,leA € R¥F=ro=1) "such that for each vy, wr(y) = po, we have

ER) (x Zwl it (@), (29)

leA

If we write

_ (1)
) =& - S ()

leA T \wr(m=po
then the representation of 7; according to wr-weight begins with at least pg + 1/D. This completes the inductive
step and establishes the first part of the theorem.
Since the boundary operator dG™M A is S-linear, H™(Q*(M,Vama)) = M/ 3, l‘l%]\_f is an S-module.

We claim

which identifies H™(Q°*(M,V 51 ,)) as the free S-submodule W of M with basis B. Consider a monomial #7z*
with W (v, ) = k in M. We know

n 87 B
ot = "av; + lea—iﬁl(l)
=1

with the v;’s in B of w-weight k — wr(7) and the {§}7, ¢ R*F=wr(=1_ Rewriting we have

n ) n (
Zavﬂerl G(l (x mel Pl)ggtf(x).

But then

n (1) n (1)
t"m”—Zat vz—&—leaG t'yfl lew(t §l(x)).

83:1
=1

The support of the terms in the last sum on the right all have W-weight k& but they all have wp-weight
strictly greater than wp(y). We may now repeat the preceding argument replacing each 72 in the sum

A 5(1) _
Sy xldpaix(lz’t)t”& () in an obvious manner and proceed inductively to establish

n ( ) B
M®*) CW(’“)+Zx18§ M=, (30)

xXr
=1 !

It remains to show the sum on the right of (24) is direct. Since the submodules on the right side of (24) are
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homogeneous it suffices to show that the sum on the right side of (30) is direct for every k. Let

- " 9GM _
W= ;Iz ) & (31)

in M®*) and write @ and {&}", in terms of ascending wr-weight, @ = " a; ,t7v; with wp-weight of all terms
of w at least pgy, and with at least one coefficient a; , # 0 for (4,7) with wr(y) = po. Similarly, let the minimal

wr-weight of any term in the support of & for some I be p1. If pg < p1, then (31) implies

Z Z &i,wﬂvi =0

i wr(y)=po

in M) which contradicts our assumption that at least one coefficient a;~ # 0. Next write

Q)= Y 0, +mle0) (32)

wr(v)=p1

with 7(x,t) € M®* =1 having terms in support all having wp-weight strictly greater than p;. If p; < po, then
(31) implies
0= % oS alle
wr ()=p1 =

Thus, for each v, wr(v) = p1,
n _
of -
> a—xlfl,v(ﬂﬁ)
=1
Since the {mlg—i}le is a regular sequence in R, there is for each v, wr(7y) = p;, a skew-symmetric set

{'fl,r;'y (I)}Z,TEA C R(k7p172)

with

n

_ of
() = D001 (). (3)

r=1

But then let

n

_ (€]
Wy =& — Z 7 va oG T r,'y(x)

wr(y)=p1 r=1

Using the skew-symmetry and (31), we have

G<1
:g ) 8.(1?[

But the smallest wr-weight among the {@;} is strictly greater than p; by (33). So given (31) with p; < po we are

led to the case where p; = pg. In this case comparing terms having wp-weight equal to pg = p1 on both sides of
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(31) we have, writing & as in (32),

Z &i,'yvi = Z le §l,'y

wF(’Y):POKUiEB wr (y)=po =1
which contradicts the definition of B. This completes the proof of Theorem 3.1. 0

Since M is a graded ring, and the operator a%l acts on M homogeneously of W-weight 0 and multiplication

by a; ag;;ll) acts homogeneously of W-weight 1, then the following result is immediate from Theorem 3.1. For

notational convenience, we will write w(v) to mean w(u) for v = z# € B.
Theorem 3.2. We have

1. Q*(M,Vaw) is acyclic except in top dimension n.

2. H'(Q*(M,Vam)) =M/ >, DitM is a free S-module of rank nlvol A(f) with basis B.
3. We may write

M=W¢e ZDHM‘
=1

Furthermore, if 7z € M*) then

Pk =" ag b v + ZDZ &, t) (34)

v, EB

where W (v,v;) < k, wr(v) > wr(y) and any term (B,7) in the support of any & has W(B,7) <k —1 and

wr(B) > wr(y).

Finally, a slight modification of Theorem Al [5, p.402], in which we drop the assumption that O is a discrete

valuation ring, gives

Theorem 3.3. Let O be a complete ring under a discrete valuation with uniformizer T and residue ring F =
O/70O. Let
° 0 a° 1 o' n
cC*={0-C"—C —---C" =0}

be a length n cocomplex of flat, separated, complete O-modules with O-linear coboundary maps 0°. Let C'* be the

cocomplex obtained by reducing C'* modulo 7. Then
1. For any i, H(C*) = 0 implies H'(C*) =0

2. If H™(C*®) is a free F-module of rank 1, and H"~'(C®) = 0 then H™(C®) is a finite free O-module of rank
l.

Using Theorem 3.3, we obtain the following corollary to Theorem 3.2:
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Theorem 3.4. The complex Q°(Co, V) is acyclic except in top dimension n, and H"(Q®*(Co,Va)) is a free

Og-module of rank equal to n! vol A(f). Furthermore,

CO = Z 0077'“}(1))1) D i Dl7tC0
1

veEB =

where B is a lifting of the monomials in B to characteristic zero and

ad OH (z,t)
Dy i=x;— —_—
L i oxy R oxy

3.2 Frobenius

It will be convenient in this section to denote Fy by ky. To motivate the development of the spaces Co(Qpq)

defined below, formally define

_ 1
ali=o 10Wod}poexp7ﬂ{(z,t) (35)

1
= o, 0e H(xz,t
(€] expﬂ'H(x,tq) ¢q Xp7T ( I )a

where

Uy (Z A(u)ﬂf“) = Alpp)a*
b (D AGat) =37 Alau)ar,

and o € Gal(Qq(¢p)/Qp(¢p)) is the Frobenius generator which we extend to Gal(K/Kj) taking o(7) = 7. Since

formally,
1 0
D= —"7"+— — H(x,t
DT exp mH (x,t) o Oz o expmH(z,1)
the following commutation laws will hold for [ =1,2,...,n,
gDjgaoca=caoD;; and pDpwoa=aoD,. (36)

Since the differential operators D;; commute with o« by changing ¢ to either t” or ¢¢, in order to proceed, we
need to introduce some new spaces. In the following, ¢ = p® is an arbitrary power of p (including the case when

a = 0), so we can handle the cases of t9, t?, and t, at the same time. Define

Ovgi={ S AMOTrD | A(y) € Zyln], A(y) — 0 asy — oo ¢ . (37)
yEM(T)

This ring is the same as Oy except using a weight function defined by the dilation ¢I" (that is, wer () = wr(v)/q).

We note that here Op1 = Op. A discrete valuation may be defined as follows. If £ = Z'yeM(F) A(y)mwar (¢
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then

€] := sup [A(v)]-
yEM(T)

We may also define the space

Co(Opq) = Z £ux“7rw(“) | €, € Opg.6 — 0as p—o00p. (38)
neM(f)

We will sometimes write Co as Cy(Oyp). For n = ZueM(f) f;ﬂrw(”)x“, we set

Inl = sup [&,l.
REM(f)

The reduction map
ZA(W)NW“"?F(”) — ZA(W)tW

takes O , to the graded ring S, := gr ko[M(I')], where ko[M (I')] has been graded using w,r. In this case, S, is
identical to § defined earlier but regraded so that S{/? = 5.

Replacing the weight function (28) with

Wa(v, 1) == wer(7) + w(p) € 57Z>o0, (39)

( )

where D(q) is the least common multiple of D and ¢, the proofs of Theorems 3.1, 3.2, and 3.4 now may be
modified slightly so that analogous versions hold for these spaces, using M, := ko[M (q') x M(f)] filtered by W,
and M, := gr M,. Of course, since M (T") = M (qT'), we see that M, is just M regarded with Méi/q) =M®. We

give explicitly the statement of our analogue of Theorem 3.4:

Theorem 3.5. Let Dy o 1= x5 81[ + Ty M Let Q*(Co(Oo,q), VG(z,a)) be the complex with

Qi(CO(OO,q)avG(x,tQ)) = @ CO(OO,q)

1<j1 < <ji<n Ji

and

Lj Lj;

dzj, dﬂc ; dr dz;, dz;,
Ve €2 oo (zpm ) NN
J1

Then this complex is acyclic except in top dimension n, and H™(2*(Co(Qo,q), VG(a,i0))) s a free Og q-module of

rank equal to n! vol(A(f)). Furthermore,

Co(OO’q) = Z Oo,qﬂw(v)v D Z Dl,t‘ZCO(OO,q)7

veB =1

where B is the same collection of elements in M(f) as in Theorem 3.4.

In order to obtain sharp p-adic estimates for Frobenius acting on relative cohomology we modify some of
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Dwork “s basic constructions. Let 0 < b < p/(p — 1) be a rational number. Define

R(bic) =9 Y AM | A(y) € Qq(n), ordy, A(y) > bur(y) +c
yEM(T)
R(b) == | R(b;c).

We define a valuation on R(b) as follows. If =3 /) A(7)t” € R(b), then

ord, § = Welﬂr}fm{ordp A(y) — wp(7)b}

=sup{ceR| &€ R(b;c)}.

Note that
R(b;e)R(b; ) C R(b;c+ ')

since

Y A YA = Y Y AmA@) |t

~EM(T) yeM(T) BeEM (L) \v+7=58
If g is fixed and (v,%) runs through pairs in M(I') such that v + 4 = f, then sup(|y|,|5]) — oo so that

inf(JA(7)[,[A'(9)]) — 0 and the (possibly) infinite series }_ -5 A(7)A'(y) converges. That
inf S ord, | Y AMAF) | —wr(B)b g =c+d
T+HY=8

is clear.

For the moment, let SR be any ring with a p-adic valuation. For b € R>y and ¢ € R, set
L(b,¢;R) = Z Eurt | €, € R and ord,(€,) > bw(p) + ¢
REM(S)

In particular, if ® = R(b'; ') with ¢ > 0, we may write &, = >°_ py(p) Ay,ut? With ord,(A,,,) > b'wr(y) + ¢ for

all v, so that
L(b, ;R) = > Ay 72 | ordy(Ay ) = Ywr(v) + bw(p) + ¢
(V) €M (L) x M(f)

This motivates our definition of the spaces K (b, b;c) below. Let 0 < ¥',b < p/(p — 1) be rational numbers, and
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let ¢ € R. Define

K, b;c) := Z Ay x| Ay € Qy(m),ordy Ay > bwr(y) 4+ bw(p) + ¢
(7,m) €M (T)x M(f)

K(,b) = K@ bso).

ceR

We consider now the Frobenius maps « and a3 on Cp and on K (b',b). Recall the Artin-Hasse series E(t) =
exp (Z;‘io tr’ /pj) together with 7, a zero of Z]Dio ' /p? satisfying ord,m = 1/(p—1). Dwork’s (infinite) splitting
function is defined by

0(t) := E(nt) = > _0;t.
j=0
Its coefficients satisfy ord, 6; > j/(p — 1). Writing
Gz, t) = ZA(%u)t”’m“ € Fq[mli, e witf, N

we let

G(z,t) = ZA(%;L)WI“ € Zq[mf, . ,xf,ti‘:,...,tf

be the lifting of G by Teichmiiller units. Set

1 1
F(x,t) = II oAG.wta*) € K(——, ——;0) € K(//p,b/p;0) (40)
_ p—1p—1
(7,1) €Supp(G)
and
a—1

i i i p p ’
Fy(xz,t) = Fo (2P #* ) e K(————, ;0)c K(b'/q,b/q;0), 41
(w.0) = J] P70t € Koy (o Pyi0) © KO anbfas0) (41)

where o is the Frobenius generator of Gal(Q,(m)/Q, (7)) acting on the coefficients of F'. Note that

1 1
Co C K(—,
p

1 pj?o) C K(¥'/p.b/p)

so that multiplication by F takes Cy, as well as K(b'/p,b/p), into K(b'/p,b/p), and multiplication by F, takes

these two spaces into K(b'/q,b/q). Tt is easy to see

(K (Y, b;¢)) C K(V, pb;c)

Ya(K (', b;c)) € KV, gb;c).
Finally, we note that for ¥’ and b > 1/(p—1), K(b'/q,b;0) C Co(Oo,q). Therefore, since 1, acts on the z-variables,

ay =0 oy, o F(z,t)
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maps o~ !

-semilinearly Co(Op) into Co(Oy p), and it maps o~ -semilinearly K (', b;c) into K (V' /p, b;c). Similarly,
if we define

a =1, 0 Fy(x,t),

then a maps Co(Oyp) into Co(Op,q) linearly over Zg[r|, as well as K(b',b; ¢) into K (b'/q,b;c).

We may use a; and « to define chain maps as follows. Let

Frob® .= @ (1’“‘0¢—:ch1 A-op (42)
. . Ljy Ly,
1<j1<--<ji<n
rob} = Pt — A N —2E,
! Lj Lj;

1<ji<---<ji<n

Then the commutation rules (36) ensure that these are chain maps:

° Frob; °

2°(Co(00), Va(an) — 2°(Co(Oo,p), Va(a,ir) (44)
° Frob® °

Q°(Co(D0), Va(an) — 2°(Co(Oo,9)s V(a,ta))- (45)

All the complexes above are acyclic except in top dimension n.

Define

q
x‘aG(m,t )

) qy .
Gi(x,t7) == x; o1, (46)
(1) q
Ggl)(Ltq) » miaGa—Z’t)’ (47)

where G(1) is the Teichmiiller lifting of G*). Note that for all 0 < b < p/(p — 1), ﬂGEl)(ac, t?) and 7G;(x,t?) both
belong to K (b/q,b; —e) where e := b — p‘il- In fact, if we write G = G + g then G(z,t7) = GW (2, t9) + g(z,t7)

and mg;(z,t9) € K(b/q,b;—e + 3), where D is the least common multiple of D(T') and D(f).

Theorem 3.6. Let 0 <b<p/(p—1) and c € R. Then the following equalities hold for any q a power of p.
1. K(b/q,b;c) = W(b/g,bic) + > 1, ﬁGEl)(m, K (b/q,b;c+e€)
2. K(b/q,b;c) = W(b/q,b;c) + > i 7Gx, t9) K (b/q, b;c + €)

where

W (b/q,b;c) = > At | A(y,v) € QqR), ordy, A(v,v) = bW,(7,0) + ¢
yeM(T'),veB

In particular,

W (b/q.b:0) = K(b/q.5:0) N @D O g .
veB

Proof. The right side of these equalities is clearly contained in the left side of the corresponding equality. We first

concentrate on the first equality. Let § =3 ey A0y, m)t7ah € K(b/q,bic). Let (v, ) € M(T) x M(f)
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with Wy(y,p) =1 € ﬁZZOv as defined in (39). We know from (24) that we may write in characteristic p

Fran > (G Bo)te + 32 G 1),

veB,Wq(B,v)=i,wqr (B8) >wqr () J=1

where C((7, 1), (B, v)) € Fy and 7; € M{ Y.
We lift the coefficients C'((y, ), (8,v)) and those of the polynomial 7; to characteristic zero using (23) in the

form Co(Oog,4)/7Co(Oo,4) = M,. Then, for each (v,p), and eg := m, we have

ord, [x"aC) gt — (Z c((v,m,(@v))wwq(ﬂ”’)t%) = > G @t () | = eo.

veEB j=1

Since ord, (W‘:}V(J(;‘f l>) > 0, multiplication by this gives a similar result:
Ay, p) . - A7, 1)
ord, | Ay, p)t"x" — (Z mc((%“)’ (8,v))xWVaB0)ghy | — Zggl)(x,tq)mnj(% w | > eo.
vE j=1
Now,
Ay, 1) b
W) = D iy O ), (B, 0)m PV € W, bic),
veEB

and if we set ¢; := ! ,,Iév(qwi.;)n n;(7, ) then ¢; € K(2,b;c+ e). Hence,

q’

" b
Al mtat — | wly,p) + 3 7G2G () | € K (= b+ eo).

i=1 1

. n 1 0 0
We obtain then ¢ = w(© + > =1 WGE )(m,tq)g“j(. )+ €M) where w©® = Z(%N)EJ\/I(F)XM(DW(’}/,/J,), QJ( ) =
Z('y,u)eJ\I(F)xM(f) ¢j(v, 1), and €M € K(b/q,b;c + ep). Tterating the argument above, we obtain for every
N € Zso, 0™ € W(b/q,b;c + Neg), ¢V € K(b/g,b;¢+ e+ Neg) for 1 < j < nand €N € K(b/q,b;¢+ Neo)
with

N = (V) 4 ZﬂGﬁ_l)(m’tq)Cj(_N) 4N
j=1

50 N n N
1 1
£= 04 1300 4 3 70 (a 1) (Z ¢ ’) |
1=0 j=1 1=0

Letting N — oo, we obtain that the left hand side of the first equality in Theorem 3.6 is contained in the right
hand side.
We now prove the second part of the theorem. Using the first equality of the theorem, we may write each
£ K(b/q,b;c) as
f=w+ Z 7Gx, 19)¢;

J=1
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with w € W(b/q,b;c) and ¢; € K(b/q,b;c+ e). But then
n n
E=w+ Zij(x, t9) ¢ — Zﬂgj (@, t7)¢;
j=1 j=1

and Z?:l mg;(z,t9)(; € K(b/q,b;c+ ﬁq)). Iterating this finishes the proof. O

Recall, we have defined

H(CL‘,t) — ZVJ’GJJ (ij’tpj)
§=0

with ord, v; = 1;]%11 — (j+ 1) for j > 0. Recall also that

0
Dy o := mla—wl + mH;(x,t?),

where Hj(z,t9) := xla%H(x,tq).

Theorem 3.7. For b a rational number satisfying 1/(p—1) <b<p/(p—1), c € R, and q a power of p, we have

n
K(b/q,b;¢) = W(b/q,b;c) + Y mH(x,t") K (b/q,bic +¢). (48)
=1
Proof. Tt follows from the bound b < p/(p — 1), together with the p-adic order of v; above, that wH;(z,t9) €
K(b/q,b;c+ e). This gives us that the right hand side of (48) is contained in the left hand side. To establish the
reverse-inclusion, note that

GZ (27 47) = Gy(2,17)" + phy (a9

where hy ;(z,t) has integral coefficients and all monomials (5, v) in hy ;(z,t?) have W,-weight less than or equal

to p/. Thus, we may write

mH(z,t7) = 7Gx, t)Qi(x, t7) + Kj(z, t?)

where
Qu,t%) == yp™ G, )P
m=0
o0
Kl(ﬂi,tq) = Z ’ympm-‘rlhl,m(l‘,tq).
m=1
Consequently,
Qu(,t1), Qu(a, 1) ™Y K, 1) € K(———, —F—0). (49)

qip—1)p-1

So,if 1/(p—1) <b<p/(p—1)and £ € K(b/q,b;c) then there exists w € W(b/q,b;c) and ¢; € K(b/q,b;c+ e) by
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Theorem 3.6 such that
n
=w+ Y mGi(x,1)¢

=1

=w+ Yy wGi(x, t)Qu(x, t1)Qu(x, ) 1 ¢

=1

=w+ Y wH (2, t)Quz, 1) G = Y Ki(x, ) Qu(x,17)71¢

=1 =1
with Q(z,t?)7¢ and >, Ki(2,t9)Qi(z,t?) "¢, belonging to K(b/q,b;c+ e). Since b > 1/(p — 1), we have

e > 0 and we may proceed recursively as in the previous argument. O

Theorem 3.8. For b a rational number satisfying 1/(p —1) <b<p/(p—1), c € R, q a power of p, we have
n
K(b/q,b;c) = W(b/g,b;¢) + > Dy K (b/q,bic+e).
1=1

Proof. Again, the right hand side is contained in the left side. For the reverse inclusion, let £ € K (b/q,b;c). We

know

E=w+ Y mH(,17)

I=1
where w € W(b/q,b;¢) and (; € K(b/q,b;c+ e) by Theorem 3.7. But then
n

- oG
&= w-i—;Dl’tqQ Y ;xla—xl

Since Y aclg—g € K(b/q,b;c+ e), the theorem follows by a similar recursive argument. O

Theorem 3.9. For b a rational number satisfying 1/(p — 1) < b <p/(p — 1), we have

K(b/q,b) = W(b/q,b) ® > DisaK(b/q,b).
=1

Proof. By the previous theorem, it only remains to show the sum on the right is direct. Suppose on the contrary
w =Y Di1a¢;. Without loss of generality, we may assume both w € K(b/q,b;0) and each (; € K(b/q,b;e) C
K(b/q,b;0). Since b > 1/(p — 1),

K(b/q,b;0) C Co(Oo,q).

so that w = Y7 | D;;(; implies w = 0 and ¢; = 0 for every [ by Theorem 3.5. O

We are now able to provide the following estimates for the entries of the Frobenius. First, note that

ar(z") € K(b/p,b; = (b/p)w(p)),
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and so by Theorem 3.8, we may write

ay(zh) = Z A v mod ZDlﬁtpK(b/p, b)
=1

vEB
with

Ay € L/p; (b/p) (pw(v) — w(p)))- (50)

3.3 L-functions of the toric family

In this section, we will apply Theorem 2.2 to prove Theorem 1.1.

Let A € F.°

q

©:Fy — Q, by © :=0(1)"/*»() and © := © 0 Trs_(r)r,. Define

with deg(\) = [F,(\) : F,]. Using Dwork’s splitting function, define an additive character

SeA) = Y OaoTre 0 m, (0 G(@A)

xe]F;:}dcg(/\)

and its L-function

L(G, T) := L(G»,©,G" /[F,(\), T) := exp (Z ST(A)g) :

Let A be the Teichmiiller representative of A\. Let O 5 = Zq[fr,j\]. There is an obvious ring map, which we
call the specialization map at 5\, from Oy to O, 5 induced by the map sending ¢ A Similarly, let C, 5 be the
0, 5-module obtained by specializing the space Cy at t = A Let as = ozdcgo‘)|t:5\7 and define Frobg as in (42)

but with a replaced by aj. Then using Dwork’s trace formula, we obtain

Sp(N) = (¢"*9N) —1)"Tr(ay | €y 5)
=D (“V)Tr(H (Froby)" | H'(Cy 5, Vaas))-
=0

Since cohomology is acyclic by [5] except in top dimension n, we have
Sp(A) = (=1)"I'r(H" (Frobs)" | H”(CO’;, VC—;(L;\))).
In other words, writing a5 for H"(Frobf), we have

LG, 7)Y = det(1 — a;T)

=1 =mT)--- 1 -7nvNT),

where N = nl vol(Aso(f)). In [5] it is proved for each such A that the Newton polygon of L(Gyx,T)"D""" lies
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over the Newton polygon (using ordy) of

[T @)y Pr). (51)

BeB

For each A € (F:)“”7 set A(N) := {m(N)}Y, the collection of eigenvalues of &5. Let £ be a linear algebra

operation. Let LA(X) be the set of eigenvalues of Lay. Define

L(LAG, JF,, T) =[] [T a-ryrieot)=t.
XE|Gs, /Fq|  T(N)ELA(N)

To aid the reader, we will consider a running example throughout this section; if £ is the operation of the k-th

symmetric power tensor the [-th exterior power, then

LAN) = SymF AN) @ ALA(N)

= {m )" an NN (A, (A) i+ i =k 1< <o <Gy < NJ

Note, the cardinality of LA()) is independent of \; let LN denote this number.
Let B = {x#1 ... 2"~} be a basis for H" := H"(Q*(Cy, V)). For q a power of the prime p (perhaps ¢ = p°)
define
LHF = LH"(Q°(Co(O0,); Vi (e,i)))-

This is a free Op ,-module with basis £LB = {e'}ics, for some index set I. Note, £B is a basis of LH for every

prime power ¢. In our example LH™ = SymFH™ ® A'H™, elements in the basis £B take the form
el = () (V)N @ (@M A A )

where

14 +iy=k and 1<j<---<j <N

We extend the Frobenius map to this space by defining
La:=LH"(Frob"): LH" — LH,.

Let B(t) be the matrix of L& with respect to the basis £B. Let 2(t) be the matrix of & with respect to the basis

B, then the matrix of ay is 25 := Ql(jquey(k)fl) - AA)A(N). Similarly the matrix of Lo, using the basis LB is
L25. We have

& deg(A)—1 o

B(\ )--- B(AY)B(}) = LA;.

37



Since the set of eigenvalues of L2 is LA(X), we have

det(1 = B BAOBATN) = T (@ - r(NTeW),
T(N)ELAN)
Consequently,
L(LAG;, [F,, T) =[] [I - rrieos)
AE[G, /Fql  T(N)eLA(N)
= H det(l - B(j\qdeg(k)).,,B(XQ)B(X)Tdeg(A))fl
AE|Gs, /]
=: L(B,G;,,T)
as in (4).

Proposition 3.10. L(LA,G2,/F,,T) is a rational function over Q((p).

Proof. Writing L(LA, G?

m

JFq,T) =exp (Xoe_; NyZZ), we have

m=1

Np= > > deg(h)T(\)™/ A9,

AE(Fsm)® T(N)ELA(N)

Since G is nondegenerate for each A, by [5] and [12] each eigenvalue has Archimedean weight at most n. Em-

bedding into C, this means |m;(\)|c < ¢ 9€9(V/2,

Since each 7(\) is a product of |£] eigenvalues 7;(\), with each
factor having weight at most n, we have |N,,|c < mLN - ¢l#"™/2¢™s Thus, L(LA,G3,/F,,T) has a positive
radius of convergence over C.

Next, since L(G,,T) is a rational function over Z[(,], the polynomial I ovecapy@ — T(A\)T?9N) has
coefficients in Z[(,]. It follows that the coefficients of the power series expansion of L(LA,G;

m

JFq,T) lie in a
fixed number field Q(¢,). Since L(LA,G$,/F,,T') is both p-adic meromorphic, as in (6) above, and converges on

a disc of positive radius over C, rationality follows from the Borel-Dwork theorem [17, Section 4]. O

Define a weight on each basis vector in LB = {ei}iej as follows. Let
N
w(i) =Y maw(u) (52)
i=1
where /¢ appears m;-times in the basis element e!. For example, continuing our running example, if
el = (@) (V)N @ (@ A A )

then

w(i) = irw(p) + - Hivwpn) +wlpg,) + -+ w(py,)-

38



Proposition 3.11. There exists a matriv A = (Ajj)ijer with entries in L(ﬁ) such that

a—1 a—1 1 . .
B(ty=A" (" )---A7(t")A(t) and Ajy;€ L(1/(p—1); pfl(pw(.]) —w(i))). (53)
Proof. From (35), writing «; (t) for a; and «(t) for o, and writing 1, for 1, acting only on the x variables, we

have

alt) = wg’p o Fy(x,t)

1

Ua71 a—1 a— o
= ;,pOF (xp >tp )F ($p7tp)F(l'at)
= (gfl 0y, 0 Fla, tpail)) 0.0 (071 0 Y0 F(x, t”)) o (0*1 0y 0 F(x, t))

—1

:Oél(tpa )o---oal(tp)oal(t). (54)
Denote by a@(t) and @;(t) the maps H"(Frob™) and H"(Frob}), respectively. Then (54) shows
alt)=a(t*" )o---oa(t?) o a(t).

Consequently,

La(t) = Lay (" ) oo Lay(t?) o Lay(t). (55)
Let A(t) be the matrix of La; with respect to the basis £B. Then the matrix version of (55) is (53).
We now proceed to the estimates on A(t). We extend the weight function (39) as follows

Wy(7,1) i= wer(y) +w(i) € Zxo

1
D(q)
for v € M(T') and i € I. Define the spaces, for ¢ a power of p (perhaps with ¢ = p%) and ¢ € R,

LW(b/q,b;c) : Z A(y, D)tV | A(7,1) € Qq(7), ord,(A(y, 1) > bW, (v,1) + ¢

yeM(T),iel

LW (b/q,b) = | LW (b/q,b;0).

ceR

Then, for any rational b satisfying 1/(p — 1) < b < p/(p — 1), by Theorem 3.9 and (50),
Lay : LW(b/p,b/p;0) — LW (b/p,b;0)

and

Ay e L<§; ]%(pw(j) — w(i))),

39



Setting b = p/(p — 1) to get the best possible p-adic estimates, we have

Ay € D=5 == (i) — w(i).

O

Proof of Theorem 1.1. If we modify the basis £B by the following normalization, é' := 7*(el for each i € I, then

the matrix of £a; with respect to this basis takes the form A(t) = (A; ;o —*W)) with entries satisfying
Aig = Ay O™ € L1/ (p = 1);0()).

Then if B(t) is the matrix of L& with respect to this basis, we have

B(t)= A" (17" ") .. AT (") A(1).
We employ Proposition 3.11 with the basic data b = zﬁ’ ramification e = p — 1, {s(j) = (p — 1)w(j)}es. Since
L(B,G:,/F,,T) = L(B,G%,/F,,T), we may apply Theorem 2.2 to obtain Theorem 1.1 and Theorem 1.2(a).
Parts (b) and (c¢) of Theorem 1.2 follow immediately; see [1, p.557]. What remains is the determination of k (and
consequently p) in the statement of Theorem 2.2(¢). We are indebted to Nick Katz for the following argument,
which will show that k = s + n|L|.

Let £o be the f-adic sheaf on Al/F, corresponding to the character © of F,. Viewing G' as a map G :
G?, x G3, — Al defined over Fy, let Lo(a) be the pullback of Lo to Gy, x Gy,. Let my : Gy, x G5, — Gy, be
the projection onto the second factor. It follows that R'ma£e ) = 0 for every i # n (since by [5] and [12] every
stalk is zero). Further, these same references show that R"m2 g ) has constant rank equal to n! volA( .
The sheaf R"mo1Lg g is, in Katz’s terminology, of perverse origin [24, Corollary 6]. Since this sheaf has constant
rank, it follows from [24, Proposition 11] that R"myLg(g) is lisse. It makes sense therefore to apply a linear
algebra operation such as £ to this sheaf. We view £ as a quotient of some r-fold tensor product; the minimum
such 7 we denote by |L|. Then LR"T21Lg ¢ is mixed with weights < [L|n. The eigenvalues of Frobenius acting

on H?

c,ét

(G /Fq, LR " T1Lg () have weights < i+ [L|n for any ¢ in the range 0 < i < 2s. All eigenvalues are

algebraic integers so that the weight of any eigenvalue « bounds the valuation:
0 < ordyy < weight(y).
Thus for i < s, the p-divisibility of any eigenvalue of Frobenius acting on Hi’ét(an [Fq, LR 721 £6¢)) satisfies

ordyy < s+ |L|n.

We now show this inequality holds as well for eigenvalues of Frobenius on H ",ét(an [Fg, LR 121 £6¢)) with i in

c
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the upper range s < i < 2s. For these, we invoke the work of Deligne [11, Corollary 3.3.3] which applies since

.CR”WQ!E@(@) is an integral sheaf. For 7 an eigenvalue of Frobenius acting on Hg 4

(an/Fq, [,Rnﬂ'ggﬁe(@)) with

i—s

s < i < 2s, Deligne’s result implies that «/¢"~* is an algebraic integer and pure of some weight. Thus, as above,

ordg(v/q' %) < weight(v/q"®).,
so that

ordy(y) — (i —s) < weight(y) — 2(i — s)

<i+|Ln—2(i — s).

Thus, ord, v < s + |L|n. O

4 Other families

4.1 Affine and Mixed Toric families

We now state two related theorems which follow from the work and results above in a well-known manner (see
[5] and [26]). Let f(z) € Fylzs,...,a5 2pp1,... 2] and set S := {z1,...,2,}, S1 = {z1,...,2,}, Sp ==
{Zr11,...,2,}. We will continue to assume the hypotheses 1. and 2., dimA..(f) = n and f nondegenerate with
respect to Ao (f), on f from the beginning of Section 3. We say f is convenient with respect to Sy if for all subsets
A C Sy, dimAs(fa) =n—|A|, where f4 is the Laurent polynomial in n — |A| variables obtained by setting each
variable z; with i € A equal to zero. We will also use the notation M) (and C(()A) respectively) for the elements

in M (and Cp) which have support in the set of monomials a# = x4 ... z#» in M(f) satisfying u; > 1 for every

i€ A. Then M™ and CéA) are ideals in M and Cy respectively. Define

0 (Co, 82, V) = @ e (56)

T
A={1<j1<<ji<n} ) J

i

Since for n € C(()Am&), leS, Dii(n) € C(()(Au{l})m'sz), it follows then that Vs defined above defines as well the
boundary operator for the subcomplex Q°(Cy, Sz, V) of Q°(Co, V). In an entirely analogous manner we define

subcomplexes Q°(M, S2, V) of Q*(M, V) and Q*(M,Sa, Ve ) of Q°(M,V4aa) ) respectively.
Theorem 4.1. Fori # n, H (Q®) = 0 for all three complezes Q°(Co, S2, V&), (M, S2, V&), and Q* (M, Sz, V ga0)0)

defined above. Furthermore H™(Q*(Co,S2,Va)) is a free Og-module of rank

vsa () = Y (=10 — |ADwola(Ac (fa)),

ACSs

where vola(Auo(fa)) is the volume with respect to Lebesgue measure on RY = {x = (x1,...,2,) € R" | 2; =
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0ifie A}
Furthermore, we set B(52) = Uie%zm B(S2:0) yhere B(S2:) s ¢ subset of the set of monomials in RS2 of

weight i such that V(529 | the Fy-space spanned by B(S20)  satisfies
RS _ PS20) le of R(SQ {1yi-1).
(Here So — {1} equals Sy if | € So.) Then

85 = Oty 3" Dy . (57)
0 t~0

veB(S2) =1

As we did in the previous section, let \ € Fzs, with deg(X) := [F4(X) : Fy]. Define the exponential sums

Si(\) = > Ox 0 TTF .00 /7, G A)

IEF:;;;I,EQ()\) xE" Ileq()\)

and the associated L-function on A"~" x GJ, /F,(\):

L(Gx, A" x G, JF,(N\) —exp(ZS )

Let A be the Teichmiiller representative of A. Let O x be the ring Z4[m, /A\}7 and let Cyp x be the Op y-module

obtained by specializing the space Co at t = X. Let ag = oz“leg(A)Lt:;\7 and define Fmbg as in (42) but with

o replaced by ag. Then Frob} is a chain map on Q°(Cox,S2, Vg(e,n))- Write a5 for H"(Frobf) acting on
H"(92°(Cy 5552, V(s 1)) Then by [1], we know
L(Gx, A" X GT, JF,(A), T) D" = det(1 — a5 T)

=1 =mNT) - (1= myg,(y (M)

For each ), set As,(\) := {m(\)};32 . Let £ be a linear algebra operation. Define

L(LAs,, G}, [Fe, T) = ] [T @ reries)

AEIGS, /Fy| T(A)ELAs, (V)
By a similar method to that of the previous section, we have:

Theorem 4.2. For each linear algebra operation L, the L-function L(LAs,,G3,/Fq,T) is a rational function:

R .
L R | S Tea)

L(LAs,.G3,
[15.,(1-B7)

Further, if we let N’ := vs, (f) then
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(a) the reciprocal zeros and poles o; and B; are algebraic integers, and for each j, B; = ¢ j for some positive

integers n;.

(b) If 3 < s then R= S, else if § = s then

0<R-S<slvol(l)LN'.

(c) the total degree is bounded above by

R+ S < LN'-3lvol(T) - 25+ (+2)nlLl (] 4 ol 3)s,

(d) If G € Fylw1, ..., Tn,t1,. .., ts], then L(LAs,,A®/F,,T) is a rational function, and writing

R, .
L(LAs,, A*JF,,T) = [T, (1 —oT)

0= g & 2@

the zeros and poles satisfy ord,(a;) and ord,(B;) > w(T) + w(LB(S?), where w(LB2)) is the minimum
weight of the basis LB(S?) (see (52)). Similar bounds to those found in Theorem 1.2 for degree and total

degree may be given.

4.2 Pure families

Let A € (F;)°. In the case S = Sy, Adolphson and Sperber [5] observed that in the absolute case that the
L-function of the exponential sum defined on A™ by G(x,\) was identified with the highest weight factor of the
L-function of the exponential sum defined by the same G on G?,. This observation was generalized to more
general simplicial toric sums [6]. We give now a relative version of this highest weight factor result. Once more let
f €F, [xf, o, o F] with dimA(f) = n. Let oo be the unique face of A, (f) containing the origin which spans
a linear subspace, say Hp of smallest dimension; denote this dimension by dim(og). If the origin is an interior
point of Ay (f) then op = Ay (f). We say Ao (f) is simplicial with respect to the origin if g is contained in
exactly n — dim(og) faces of codimension one of A, (f). This is always satisfied when n = 2. Tt is also always
true when the origin is an interior point of A, (f). Note that if Ao (f) is simplicial with respect to the origin,
then this holds as well for G.

Using notation which is consistent with the previous section, we will write dim(cg) = r. Let the equations
of the hyperplanes {H;}" ., spanned by each of the codimension one faces {o;}7, | of Ay (f) containing the

origin be given by

n
li($1,--~7$n)izzai,j$j=0 r+1<i<mn,
J=1

where a; ; € Z and for each r+1 < i < n, ged(a; y41,...,0;n) = 1. We assume the inequalities l;(z1,...,2,) > 0

define Cone(f). Let L be the greatest common divisor of all the (n—1) x (n—r) subdeterminants of the (n—r)xn
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integer matrix A := (a;;)r+1<i<n,i<j<n. 1f p 1 L then we may find n — r columns, say the last n — r columns
for convenience of notation, so that the matrix A may be written in block form as (A; | A3) with Ay a square
(n —r) x (n —r) matrix with integer determinant which is relatively prime to p.

Write S ={1,...,n}, S ={1,...,7}, and S; = {r+1,...,n}. Let I be the r x r identity matrix and let

N I 0
A Ay

an n X n matrix with entries a; ;, so a; ; = a;; for i > r+ 1. For i € S, write
n
li(l‘l, e 7.I‘n) = E &i’jl‘j
=1

and set

D fori<r+1 D, fori<r+1
Dy = and Dit= (58)

Z?:l Eliij,t for i >r+ 1 Z;‘lzl diij,t for 4 >r—+ 1.

Define the complex Q°(Co, V) as follows. It has the same spaces as those of the complex Q°*(Cy, V&) but with

boundary map on Q! defined by (58):

Ty T, X Ty L.

i

dzy, - d d dzy,
Ao Ry (ZDM(”) xl)/\x’“/\-u/\ Thi
=1

The reduction modulo 7 of this complex is the complex Q*(M, V) with the same Q' space as Q*(M, V&) but

with boundary map

Theorem 4.3. If p t L, then Q*(Co,Va) and Q*(Co, V) are isomorphic as Og-modules, and Q*(M,V ) and

Q°*(M,V¢) are isomorphic as S-algebras.

For A C Sz, we define CéA) (and M) respectively) to be the ideal of elements in Cy (respectively in M) with
support in the monomials x# = z/* - .- z#» such that [;() > 1 for all i € A. Let f4 be the sum of terms in f

supported on the linear subspace of R™ spanned by Hy together with N{H;};ca. Then for AC S, 1 € S,
Dl,tCéAmSZ) - Cé(Au{l})ﬂsz) and @l,tM(Am&)) c M(AsiHNSz). (59)

We proceed in a manner entirely analogous to Section 4.1.
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In order to simplify the notation we will denote by SQ°®(Co) the subcomplex of Q°(Cy, Vz) defined by

. da, da;
SO = D i i n o p S (60)

T €T,
A={1<j1 < <ji<n} 7 J

i

Define in a similar way the subcomplex SQ°*(M) of Q*(M, V). Note, these are subcomplexes because of (59).

Theorem 4.4. Assume f is nondegenerate with respect to Ay (f) and that A (f) is simplicial with respect to the
origin. Assume pt L. Then H'(SQ*(Co)) and H'(SQ*(M)) are acyclic except in top dimension n. Furthermore,
H™(SQ*(Cy)) is a free Og-module of rank

vsa(F) = D () (0 — A wola(Aso(fa))

ACS:

where here we let Ha be the intersection of the hyperplanes {H; = 0} fori € A and vol4(Aoo(fa)) is the volume
with respect to Haar measure in H 4 normalized so that the fundamental domain for the lattice Z™ N H in H
has measure 1.

Let BS2) = |,

1
i€ 52>

. B(S20) where B(S21 s q subset of the monomials in R(5>D = R(52) 0 RW) such that

V(52:9) the F,-space spanned by B2 gatisfies
e e - of Of  —ren 11,
(82,4) — 17(S2,1) ) (S2—{5}9)
RS20 — (82t @JElej(mlawl,...Maxn)R 2= {ihi
(here So — {j} = Sz if i € Sa). Then

1 Y i1
C(()SZ))(j) _ Z Ooﬂ.wr(v)v &) Z Dj,tCésQ {J})(j).
p veB(S2) Jj=1 P

We proceed in a manner quite analogous to the case in the previous section. For each \ € (F;)S7 let

N
L(G, G, T) 0" = [[a=moT)

i=1

with N := n!volAy(f). Set A(A\) = {m;(A)}Y, and let W, ()\) be the subset of A()\) consisting of reciprocal

zeros of highest archimedean weight:
Wa(A) == {m(X) € A\ | |m(N)| = geo™In/2},

The set W(\) now plays precisely the same role as Ag, (\) in the previous section. For a linear algebraic operation
L, set

L([,Wn7an/Fq7T) = H H (1 _T()\)Tdeg(k))fl.
AEIGS, /Fq| T(AN)ELWR(A)

Since Galois action preserves weight, this is a rational function over Q((,) with properties as follows.
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Theorem 4.5. For each linear algebraic operation L, the L-function L(LW,,G?

5 JEq.T) is a rational function

over Q((p) with estimates for its degree, total degree, and for the p-divisibility of its reciprocal zeros and poles are
precisely the same as those in Theorem 4.2. Here vs,(f) is the same alternating sum of volumes as in Theorem

4.2 and here w(£LB(S?)) is the minimum of the weights in the basis LB(52).

4.3 Unit root L-function

Let

G(z,t) == f(z) + P(x,t) € Fylaf, ..., a1 t1,. .. t]

r¥n

where f(z) is nondegenerate with respect to A (f). Let G satisfy the hypotheses of the toric family in Section 3,
that is, dim Ao (f) = n, f is nondegenerate with respect to A (f), and 0 < w(p) < 1 for every z* in Supp(P).
For each A € E);S the L-function L(Gy,©,GY,/F,(A),T) has a unique unit root, say mo(A). Define the k-th

moment unit root L-function by

Lunit(k, G, A /Fg, T):= [ (1 = mo(\)FTes™)~,
A€|A® /F,|

This is a meromorphic function by Wan’s theorem [29, Theorem 8.4] and so may be written as

[, (1 —aT)

Lunit(k, G, A JFy, T) = m
j=1 i

with  «;,8; = 0 as i,j — oo.

Recall the maps @1, @, and the basis B from Section 3.3. Let 2[4 (¢) and 2((¢) be the matrices of &; and @ with
respect to 5. Then
Aty = A7 (") AT (1),

where 2(; has entries in L(1/(p — 1)). As in [29], 2(¢) defines a nuclear o-module ¢ ordinary at slope zero. If ¢

is the rank one unit root o-module coming from the Hodge-Newton decomposition of ¢, then
L(¢§, A JFq, T) = Lunis(k, G, A /Fy, T).

By Theorem 2.7, we have

Theorem 4.6. Assume I' CR%. Then for every i and j, ordy(c;) and ordy(3;) > w(T').
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