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1. Introduction

The Eisenstein ideal for modular curves over Q was introduced by Mazur in his seminal 
paper [19], and since then the Eisenstein ideal has become an indispensable tool in various 
problems related to modular curves, modular Jacobians, modular Galois representations, 
etc. The problem to develop the theory of Eisenstein ideals for Drinfeld modular curves 
was suggested by Mazur, already in the introduction of [19]. The first attempt to develop 
this theory was made by Tamagawa [32], but more comprehensive results were obtained 
by Pál [21]. Both [32] and [21] assume that the level is prime. In [27], in connection 
with the problem of Jacquet–Langlands isogenies over function fields, we examined the 
Eisenstein ideal on Drinfeld modular curves whose level is a product of two distinct 
primes. We discovered that some of the properties of the Eisenstein ideal in that case are 
quite different from its prime level counterpart. In this paper we continue our study of the 
Eisenstein ideal for non-prime levels, and its relation to the cuspidal divisor group and the 
component groups of Jacobians of Drinfeld modular curves. Our goal here is to compute 
everything explicitly when the level is small, and from this make some predictions about 
the behaviour of the Eisenstein ideal in general.

Let Fq be a finite field with q elements, where q is a power of a prime number p. Let 
A = Fq[T ] be the ring of polynomials in indeterminate T with coefficients in Fq, and 
F = Fq(T ) be the rational function field. The degree map deg : F → Z ∪ {−∞}, which 
associates to a non-zero polynomial its degree in T and deg(0) = −∞, defines a norm on 
F by |a| := qdeg(a). The corresponding place of F is usually called the place at infinity, 
and is denoted by ∞; it plays a role similar to the archimedean place of Q. We also define 
a norm and degree on the ideals of A by |n| := #(A/n) and deg(n) := logq |n|. Let F∞
denote the completion of F at ∞, and C∞ denote the completion of an algebraic closure 
of F∞. Let Ω := C∞ − F∞ be the Drinfeld half-plane.

Let n � A be a non-zero ideal. The level-n Hecke congruence subgroup of GL2(A) is

Γ0(n) :=
{(

a b

c d

)
∈ GL2(A)

∣∣∣∣ c ≡ 0 mod n

}
.

Let T(n) be the Z-algebra generated by the Hecke operators Tm, m � A, acting on the 
group H0(n, Z) of Z-valued Γ0(n)-invariant cuspidal harmonic cochains on the Bruhat–
Tits tree T of PGL2(F∞); see Section 2 for the definitions. The Eisenstein ideal E(n)
of T(n) is the ideal generated by the elements

{
Tp − |p| − 1

∣∣ p is prime, p � n
}
.

(For some alternative ways of defining this ideal see Section 5.6.) The quotient ring 
T(n)/E(n) is finite (Lemma 2.9), and constitutes the main object of study of this paper. 
In some sense, T(n)/E(n) encodes congruences between cuspidal harmonic cochains and 
Eisenstein series.
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Definition 1.1. Let G be a T(n)-module. We say that g ∈ G is Eisenstein if Tpg = (|p| +1)g
for all prime p � n. The Eisenstein elements form a submodule of G. We will denote 
this submodule by G[E(n)]. (It is clear that if g is Eisenstein, then it is annihilated 
by all elements of E(n), which justifies the notation.) We say that G is Eisenstein if 
G = G[E(n)].

The group Γ0(n) acts on Ω via linear fractional transformations. Drinfeld proved in 
[4] that the quotient Γ0(n) \Ω is the space of C∞-points of an affine curve Y0(n) defined 
over F , which is a moduli space of rank-2 Drinfeld modules. The unique smooth projective 
curve over F containing Y0(n) as an open subvariety is denoted by X0(n). The Hecke alge-
bra T(n) naturally acts on the Jacobian J0(n) of X0(n). This action functorially extends 
to the Néron model of J0(n), hence T(n) also acts on the component groups of J0(n).

It is well known that the component groups of classical modular Jacobians J0(N)
are Eisenstein. This was proved by Ribet in the semistable reduction case [28], and by 
Edixhoven in general [6]. It is more-or-less clear that the arguments in [28] and [6] can be 
transferred to the function fields setting (although this is not in published literature), so 
it is very likely that the component groups of Drinfeld modular Jacobians J0(n) at finite 
primes are Eisenstein. On the other hand, in addition to the primes dividing n, J0(n)
also has bad (purely toric) reduction at ∞, and it is not hard to construct examples 
where the component group Φ∞(n) of J0(n) at ∞ is not Eisenstein; see Examples 8.8
and 8.10. In this paper we prove the following:

Theorem 1.2. Assume deg(n) = 3. Then Φ∞(n) is Eisenstein, and there is an isomor-
phism of T(n)-modules T(n)/E(n) ∼= Φ∞(n).

Note that deg(n) = 3 is the smallest degree for which T(n) �= 0. When deg(n) = 3, 
the Z-rank of T(n) is equal to q (resp. q − 1) if n is square-free (resp. not square-free). 
Up to an affine transformation T 	→ aT + b with a ∈ F×

q and b ∈ Fq, there are 5 different 
cases, namely

(1) n = T 3;
(2) n = T 2(T − 1);
(3) n is irreducible;
(4) n = Tp, where p is irreducible of degree 2;
(5) n = T (T − 1)(T − c), where c ∈ Fq, c �= 0, 1 (here we must have q > 2).

In Section 3, for deg(n) = 3 we compute Φ∞(n), the cuspidal divisor group C(n) of 
J0(n), and the canonical homomorphism ℘∞ : C(n) → Φ∞(n) arising from the Néron 
mapping property. With above numbering of cases, the results are the following:

(1) C(n) 
℘∞∼= Φ∞(n) ∼= Z/q2Z.

(2) C(n) 
℘∞∼= Φ∞(n) ∼= Z/q(q2 − 1)Z.
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(3) C(n) ∼= Φ∞(n) ∼= Z/(q2 + q + 1)Z, but ℘∞ is not necessarily an isomorphism

0 −→ Z/(3, q − 1)Z −→ C(n) ℘∞−→ Φ∞(n) −→ Z/(3, q − 1)Z −→ 0.

(4)

C(n) ∼= Z/(q + 1)Z⊕ Z/(q2 + 1)Z,

Φ∞(n) ∼= Z/(q2 + 1)(q + 1)Z,

0 −→ Z/(2, q − 1)Z −→ C(n) ℘∞−→ Φ∞(n) −→ Z/(2, q − 1)Z −→ 0.

(5)

C(n) ∼= Z/(q + 1)Z⊕ Z/(q + 1)Z⊕ Z/(q − 1)(q + 1)Z,

Φ∞(n) ∼= Z/(q + 1)Z⊕ Z/(q + 1)Z⊕ Z/(q − 1)2(q + 1)Z,

0 −→ C(n) ℘∞−→ Φ∞(n) −→ Z/(q − 1)Z −→ 0.

Remark 1.3. In fact, (4) is a result from [25], so Section 3 contains only the calculations 
for the other cases. Also, (3) is a result of Gekeler [11, §6], but our argument is somewhat 
different.

We proved Theorem 1.2 in [27] for the case (4). In Section 5, we adapt the argument 
from [27] to the other cases. The outline of this argument is the following. First, we 
show that Φ∞(n) is Eisenstein. Next, we show that there is a T(n)-equivariant surjective 
homomorphism T(n) → Φ∞(n). This implies that there is a T(n)-equivariant surjection 
T(n)/E(n) → Φ∞(n). Finally, we give an upper bound on the order of T(n)/E(n) which 
matches the order of Φ∞(n), so the previous surjection is an isomorphism.

To carry out the strategy outlined above, in Section 4, we prove some preliminary 
results about the Hecke algebra T(n), which might be of independent interest. Let T(n)0
be the subalgebra of T(n) generated by the Hecke operators Tm with m coprime to n.

Theorem 1.4. Assume deg(n) = 3.

(i) In all cases, except (5), T(n) = T(n)0.
(ii) There is a natural isomorphism of T(n)-modules

Hom(H0(n,Z),Z) ∼= T(n).

(iii) The Hecke operators {Tp | deg(p) = 1} span T(n) over Z.

Remark 1.5. The Hecke algebra T(n) for deg(n) = 3 was studied by Gekeler in [7], and 
(iii) is implicitly contained there.
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An unexpected consequence of Theorem 1.2 is that T(n) �= T(n)0 in case (5), although 
the index [T(n) : T(n)0] is finite. (The index is finite because there are no “old forms” 
in H0(n, Z) when deg(n) = 3.) In Section 6, we prove an analogue of a theorem of Atkin 
and Lehner for H0(n, Z), and deduce from this the following restriction on the index:

Theorem 1.6. Assume n = T (T − 1)(T − c), where c ∈ Fq, c �= 0, 1. If a prime number �
divides the order of T(n)/T(n)0, then � divides q(q + 1). Conversely, if � divides q + 1, 
then � divides the order of T(n)/T(n)0.

In [19], as one of the first applications of his theory of Eisenstein ideal, Mazur proved 
that the rational torsion subgroup J0(N)(Q)tor coincides with the cuspidal divisor group 
when N is prime. The analogue of this result for Drinfeld Jacobians J0(n) of prime level 
was proved by Pál [21]. In Section 7, as an application of Theorem 1.2, we prove

Theorem 1.7. Let T (n) be the torsion subgroup of the group of F -rational points of J0(n). 
The cuspidal divisor group is rational over F and coincides with T (n) for n = T 3 and 
n = T 2(T − 1).

Remark 1.8. In [27], we proved that T (n) = C(n) also for case (4), and, the equality 
T (n) = C(n) in case (3) is a special case of Pál’s result. Thus, only case (5) remains 
open.

We say that a prime number � ∈ N is an Eisenstein prime number for n if � divides the 
order of T(n)/E(n). When deg(n) = 3, we observe that p (= the characteristic of F ) is 
an Eisenstein prime number if n is not square-free. Moreover, there is a cuspidal divisor 
which is F -rational and has order divisible by p. In Section 8, we prove that this is 
actually a special case of the following:

Theorem 1.9. Assume n is divisible by p2 for some prime p � A, but n �= p2. Then there 
is a cuspidal divisor in C(n) which is Eisenstein, rational over F , and has order divisible 
by p. This implies that p is an Eisenstein prime number for n.

Remark 1.10. In general, C(n) is neither Eisenstein nor rational over F ; see Example 8.8. 
This example also shows that the assumption n �= p2 is necessary in Theorem 1.9.

Let T(n)′ be the quotient of T(n)0 through which T(n)0 acts on the new quotient 
J0(n)new of J0(n). Let E(n)′ be the ideal of T(n)′ generated by the images of elements 
Tp − |p| − 1, where p � n is prime. In [22], Pál proved that p does not divide the order of 
T(n)′/E(n)′ if n is square-free. If deg(n) = 3, then J0(n)new = J0(n), so T(n)′ = T(n)0. 
Moreover, by Theorem 1.4, T(n)0 = T(n) when n is not square-free. Thus, T(n)′ =
T(n) when n is not square-free, and Theorem 1.9 shows that p divides T(n)′/E(n)′. In 
particular, the assumption that n is square-free is necessary in [22].
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The results of this paper raise two interesting questions, which we are not able to 
answer for the present:

(a) Is it true that for general non-zero n � A, there is an isomorphism

T(n)/E(n) ∼= Φ∞[E(n)]?

Theorem 1.2 shows that this is true for deg(n) = 3, and Theorem 8.9 shows that this is 
true if n is prime. Also, Example 8.8 shows that this is true for q = 2 and n = (T 2+T+1)2.

(b) Is it true that p is not an Eisenstein prime number for n = p2, where p � A is an 
arbitrary prime ideal?

Example 8.8 shows that this is true for q = 2 and n = (T 2 +T +1)2. Theorem 1.9 shows 
that p is an Eisenstein prime number for any non-square-free n �= p2.

2. Preliminaries

2.1. Notation

Besides ∞, the other places of F are in bijection with the non-zero prime ideals of A. 
Given a place v of F , we denote by Fv the completion of F at v, by Ov the ring of integers 
of Fv, and by Fv the residue field of Ov. We fix π := T−1 as a uniformizer of O∞.

Let R be a commutative ring with unity. We denote by R× the group of multiplicative 
units of R. Let GLn(R) be the group of n × n matrices over R whose determinant is 
in R×, and Z(R) ∼= R× the subgroup of GLn(R) consisting of scalar matrices.

If X is a scheme over a base S and S′ → S any base change, XS′ denotes the pullback 
of X to S′. If S′ = Spec(R) is affine, we may also denote this scheme by XR. By X(S′)
we mean the S′-rational points of the S-scheme X, and again, if S′ = Spec(R), we may 
also denote this set by X(R).

Given an abelian group H and an integer n, H[n] is the kernel of multiplication by n
in G. For a prime number �, H� is the �-primary component of H.

Given an ideal n �A, by abuse of notation, we denote by the same symbol the unique 
monic polynomial in A generating n. It will always be clear from the context in which 
capacity n is used; for example, if n appears in a matrix, column vector, or a polynomial 
equation, then the monic polynomial is implied. The prime ideals p � A are always 
assumed to be non-zero. The notation m ‖ n means that m divides n and gcd(m, n/m) = 1.

2.2. Harmonic cochains

Let G be an oriented connected graph in the sense of Definition 1 of §2.1 in [31]. 
We denote by V (G) and E(G) its sets of vertices and edges, respectively. For an edge 
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e ∈ E(G), let o(e), t(e) ∈ V (G) and ē ∈ E(G) be its origin, terminus and inversely 
oriented edge, respectively. In particular, t(ē) = o(e) and o(ē) = t(e). We will assume 
that for any v ∈ V (G) the number of edges with t(e) = v is finite, and ē �= e for any 
e ∈ E(G). A path in G is a sequence of edges {ei}i∈I indexed by a set I where I = Z, 
I = N or I = {1, . . . , m} for some m ∈ N such that t(ei) = o(ei+1) for every i, i + 1 ∈ I. 
We say that the path is without backtracking if ei �= ēi+1 for every i, i + 1 ∈ I. We say 
that the path without backtracking {ei}i∈N is a half-line if for every vertex v of G there 
is at most one index n ∈ N such that v = o(en).

Let Γ be a group acting on a graph G. We say that Γ acts with inversion if there 
is γ ∈ Γ and e ∈ E(G) such that γe = ē. If Γ acts without inversion, then we have a 
natural quotient graph Γ \G such that V (Γ \G) = Γ \ V (G) and E(Γ \G) = Γ \E(G), 
cf. [31, p. 25].

Definition 2.1. Let R be a commutative ring with unity. An R-valued harmonic cochain
on G is a function f : E(G) → R that satisfies

(i)

f(e) + f(ē) = 0 for all e ∈ E(G),

(ii)

∑
e∈E(G)
t(e)=v

f(e) = 0 for all v ∈ V (G).

Denote by H(G, R) the group of R-valued harmonic cochains on G.

The most important graphs in this paper are the Bruhat–Tits tree T of PGL2(F∞), 
and the quotients of T . We recall the definition and introduce some notation for later 
use. The sets of vertices V (T ) and edges E(T ) are the cosets GL2(F∞)/Z(F∞)GL2(O∞)
and GL2(F∞)/Z(F∞)I∞, respectively, where I∞ is the Iwahori group:

I∞ =
{(

a b

c d

)
∈ GL2(O∞)

∣∣∣∣ c ∈ πO∞

}
.

The matrix 
(

0 1
π 0

)
normalizes I∞, so the multiplication from the right by this matrix 

on GL2(F∞) induces an involution on E(T ); this involution is e 	→ ē. The matrices

E(T )+ =
{(

πk u
) ∣∣∣∣ k ∈ Z

k

}
(2.1)
0 1 u ∈ F∞, u mod π O∞
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are in distinct left cosets of I∞Z(F∞), and there is a disjoint decomposition

E(T ) = E(T )+�E(T )+
(

0 1
π 0

)
.

We call the edges in E(T )+ positively oriented. The group GL2(F∞) naturally acts on 
E(T ) by left multiplication. This induces an action on the group of R-valued functions 
on E(T ): for a function f on E(T ) and γ ∈ GL2(F∞) we define the function f |γ on 
E(T ) by (f |γ)(e) = f(γe). It is clear from the definition that f |γ is harmonic if f is 
harmonic.

Let Γ be a subgroup of GL2(F∞) which acts on T without inversions. Denote by 
H(T , R)Γ the subgroup of Γ-invariant harmonic cochains, i.e., f |γ = f for all γ ∈ Γ. It 
is clear that f ∈ H(T , R)Γ defines a function f ′ on the quotient graph Γ \T , and f itself 
can be uniquely recovered from this function: if e ∈ E(T ) maps to ẽ ∈ E(Γ \ T ) under 
the quotient map, then f(e) = f ′(ẽ). The conditions of harmonicity (i) and (ii) can be 
formulated in terms of f ′ as follows. Since Γ acts without inversion, (i) is equivalent to

(i′)

f ′(ẽ) + f ′(¯̃e) = 0 for all ẽ ∈ E(Γ \ T ).

Let v ∈ V (T ) and ṽ ∈ V (Γ \ T ) be its image. The stabilizer group

Γv = {γ ∈ Γ | γv = v}

acts on the set {e ∈ E(T ) | t(e) = v}, and the orbits correspond to

{ẽ ∈ E(Γ \ T ) | t(ẽ) = ṽ}.

Let Γe := {γ ∈ Γ | γe = e}; clearly Γe is a subgroup of Γt(e). The weight of e

w(e) := [Γt(e) : Γe]

is the length of the orbit corresponding to e. Since w(e) depends only on its image ẽ
in Γ \ T , we can define w(ẽ) := w(e). Note that 

∑
t(ẽ)=ṽ w(ẽ) = q + 1. (In general, 

w(e) depends on the orientation, i.e., w(e) �= w(ē).) With this notation, condition (ii) is 
equivalent to

(ii′)

∑
ẽ∈E(Γ\T )

t(ẽ)=ṽ

w(ẽ)f ′(ẽ) = 0 for all ṽ ∈ V (Γ \ T ).
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Definition 2.2. The group of R-valued cuspidal harmonic cochains for Γ, denoted 
H0(T , R)Γ, is the subgroup of H(T , R)Γ consisting of functions which have compact 
support as functions on Γ \T , i.e., functions which have value 0 on all but finitely many 
edges of Γ \ T .

To simplify the notation, we put

H(n, R) := H(T , R)Γ0(n)

H0(n, R) := H0(T , R)Γ0(n)

H00(n, R) := the image of H0(n,Z) ⊗R in H0(n, R).

It is known that the quotient graph Γ0(n) \ T is the edge disjoint union

Γ0(n) \ T = (Γ0(n) \ T )0 ∪
⋃

s∈Γ0(n)\P1(F )

hs

of a finite graph (Γ0(n) \ T )0 with a finite number of half-lines hs, called cusps. The 
cusps are in bijection with the orbits of the natural (left) action of Γ0(n) on P1(F ); cf. 
[16, (2.6)]. It is clear that f ∈ H(n, R) is cuspidal if and only if it eventually vanishes on 
each hs. It is also clear that if R is flat over Z, then H0(n, R) = H00(n, R). On the other 
hand, it is easy to construct examples where this equality does not hold; cf. [27, §1.1].

One can show that H0(n, Z) and H(n, Z) are finitely generated free Z-modules of rank 
g(n) and g(n) + c(n) − 1, respectively, where g(n) is the genus of X0(n) and c(n) is the 
number of cusps.

2.3. Hecke operators and the Eisenstein ideal

Fix a non-zero ideal n �A. Given a non-zero ideal m �A, define an R-linear transfor-
mation of the space of R-valued functions on E(T ) by

f |Tm =
∑

f |
(
a b

0 d

)
, (2.2)

where the sum is over a, b, d ∈ A such that a, d are monic, (ad) = m, (a) + n = A, and 
deg(b) < deg(d). This transformation is the m-th Hecke operator. Following a common 
convention, for a prime divisor p of n we sometime write Up instead of Tp.

Proposition 2.3. The Hecke operators preserve H0(n, R), and satisfy the recursive for-
mulas:

Tmm′ = TmTm′ if m + m′ = A,

Tpi = Tpi−1Tp − |p|Tpi−2 if p � n,

Tpi = T i
p if p|n.
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Proof. The group-theoretic proofs of the analogous statement for the Hecke operators 
acting on classical modular forms work also in this setting; cf. [20, §4.5]. �
Definition 2.4. Let T(n) be the commutative Z-subalgebra of EndZ(H0(n, Z)) generated 
by all Hecke operators. Let T(n)0 be the subalgebra of T(n) generated by the Hecke 
operators Tm with m coprime to n.

Definition 2.5. For every ideal m ‖ n, let Wm be any matrix of the form

(
am b

cn dm

)
(2.3)

such that a, b, c, d, ∈ A, and the ideal generated by det(Wm) in A is m.

It is not hard to check that for f ∈ H0(n, Z), f |Wm does not depend on the choice 
of the matrix for Wm and f |Wm ∈ H0(n, Z). Moreover, as Z-linear endomorphisms of 
H(n, Z), Wm’s satisfy

Wm1Wm2 = Wm3 , where m3 = m1m2

gcd(m1,m2)2
. (2.4)

Therefore, the matrices Wm acting on H0(n, Z) generate an abelian group W ∼= (Z/2Z)s, 
called the group of Atkin–Lehner involutions, where s is the number of distinct prime 
divisors of n.

Lemma 2.6. Let f ∈ H0(n, Z).

(1) If p2 | n, then f |Up ∈ H0(n/p, Z).
(2) If p ‖ n, then f |(Up + Wp) ∈ H0(n/p, Z).

Proof. For m � A, denote Dm =
(

1 0
0 m

)
and

Γ0(n,m) =
{(

a b

c d

)
∈ GL2(A)

∣∣ c ∈ n, b ∈ m

}
.

Suppose m | n. Since

(
1 0
0 m

)(
a b

c d

)
=
(

a b/m

cm d

)(
1 0
0 m

)
,

we see that if f is a Γ0(n)-invariant function on E(T ), then f |Dm is Γ0(n/m, m)-invariant.
Let p be a prime dividing n, and let Sp be a set of right coset representatives of 

Γ0(n/p, p) in Γ0(n/p). Since f |Dp is Γ0(n/p, p)-invariant, the function
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∑
γ∈Sp

(f |Dp)|γ

is Γ0(n/p)-invariant.
If p divides n/p, then one checks that a set of right coset representatives for Γ0(n/p, p)

in Γ0(n/p) is given by 
{(

1 b

0 1

) ∣∣ deg(b) < deg(p)
}

. The first claim then follows from

∑
deg(b)<deg(p)

f |Dp

(
1 b

0 1

)
= f |Up.

If p does not divide n/p, then a set of right coset representatives for Γ0(n/p, p) in 

Γ0(n/p) is given by 
{(

1 b

0 1

) ∣∣ deg(b) < deg(p)
}
∪B, where B ∈ Γ0(n/p) is any matrix 

of the form 
(

αp 1
δn/p 1

)
. Now

∑
deg(b)<deg(p)

f |Dp

(
1 b

0 1

)
+ f |DpB = f |Up + f |Wp

is Γ0(n/p)-invariant, which proves the second claim. �
Corollary 2.7. Suppose p is a prime dividing n and deg(n/p) ≤ 2. We have the following 
equalities of operators acting on H0(n, Z):

(1) If p2|n, then Up = 0.
(2) If p2 � n, then Up = −Wp.

Proof. If deg(n/p) ≤ 2, then H0(n/p, Z) = 0; cf. [15]. Now apply Lemma 2.6. �
Definition 2.8. The Eisenstein ideal E(n) of T(n) is the ideal generated by the elements 
Tp − (|p| + 1) for all prime p � n. Let E(n)0 be the ideal of T(n)0 generated by the same 
elements. Denote

E00(n, R) = H00(n, R)[E(n)].

Lemma 2.9. Let n � A be a non-zero ideal.

(1) T(n)/E(n) is finite.
(2) T(n)0/E(n)0 is finite and cyclic.
(3) The exponent of T(n)/E(n) divides the order of T(n)0/E(n)0.
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Proof. To simplify the notation, we will omit the level n. Since T/E is finitely generated, 
to prove the first statement it is enough to prove that (T/E) ⊗Q ∼= (T ⊗Q)/(E ⊗Q) = 0. 
The pairing

(T⊗Q) ×H0(n,Q) → Q

obtained from (4.3) by extension of scalars is perfect, so if (T ⊗ Q)/(E ⊗ Q) �= 0, then 
E00(n, Q) �= 0. This implies that for any prime p � n the operator ηp := Tp−|p| −1 acting 
on H0(n, Q) has non-trivial kernel, contradicting [13, p. 366], according to which ηp is 
invertible. (This is a consequence of Drinfeld’s reciprocity [4] and the Weil conjectures.)

To prove the second statement, note that from the definition of T0 and Proposition 2.3
it follows that the Z-algebra T0 is generated by Tp’s with p � n prime. Since Tp is 
congruent to an element of Z modulo E0, the natural inclusion of Z into T0 induces a 
surjection Z → T0/E0. Hence to prove the second statement it is enough to show that 
E0 contains a non-zero integer. Fix some p � n. Let xm + am−1x

n−1 + · · · + a1x + a0 be 
the characteristic polynomial of ηp acting on H0(n, Z). Since ηp is invertible, a0 �= 0. By 
the Cayley–Hamilton theorem,

−a0 = ηmp + am−1η
n−1
p + · · · + a1ηp ∈ E0.

Finally, to prove the last statement, note that T/E is a T0-module. Let N be the order 
of T(n)0/E(n)0. Since E0 obviously annihilates T/E, we get that N ∈ E0 annihilates 
T/E. �
2.4. Fourier expansion

Let f ∈ H0(n, C). Let η : F∞ → C× be the character

η :
∑

aiπ
i 	→ η0(Tr(a1)), (2.5)

where Tr : Fq → Fp is the trace and η0 is any non-trivial character of Fp. For m �A, the 
m-th Fourier coefficient f∗(m) of f is

f∗(m) = q−1−deg(m)
∑

u∈(π)/(π2+deg(m))

f

((
π2+deg(m) u

0 1

))
η(−mu).

It is easy to show that

f∗(1) = −f

((
π2 π

0 1

))
, (2.6)

and the Fourier coefficients f∗(m) of f ∈ H0(n, Z) lie in Z[p−1]; cf. [9, pp. 42–43].
The cuspidal harmonic cochain f can be uniquely recovered from its Fourier coeffi-

cients via the Fourier expansion
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f

((
πk u

0 1

))
=

∑
0≤j≤k−2

q−k+2+j
∑

deg(m)=j

f∗(m)ν(mu)

with ν(v) = −1 if v has a term of order π in its π-expansion, and ν(v) = q − 1 if it has 
no term of order π; see [10, §2].

The action of Hecke operators on the Fourier expansion is given by the formula, cf. 
[21, Lem. 3.2],

(f |Tm)∗(r) =
∑

a monic
a| gcd(m,r)
(a)+n=A

|m|
|a| · f

∗
(
rm

a2

)
.

In particular,

(f |Tm)∗(1) = |m|f∗(m).

2.5. Drinfeld modular curves

The Drinfeld half-plane

Ω = P1(C∞) − P1(F∞) = C∞ − F∞

has a natural structure of a smooth connected rigid-analytic space over F∞; see [16, §1]. 
The group Γ0(n) acts on Ω via linear fractional transformations:

(
a b

c d

)
z = az + b

cz + d
.

There is a smooth affine algebraic curve Y0(n) defined over F whose analytification over 
F∞ is isomorphic to the quotient Γ0(n) \ Ω; cf. [4, Prop. 6.6]. Let X0(n) be the smooth 
projective model of Y0(n). The curve X0(n) is the Drinfeld modular curve corresponding 
to Γ0(n). The points X0(n)(C∞) − Y0(n)(C∞), called the cusps of X0(n), are in nat-
ural bijection with the cusps of Γ0(n) \ T . Moreover, the genus of X0(n) is equal to 
rankZ H0(n, Z).

The curve Y0(n) is the generic fibre of the coarse moduli scheme for the functor which 
associates to an A-scheme S the set of isomorphism classes of pairs (φ, Cn), where φ is 
a Drinfeld A-module of rank 2 over S and Cn

∼= A/n is an “n-cyclic subgroup” of ϕ; we 
refer to [4,8,16] for the details.

Let m be a divisor of n. There is a functorial morphism

X0(n) → X0(m), (2.7)
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which in terms of the moduli problem is given by (φ, Cn) 	→ (φ, Cm), where Cm is the 
m-cyclic subgroup of Cn. This morphism is defined over F and maps the cusps of X0(n)
to the cusps of X0(m), cf. [17].

The Jacobian variety J := J0(n) of X0(n) has bad reduction at ∞ and at the primes 
dividing n. Let v be a place of bad reduction of J , and let J denote the Néron model of J
over Ov. Let J 0 denote the relative connected component of the identity of J , that is, the 
largest open subscheme of J containing the identity section which has connected fibres. 
The group of connected components (or component group) of J at v is Φv := JFv

/J 0
Fv

. 
The homomorphism ℘v : J(Fv) → Φv obtained from the composition

℘v : J(Fv) = J (Ov) → JFv
(Fv) → Φv

will be called the canonical specialization map. (Of course, the component groups depend 
on n, which we will omit from notation.)

The Hecke operator Tm may also be defined as a correspondence on X0(n), so Tm

induces an endomorphism of the Jacobian variety J := J0(n) of X0(n). The Z-subalgebra 
of EndF (J) generated by all Hecke endomorphisms is canonically isomorphic to T(n); 
this is a consequence of Drinfeld’s reciprocity law [4, Thm. 2]. The endomorphisms Tm

of J canonically extend to J and preserve J 0, hence act on Φv.

2.6. Grothendieck’s monodromy pairing

Fix a non-zero ideal n � A, and denote Γ = Γ0(n). Let e ∈ E(Γ \ T ) and ẽ ∈ E(T )
be any edge mapping to e under the quotient map. The stabilizer group

StabΓ(ẽ) := {γ ∈ Γ | γẽ = ẽ}

is finite, contains the scalar matrices Z(Fq), and does not depend on the choice of ẽ
mapping to e. Denote

n(e) = #StabΓ(ẽ)/F×
q . (2.8)

This is an integer which is equal to 1 for most edges in (Γ \ T )0. It is clear that n(e)
does not depend on the orientation of e. Define a pairing on H0(n, Z) by

(f, g) =
∑

e∈E(Γ\T )+
f(e)g(e)n(e)−1. (2.9)

Since f and g are cuspidal, all but finitely many terms of this sum are zero, so the pairing 
is well-defined. It is clear that (·,·) is symmetric and positive-definite. It is also Z-valued, 
as follows from [16, (5.7)].
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Remark 2.10. The Haar measure on GL2(F∞) induces a push-forward measure on 
E(Γ \ T ), which, up to a scalar multiple, is equal to n(e)−1; cf. [16, (4.8)]. One can 
show that (2.9) agrees with the restriction to H0(n, Z) of the Petersson scalar product if 
one interprets H0(n, C) as a space of automorphic forms; see [16, 5.7].

The existence of rigid-analytic uniformization of Drinfeld modular curves over F∞
implies that X0(n)F∞ is a Mumford curve. Thus, the Jacobian J := J0(n) has split 
purely toric reduction at ∞, i.e., J 0

F∞
is a split algebraic torus over F∞. It follows from 

the theory of Mumford curves that the character group of the torus J 0
F∞

can be identified 
with the simplicial homology group H1(Γ \ T , Z).

Let ϕ ∈ H1(Γ \ T , Z), regarded as a Γ-invariant function ϕ : E(T ) → Z. Then 
ϕ∗ : e 	→ n(e)ϕ(e) is a well-defined element of H0(n, Z), and ϕ 	→ ϕ∗ : H1(Γ \ T , Z) →
H0(n, Z) is an isomorphism by [15]. Via these isomorphisms, the pairing (2.9) is 
Grothendieck’s monodromy pairing with respect to the canonical principal polariza-
tion on J ; see [23, §4]. Therefore, by a theorem of Grothendieck, there is a short exact 
sequence (cf. [23])

0 −→ H0(n,Z) f �→(f,·)−−−−−−→ Hom(H0(n,Z),Z) −→ Φ∞ −→ 0. (2.10)

Let θ be the canonical principal polarization on J . Let α 	→ α† be the Rosati involution 
of End(J) induced by θ. By the Néron mapping property, an endomorphism α of J
extends to an endomorphism of J which preserves J 0. Hence α canonically acts on Φ∞. 
Moreover, considering H0(n, Z) as the character group of J 0

F∞
, we get an endomorphism 

of H0(n, Z), which we again denote by α. The adjoint of α with respect to the monodromy 
pairing (2.9) is α† (cf. [26, §3.3]), i.e.,

(αf, g) = (f, α†g) for all f, g ∈ H0(n,Z).

Let α act on Hom(H0(n, Z), Z) through its action on the first argument. If we make α
act on the first term of the exact sequence (2.10) as α†, then the whole sequence becomes 
α-equivariant.

For t ∈ T(n), considered as an element of End(J), we have (cf. [29, p. 444])

WntWn = t†.

(This reflects the fact that the adjoint of t with respect to the Petersson inner product is 
WntWn.) Since the Atkin–Lehner involution Wn commutes with Tp ∈ T(n) for any p � n, 
the exact sequence (2.10) is T(n)0-equivariant.

Remark 2.11. The existence of the exact sequence (2.10) was deduced by Gekeler as a 
consequence of the rigid-analytic uniformization of J0(n) constructed in [16], without 
using Grothendieck’s result; see Corollary 2.11 in [9]. The T(n)0-equivariance of (2.10)
then follows from the T(n)0-equivariance of this uniformization; see [16, §9].
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3. The cuspidal divisor group

The cuspidal divisor group C(n) is the subgroup of J0(n) generated by the classes of 
divisors [c] − [c′], where c, c′ run through the set of cusps of X0(n). The cuspidal divisor 
group is finite [13].

The cusps of X0(n) are in bijection with the orbits of the action of Γ0(n) on

P1(F ) = P1(A) =
{(

a

b

) ∣∣ a, b ∈ A, gcd(a, b) = 1, a is monic
}
,

where Γ0(n) acts on P1(F ) from the left as on column vectors. The rational cusps are 
those cusps which are defined over F , i.e., which give F -rational points on X0(n).

Lemma 3.1. Let n = p
r1
1 · · · prss be the prime factorization of n. Put

κ(n) =
s∏

i=1

(
|pi|	ri/2
 + |pi|	(ri−1)/2


)
.

(i) Every cusp of X0(n) has a representative 
(
a

b

)
where a, b ∈ A are monic, b|n, 

and gcd(a, n) = 1. Two such representatives 
(
a

b

)
and 

(
a′

b′

)
represent the same 

cusp of X0(n) if and only if b = b′ and αa′ = a modulo b̃ := gcd(b, n/b) for some 
α ∈ F×

q .
(ii) The total number of cusps of X0(n) is 2s + κ(n)−2s

q−1 .

(iii) The cusps with the same b are conjugate over F . In particular, 
(
a

b

)
is rational if 

and only if deg(b̃) ≤ 1, or q = 2 and b̃ = T 2 + T .
(iv) If pi is a prime divisor of n of degree one, put

ti =

⎧⎨
⎩

0 ri = 1,
1 ri = 1,
2 ri ≥ 3.

Let u = t1 · t2 if (q = 2 and p1 = T , p2 = T − 1 are divisors of n), and u = 0
otherwise. Then the number of rational cusps of X0(n) is

2s + 2s−1
∑

ti + 2s−2u,

where the sum is over the prime divisors of degree one of n.

Proof. See [14, §6] and [30, Prop. 1]. �
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Lemma 3.2. Let m be a non-trivial ideal dividing n with gcd(m, n/m) = 1, and let Wm

denote the corresponding Atkin–Lehner involution. Let 
(
a

b

)
and 

(
a′

b′

)
be cusps of X0(n)

with
(
a′

b′

)
= Wm

(
a

b

)
.

Then

gcd(b,m) · gcd(b′,m) = m and gcd(b, n/m) = gcd(b′, n/m).

Proof. See [30, Lem. 8]. �
Corollary 3.3. Assume deg(n) = 3.

(i) The cusps of X0(n) are in bijection with the monic divisors of n via

d|n 	→ [d] := Γ0(n)-orbit of
(

1
d

)
.

(ii) All cusps of X0(n) are rational.
(iii) For m ‖ n and prime p ‖ n, we have

Wn[d] = [n/d],

Wm[n] = [n/m],

Wp[d] =
{

[d/p] if p divides d;
[dp] otherwise.

Proof. (i) and (ii) follow from Lemma 3.1, and (iii) follows from Lemma 3.2. �
Notation 3.4. Assume deg(n) = 3. Let [∞] := [n]. For a monic divisor d of n, let cd :=
[d] − [∞] ∈ C(n). Note that cd’s generate C(n).

Lemma 3.5. If deg(n) = 3, then C(n) is Eisenstein.

Proof. By Lemma 3.1(i) and Corollary 3.3(i), we observe that for each cusp c of X0(n),

(
1 u

0 p

)
c =

(
p 0
0 1

)
c = c, for any u and p with p � n, deg(u) < deg(p).

This implies that Tpc = (|p| + 1)c, hence C(n) is Eisenstein. �



M. Papikian, F.-T. Wei / Journal of Number Theory 161 (2016) 384–434 401
Fig. 1. X0(n)F∞ : n irreducible.

Remark 3.6. (1) In general, C(n) may not be Eisenstein (see Example 8.8), but C(n) is 
Eisenstein if n is square-free (see the proof of Lemma 3.1 in [27]).

(2) Let F (n) be the field of n-division points of the Carlitz module. It is an abelian 
extension of F with Galois group (A/n)×. Let F+(n) be the maximal subfield of F (n) in 
which ∞ totally splits. By a result of Gekeler (cf. [14, Thm. 4.6]) the cusps of X0(n) are 
F+(n)-rational points. Hence C(n) is a subgroup of F+(n)-rational points of J0(n).

For the rest of this section we compute the group structure of C(n) for n of degree 3. 
Our strategy for doing this is the following. Take a prime divisor p of n and consider 
the functorial morphism X0(n) → X0(n/p) discussed in Section 2.5. Since deg(n/p) ≤ 2
and [∞] is rational, X0(n/p) is isomorphic to the projective line over F . The pullbacks 
of principal divisors on X0(n/p) supported at the cusps give relations between the cus-
pidal divisors. Next, by [30] and [8], X0(n) is hyperelliptic (if deg(n) = 3), and the 
Atkin–Lehner involution Wn is the hyperelliptic involution. This gives another morphism 
X0(n) → P1

F
∼= X0(n)/Wn, from which one deduces an extra relation for the cuspidal 

divisors. The relations that we obtain from these calculations give the generators of C(n)
and upper bounds on the orders of these generators.

Next, we compute Φ∞. One can compute the component groups by using a theorem 
of Raynaud [2, Thm. 9.6/1], assuming the structure of the special fibre of a regular 
model of X0(n) over O∞ is known. Such a model can be obtained from the rigid-analytic 
uniformization of this curve; see [23, §4.2]. More precisely, the structure of the special 
fibre X0(n)F∞ of the minimal regular model of X0(n) over O∞ can be deduced from the 
structure of the quotient graph Γ0(n) \T and the stabilizers of the edges; we refer to [25, 
§5.2] for a more detailed explanation and a carefully worked out example. The quotient 
graphs Γ0(n) \ T are described in Section 4.

Finally, we compute the canonical specialization ℘∞ : C(n) → Φ∞ by using the relative 
position of the cusps on Γ0(n) \T . (Note that by Remark 3.6 C(n) is F∞-rational, so ℘∞
is defined on C(n).) This gives lower bounds for the orders of generators of C(n), which 
turn out to match the previous upper bounds.

3.1. n is irreducible

In this case X0(n) has two cusps, [1] and [∞]. Hence C(n) is cyclic, generated by c1. 
By [8, (5.11)], C(n) = Z/(q2 + q + 1)Z.



402 M. Papikian, F.-T. Wei / Journal of Number Theory 161 (2016) 384–434
Fig. 2. Chain of projective lines.

X0(n) has a regular model over O∞ whose special fibre is depicted in Fig. 1. In 
this figure Z, Z ′ are projective lines defined over F∞ ∼= Fq intersecting each other 
transversally in q points. The dashed line is a chain of q projective lines defined over Fq

as in Fig. 2; here E1 intersects E2 transversally at an Fq-rational point, E2 intersects 
E3, etc. Finally, Z intersects the chain only at Eq and Z ′ intersects only E1, both 
transversally. The reductions of the cusps [1] and [∞] lie on E1 and Eq, respectively, 
away from the points of intersection of these lines with Z ′, E2 and Z, Eq−1, respectively. 
All of this follows from Section 4.1.

Let B0 be the free abelian group with generators z := Z − Z ′ and ei := Ei − Z ′, 
1 ≤ i ≤ q. Then Φ∞ is isomorphic to the quotient of B0 by the relations coming from 
the intersection pairing of irreducible components Z, Z ′, E1, . . . , Eq with X0(n)F∞ ; cf. 
[25, §4.2]. These relations are the following:

ei = ie1 (1 ≤ i ≤ q), e1 = −qz, eq = (q + 1)z.

This implies that Φ∞ is generated by z modulo a single relation (q2 + q + 1)z = 0, so 
Φ∞ ∼= Z/(q2 + q + 1)Z.

Now, ℘∞(c1) = e1 − eq = −qz − (q + 1)z = −(2q + 1)z = ((q2 + q + 1) − (2q + 1))z =
q(q − 1)z. Since q is coprime to q2 + q + 1, we get the exact sequence

0 −→ Z/tZ −→ C(n) ℘∞−→ Φ∞ −→ Z/tZ −→ 0,

t = gcd(q − 1, q2 + q + 1) =
{

3 if q ≡ 1 mod 3,
1 otherwise.

(3.1)

In particular, even though C(n) and Φ∞ are isomorphic as abelian groups, the canonical 
specialization map ℘∞ is not always an isomorphism.

3.2. n = T 3

The cusps of X0(n) are [1], [T ], [T 2], [∞]. Hence C(n) is generated by c1, cT , and cT 2 . 
The canonical morphism f : X0(T 3) → X0(T 2) has degree q. With slight abuse of 
notation, denote the cusps of X0(T 2) by [1], [T ], [T 2]. One computes that f([1]) = [1]
with ramification index q, f([T ]) = [T ] with ramification index q, f([T 2]) = [T 2] with 
ramification index q − 1, and f([∞]) = [T 2] with ramification index 1; cf. [12, p. 196]. 
Since X0(T 2) ∼= P1

F , there is a function on X0(T 2) with divisor [1] − [T 2], and a function 
with divisor [T ] − [T 2]. Hence in Pic0(X0(n)) we have
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Fig. 3. X0(T 2(T − 1))F∞ .

0 = f∗([1] − [T 2]) = q[1] − ((q − 1)[T 2] + [∞]) = qc1 − (q − 1)cT 2 ,

0 = f∗([T ] − [T 2]) = q[T ] − ((q − 1)[T 2] + [∞]) = qcT − (q − 1)cT 2 .

Next, by Corollary 3.3, Wn([∞]) = [1] and Wn([T ]) = [T 2]. Let P and Q be the images 
of [T ] and [∞] under the quotient map X0(n) → X0(n)/Wn

∼= P1
F of degree 2. Pulling 

back the function with divisor P −Q on P1
F , we get

0 = [T ] + [T 2] − [1] − [∞] = cT + cT 2 − c1.

This relation, combined with the previous two, implies that C(n) is generated by cT
which has order dividing q2. More precisely, cT 2 = −qcT , c1 = (q − 1)cT , and q2cT = 0. 
Note that this implies that c1 also generates C(n).

The calculation of Φ∞ and the specialization map ℘∞ is very similar to the case of 
irreducible n. In fact, X0(T 3) has a regular model over O∞ whose special fibre has the 
same structure as Fig. 1, except Z and Z ′ intersect in q−1 points. The cusps [1] and [∞]
again reduce to E1 and Eq, respectively. (The reductions of [T ] and [T 2] lie Z and Z ′.) 
One computes that Φ∞ is generated by z, which has order q2, and e1 = −(q− 1)z. Now

℘∞(c1) = e1 − eq = e1 − qe1 = (1 − q)e1 = (q − 1)2z.

Since q− 1 is coprime to q, we conclude that ℘∞(c1) generates Φ∞. On the other hand, 
c1 generates C(n) and has order dividing q2, so

C(n)
℘∞∼= Φ∞ ∼= Z/q2Z.

3.3. n = T 2(T − 1)

There are 6 cusps given by the divisors of T 2(T − 1). By calculations similar to the 
previous case one shows that C(n) is generated by cT , and cT has order dividing q(q2−1).

The curve X0(n) has a regular model over O∞ whose special fibre is depicted in 
Fig. 3. Here Z and Z ′ are projective lines over F∞ intersecting in (q − 2) points, and 
there are two chains of projective lines of length q as in Fig. 2. Label the irreducible 
components so that Z ′ intersects E1. By [25, Thm. 4.1], Φ∞ ∼= Z/q(q2−1)Z is generated 
by e1 := E1 − Z ′. There is a cusp whose reduction lies on E1 and there is a cusp whose 



404 M. Papikian, F.-T. Wei / Journal of Number Theory 161 (2016) 384–434
Fig. 4. X0(xyz)F∞ .

reduction lies on Z ′. In particular, e1 ∈ ℘∞(C(n)), so ℘∞ is surjective. Since the order 
of C(n) is at most q(q2 − 1), we conclude

C(n)
℘∞∼= Φ∞ ∼= Z/q(q2 − 1)Z.

3.4. n = T (T − 1)(T − c), c ∈ Fq \ {0, 1}

There are 8 cusps indexed by the divisors of n. To simplify the notation, put x := T , 
y := T − 1, z := T − c. Using the strategy outlined earlier, one shows that the following 
relations hold for the 7 generators of C(n):

cyz = c1 − cx, cxz = c1 − cy, cxy = c1 − cz,

cz = (1 − q)c1 + qcx + qcy,

(q + 1)cx = (q + 1)cy = (q + 1)cz = (q − 1)(q + 1)c1 = 0.

In particular, C(n) is generated by c1, cx, cy.
X0(n) has a regular model over O∞ whose special fibre is depicted in Fig. 4. The two 

irreducible components Z and Z ′ are projective lines intersecting in q − 3 points, and 
there are 4 chains of projective lines of length q as in Fig. 2. Label the projective lines in 
the first chain by E1, . . . , Eq, the second by F1, . . . , Fq, the third by G1, . . . , Gq, and the 
fourth by H1, . . . , Hq. Moreover, we can assume that Z ′ intersects E1, F1, G1, H1. Similar 
to the previous cases, one computes that Φ∞ is generated by z := Z −Z ′, ei := Ei −Z ′, 
fi := Ei − Z ′, gi := Ei − Z ′, hi := Hi − Z ′ (1 ≤ i ≤ q) modulo the relations:

ei = ie1, fi = if1, gi = ig1, hi = ih1 (1 ≤ i ≤ q),

z = (q + 1)e1 = (q + 1)f1 = (q + 1)g1 = (q + 1)h1,

(q + 1)z = eq + fq + gq + hq,

(q − 3)z + e1 + f1 + g1 + h1 = 0.

If we let e := e1, f := f1, g := g1, then these relations imply that

Φ∞ ∼= 〈f − e〉 ⊕ 〈g − e〉 ⊕ 〈e〉 ∼= Z/(q + 1)Z⊕ Z/(q + 1)Z⊕ Z/(q − 1)2(q + 1)Z.
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Fig. 5. Γ0(n) \ T : n irreducible.

The reductions of the cusps [∞], [x], [y], [z] lie on E1, F1, G1, H1, respectively, and 
the reductions of the cusps [1], [yz], [xz], [xy] lie on Eq, Fq, Gq, Hq, respectively. Thus,

℘∞(c1) = Eq −E1 = eq − e1 = (q − 1)e,

℘∞(cx) = F1 − E1 = f − e and ℘∞(cy) = G1 − E1 = g − e.

This implies

C(n) ∼= 〈cx〉 ⊕ 〈cy〉 ⊕ 〈c1〉 ∼= Z/(q + 1)Z⊕ Z/(q + 1)Z⊕ Z/(q2 − 1)Z

and

0 −→ C(n) ℘∞−→ Φ∞ −→ Z/(q − 1)Z −→ 0.

Remark 3.7. By [27, Thm. 5.3], Φx
∼= Φy

∼= Φz
∼= Z/(q + 1)Z and the canonical special-

ization maps from C(xyz) into these component groups are surjective.

4. Hecke algebras of small levels

We will need the descriptions of the graphs Γ0(n) \ T for deg(n) = 3. These graphs 
already appear in [7]. For the sake of completeness, and also because we will need explicit 
representatives for the edges E(Γ0(n) \ T )+, and need to know the orders of stabilizers 
of the edges (this was used in Section 3), we describe these graphs below. The graphs 
can be computed using the algorithm in [15].

4.1. n is irreducible

The quotient graph is depicted in Fig. 5. There are q edges

bu =
(
π3 π + uπ2

0 1

)
, u ∈ Fq.

The dashed edges

s∞ =
(
π 0

)
, s1 =

(
π3 0

)

0 1 0 1
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Fig. 6. Γ0(T 3) \ T .

indicate that they are the first edges on a half-line corresponding to the cusps [∞] and [1], 
respectively. Finally,

a∞ =
(
π2 π

0 1

)
, a1 =

(
π3 π2

0 1

)
, d∞ =

(
π2 0
0 1

)
.

A small calculation shows that

w(a∞) = w(a1) = q − 1 (4.1)

and the weights of all other edges in (Γ0(n) \ T )0 are 1 (in particular, w(a∞) =
w(a1) = 1). Also, the stabilizers in Γ0(n) of preimages of all (non-oriented) edges in 
(Γ0(n) \ T )0 are isomorphic to F×

q , except

#StabΓ0(n)(d∞) = (q − 1)2. (4.2)

4.2. n = T 3

The quotient graph is depicted in Fig. 6. This case is similar to the case when n is 
irreducible, except now bu’s are indexed by u ∈ F×

q , and

sT = b0 =
(
π3 π

0 1

)
, sT 2 =

(
π4 π2

0 1

)
.

The weights and stabilizers of edges in (Γ0(n) \ T )0 are the same as in (4.1) and (4.2).

4.2.1. n = T 2(T − 1)
In this case the quotient graph looks like Fig. 7. The edges bu in the middle of the 

figure are indexed by u ∈ Fq \ {0, 1}. In particular, there are no such edges when q = 2. 
The representatives for the edges b0, b1, bu, d∞, s∞, s1 are the same as earlier. In addition 
to those, we have

sT−1 =
(
π4 (T − 1)−1

0 1

)
, sT (T−1) =

(
π4 (T (T − 1))−1

0 1

)
, sT 2 =

(
π5 π2

0 1

)
,

aT 2 =
(
π4 π2)

, dT−1 =
(
π4 π + π2)

.
0 1 0 1
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Fig. 7. Γ0(T 2(T − 1)) \ T .

Fig. 8. Γ0(xyz) \ T .

The weights of all edges in (Γ0(n) \ T )0 are 1, except

w(a∞) = w(a1) = w(b1) = w(aT 2) = q − 1.

Similarly, #StabΓ0(n)(e)/F×
q = 1 for all (non-oriented) edges, except for e = d∞, dT−1, 

when it is q − 1.

4.3. n = T (T − 1)(T − c), c ∈ Fq \ {0, 1}

In this case the quotient graph looks like Fig. 8. Denote x := T , y := T −1, z := T −c. 
The edges bu in the middle of the figure are indexed by u ∈ Fq \ {0, 1, c}. In particular, 
there are no such edges if q = 3. For the cusps we have

s∞ =
(
π 0
0 1

)
, s1 =

(
π3 0
0 1

)
,

sx =
(
π4 x−1)

, sy =
(
π4 y−1)

, sz =
(
π4 z−1)

,
0 1 0 1 0 1
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sxy =
(
π5 (xy)−1

0 1

)
, syz =

(
π5 (yz)−1

0 1

)
, sxz =

(
π4 (xz)−1

0 1

)
.

Next,

ax := b0 =
(
π3 x−1

0 1

)
, ay := b1 =

(
π3 y−1

0 1

)
, az := bc =

(
π3 z−1

0 1

)
,

a′x =
(
π4 (yz)−1

0 1

)
, a′y =

(
π4 (xz)−1

0 1

)
, a′z =

(
π4 (xy)−1

0 1

)
,

a∞ =
(
π2 π

0 1

)
, a′∞ := a1 =

(
π3 π2

0 1

)
,

bu =
(
π3 π + uπ2

0 1

)
, u ∈ Fq \ {0, 1, c}.

Finally,

dx =
(
π4 π + cπ3

0 1

)
, dy =

(
π4 π + π2 + cπ3

0 1

)
, dz =

(
π4 π + cπ2 + cπ3

0 1

)
,

d∞ =
(
π2 0
0 1

)
.

The weights of edges a∞, a′∞, ax, a′x, ay, a′y, az, a′z are q − 1; the weights of all other 
edges in (Γ0(n) \ T )0 are 1. We have

#StabΓ0(n)(e)/F×
q = q − 1, if e = d∞, dx, dy, dz,

and #StabΓ0(n)(e)/F×
q = 1 for all other (non-oriented) edges of (Γ0(n) \ T )0.

4.4. The pairing

Consider the bilinear T(n)-equivariant pairing

T(n) ×H0(n,Z) → Z

(T, f) 	→ (f |T )∗(1). (4.3)

Theorem 4.1. When deg(n) = 3, the pairing (4.3) is perfect.

Remark 4.2. (1) In [9], Gekeler proved that the pairing (4.3) is non-degenerate and 
becomes a perfect pairing after tensoring with Z[p−1]. It is not known whether the 
pairing is perfect in general, without inverting p.

(2) In [27], we already proved Theorem 4.1 and its corollaries for n = Tp, where p is 
prime of degree 2.
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Proof. First, observe that the map f 	→ (f(bu))u∈Fq
induces an isomorphism H0(n, Z) ∼→

Z⊕q for n irreducible or n = T (T −1)(T −c). (It is clear from Figs. 5 and 8 that any cycle 
in Γ0(n) \ T contains at least one of these edges.) Similarly, the map f 	→ (f(bu))u∈F×

q

induces an isomorphism H0(n, Z) ∼→ Z⊕q−1 for n = T 3 or n = T 2(T −1). (In these cases, 
the edge b0 lies on a cusp, so f(b0) = 0.) Hence the harmonic cochains fv ∈ H0(n, Z), 
defined by fv(bu) = δv,u = (Kronecker’s delta) form a Z-basis of H0(n, Z), where v runs 
over Fq (resp. F×

q ) for n square-free (resp. non-square-free).
Let κ ∈ Fq and f ∈ H0(n, Z). We have

q(f |TT−κ)∗(1) = q2f∗(T − κ) =
∑

w∈πO∞/π3O∞

f

((
π3 w

0 1

))
η (−(T − κ)w)

= f

((
π3 0
0 1

))
+
∑
β∈F×

q

f

((
π3 βπ2

0 1

))
η
(
−(π−1 − κ)βπ2)

+
∑
u∈Fq

∑
β∈F×

q

f

((
π3 β(π + uπ2)
0 1

))
η
(
−(π−1 − κ)β(π + uπ2)

)
.

Since the double class of 
(
π3 w

0 1

)
does not change if w is replaced by βw (β ∈ F×

q ), 

f

((
π3 0
0 1

))
= f(s1) = 0, and 

∑
β∈F×

q
η(βπ) = −1, the above sum reduces to

−f(a1) +
∑
u∈Fq

f(bu)(qδu,κ − 1). (4.4)

The condition (ii′) from the definition of harmonic cochains implies

w(a∞)f(a∞) + w(d∞)f(d∞) = (q − 1)f(a∞) + f(d∞) = 0,

w(a1)f(a1) + w(d∞)f(d∞) = (q − 1)f(a1) + f(d∞) = 0,

f(a∞) =
∑
u∈Fq

f(bu). (4.5)

Therefore, f(a1) = − 
∑

u∈Fq
f(bu). Substituting this into (4.4), we get

(f |TT−u)∗(1) = f(bu). (4.6)

In particular, (fv|TT−u)∗(1) = δu,v. This implies that the homomorphism

T(n) → Hom(H0(n,Z),Z) (4.7)

induced by the pairing (4.3) is surjective. Comparing the ranks of both sides, we con-
clude that this map is in fact an isomorphism, which is equivalent to the pairing being 
perfect. �
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Let M be the Z-submodule of T(n) generated by {TT−u | u ∈ Fq} for n square-free, 
and by {TT−u | u ∈ F×

q } for n non-square-free. From the previous calculations it is clear 
that the composition of M ↪→ T(n) with (4.7) gives a surjection M → Hom(H0(n, Z), Z). 
This implies the following:

Corollary 4.3. Assume deg(n) = 3. If n is square-free, then there is an isomorphism of 
Z-modules

T(n) ∼=
⊕
u∈Fq

ZTT−u.

If n = T 3 or T 2(T − 1), then

T(n) ∼=
⊕
u∈F×

q

ZTT−u.

Note that in our new notation, Eq. (2.6) is

f∗(1) = −f(a∞). (4.8)

Denote S = 1 +
∑

u∈Fq
TT−u. Using (4.6) we get

(f |S)∗(1) = f∗(1) +
∑
u∈Fq

f(bu) = −f(a∞) +
∑
u∈Fq

f(bu) = 0,

where the last equality follows from (4.5). The non-degeneracy of the pairing implies 
that S = 0, i.e.,

∑
u∈Fq

TT−u = −1. (4.9)

On the other hand, if T 2 divides n, then b0 lies on a cusp, so (f |UT )∗(1) = f(b0) = 0. 
Thus, UT = 0. (Note that this also follows from Corollary 2.7.) This implies that in 
Corollary 4.3 we can replace one of TT−u by 1 and still have a Z-basis of T(n).

Corollary 4.4. If deg(n) = 3 and n �= T (T − 1)(T − c), then

T(n) = T(n)0 ∼= Z⊕
⊕
u∈Fq

(T−u)�n

ZTT−u.

Remark 4.5. When n = T (T − 1)(T − c), we will show that T(n)/E(n) is not cyclic. As 
T(n)0/E(n)0 is cyclic by Lemma 2.9, this implies that T(n) �= T(n)0.
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5. The Eisenstein ideal of small levels

Our main goal in this section is to compute T(n)/E(n) when deg(n) = 3. We start with 
a few observations. First of all, by Corollary 2.7, the operator Up is either 0 or −Wp. Since 
the Atkin–Lehner involutions commute with each other, this implies that WnUpWn = Up. 
Hence the sequence (2.10) is T(n)-equivariant with respect to the usual action of T(n)
on H0(n, Z). Next, by Theorem 4.1, there is an isomorphism of T(n)-modules:

Hom(H0(n,Z),Z) ∼= T(n).

Hence (2.10) gives a surjective T(n)-equivariant homomorphism T(n) → Φ∞. We will 
prove that this homomorphism factors through T(n)/E(n), and in fact this gives an 
isomorphism:

Theorem 5.1. If deg(n) = 3, then T(n)/E(n) ∼→ Φ∞.

A crucial part of the proof consists of showing that Φ∞ is annihilated by E(n). Assume 
this fact for the moment. Then we get a surjection T(n)/E(n) � Φ∞. Now to prove 
Theorem 5.1, it is enough to show that the order of T(n)/E(n) is not larger than the 
order of Φ∞. We will do this on a case-by-case basis. To simplify the notation, we omit 
n and let T := T(n), E := E(n).

5.1. n is irreducible

In this case, we know that T = T0, so T/E ∼= Z/NZ for some N ≥ 1; see Corollary 4.4
and Lemma 2.9. By (4.9)

∑
u∈Fq

TT−u = −1.

Since TT−u ≡ (q+1) mod E, in T/E we have q(q+1) +1 = 0. Therefore N divides q2+q+1. 
On the other hand, from the calculations in Section 3 we know that Φ∞ ∼= Z/(q2+q+1)Z.

5.2. n = T 3

This case is very similar to the previous one. Again T/E ∼= Z/NZ for some N ≥ 1. 
The difference is that UT = 0 (see Corollary 2.7), so (4.9) implies that in T/E

(q − 1)(q + 1) + 1 = q2 = 0.

Hence N divides q2 = #Φ∞.
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5.3. n = T 2(T − 1)

Again T/E ∼= Z/NZ for some N ≥ 1, but the above argument does not quite work 
since we only have

UT−1 +
∑
u∈Fq

u 
=0,1

TT−u = −1.

(Note that UT = 0 by Corollary 2.7.) This implies that UT−1 + (q2 − q − 1) ∈ E, but 
does not give a bound on the order of 1 in T/E. Instead we use a different approach.

Any cuspidal harmonic cochain in H00(n, R) is uniquely determined by its values on 
the edges {bu | u ∈ F×

q }; cf. Fig. 7. Note that for any u ∈ Fq and f ∈ H00(n, R) Eqs. (4.6)
and (4.8) imply

f(bu) = −(f |TT−u)(a∞), (5.1)

as f is in the image of H0(n, Z). Now suppose f ∈ E00(n, R) and let f(a∞) = α.
If q > 2, then Eq. (5.1) gives

f(bu) = −(q + 1)α, u ∈ Fq, u �= 0, 1.

Next, the harmonicity implies

f(b1) = (q2 − q − 1)α,

so, in fact, f is uniquely determined by α. Let g := f |WT−1. We have

g = f |WT−1 = −f |UT−1 = f +
∑
u 
=0,1

f |TT−u = ((q + 1)(q − 2) + 1)f = (q2 − q − 1)f.

The action of WT−1 on Γ0(n) \ T is easy to describe. Using Lemma 3.2, we see that 
WT−1 interchanges the cusps as follows:

[∞] ←→ [T 2], [1] ←→ [T − 1], [T ] ←→ [T (T − 1)].

Hence WT−1 maps bu, for any u �= 0, 1, to bu′ for some other u′ �= 0, 1. Therefore,

g(bu) = (q2 − q − 1)f(bu) = −(q2 − q − 1)(q + 1)α

and

g(bu) = f |WT−1(bu) = f(bu′) = (q + 1)α.

This implies q(q2 − 1)α = 0.
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When q = 2, let p = T 2 +T + 1. We have f |Tp = (q2 + 1)f = 5f . A direct calculation 
shows that

f |Tp(d∞) = f(dT−1).

By harmonicity

w(a∞)f(a∞) + w(d∞)f(d∞) = (q − 1)f(a∞) + f(d∞) = 0,

so f(d∞) = −α. Similarly, f(b1) = −α and f(dT−1) = α. Thus

−5α = f |Tp(d∞) = f(dT−1) = α,

which implies 6α = q(q2 − 1)α = 0.
The overall conclusion is that there is an injection

E00(n, R) ↪→ R[q(q2 − 1)]

f 	→ f(a∞). (5.2)

Denote TR := T ⊗Z R and let ER be the image of E ⊗Z R in TR. By Theorem 4.1,

HomR(TR, R) ∼= H00(n, R).

Hence

E00(n, R) ∼= HomR(TR, R)[ER] ∼= HomR(TR/ER, R).

(To see the second isomorphism note that an R-linear map ψ : TR → R is annihilated 
by ER if and only if (e ◦ψ)(t) = ψ(et) = 0 for all e ∈ ER and all t ∈ TR. But since ER is 
an ideal in TR, this last condition is equivalent to ψ vanishing on ER, or in other words, 
ψ must factor through TR/ER.)

Take R = Z/NZ. Then TR/ER
∼= T/E ∼= Z/NZ, so E00(n, Z/NZ) ∼= Z/NZ. 

On the other hand, the injection (5.2) identifies E00(n, Z/NZ) with a subgroup of 
Z/NZ[q(q2 − 1)]. Hence N must divide q(q2 − 1) = #Φ∞.

5.4. n = T (T − 1)(T − c), c ∈ Fq \ {0, 1}

The argument here is similar to the previous case. With notation as in Section 4.3, 
one checks that

H0(n, R) ∼=
⊕
u∈Fq

R⊕R[q − 1] ⊕R[q − 1] ⊕R[q − 1]

f 	→ (f(bu), f(ax) + f(a′x), f(ay) + f(a′y), f(az) + f(a′z))
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and

H00(n, R) = {f ∈ H0(n, R) | f(ax) + f(a′x) = f(ay) + f(a′y) = f(az) + f(a′z) = 0}
∼=
⊕
u∈Fq

R.

Let f ∈ E00(n, R) and denote

α = f(a∞), β = f(ax), γ = f(ay), δ = f(az).

First assume q > 3. Since f is Eisenstein, f(bu) = −(q + 1)α for u ∈ Fq \ {0, 1, c}. We 
have the relations (see (4.9) and Corollary 2.7)

Ux + Uy + Uz +
∑

u 
=0,1,c

TT−u = −1

and

Wx + Ux = Wy + Uy = Wz + Uz = 0.

Hence

Wx + Wy + Wz =
∑

u 
=0,1,c

TT−u + 1, (5.3)

and

(f |Wx + Wy + Wz) = (f |
∑

u 
=0,1,c

TT−u + 1) = ((q + 1)(q − 3) + 1)f. (5.4)

The action of the Atkin–Lehner involutions on Γ0(n) \T is easy to deduce by analyzing
their action on the cusps. In particular, one easily checks that Wx, Wy, Wz map any 
edge bu with u �= 0, 1, c to bu′ for some u′ �= 0, 1, c. Fix some u0 ∈ Fq \ {0, 1, c}. On one 
hand, from what we just said, it follows that

(f |Wx + Wy + Wz)(bu0) = f(bu′) + f(bu′′) + f(bu′′′) = 3(q + 1)α.

On the other hand, from (5.4)

(f |Wx + Wy + Wz)(bu0) = (q2 − 2q − 2)f(bu0) = −(q + 1)(q2 − 2q − 2)α.

This implies (q + 1)(q − 1)2α = 0, i.e., α ∈ R[(q + 1)(q − 1)2].
Note that f |Wx, f |Wy, f |Wz are in E00(n, R), since the Atkin–Lehner involutions 

commute with Tp (p � n). Fix some u �= 0, 1, c. Then

(f |Wx|TT−u)(a∞) = (q + 1)(f |Wx)(a∞) = (q + 1)f(ax′) = (q + 1)f(ax) = (q + 1)β.
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Computing the same expression differently,

(f |Wx|TT−u)(a∞) = −(f |Wx)(bu) = −f(bu′) = f(bu′) = −(q + 1)α.

(Here we have used (5.1).) Hence (q + 1)(α + β) = 0, i.e., α + β ∈ R[q + 1]. Similarly, 
α + γ ∈ R[q + 1]. Finally, from (5.4), we get

β + γ + δ = (q2 − 2q − 2)α,

which means that δ is determined by α, β, γ.
Now assume q = 3. In this case the previous argument needs to be modified as there 

are no edges bu with u �= 0, 1, c. Here (5.3) becomes

Wx + Wy + Wz = 1.

Multiplying this expression by Wx, Wy and Wz, and then adding the resulting relations, 
we get

WxWy + WxWz + WyWz = Wxy + Wxz + Wyz = Wxyz = −1. (5.5)

As before, let f ∈ E00(n, R). Note that

β = f(ax) = (f |Wyz)(a∞) = −(f |Wyz)(a∞),

and similarly

γ = −(f |Wxz)(a∞), δ = −(f |Wxy)(a∞).

Let p1 = T 2 + 1, p2 = T 2 + T − 1, p3 = T 2 − T − 1. By an explicit calculation

(f |Tp1)(a∞) = 2f(ax) − 2f(ay) − 2f(az),

(f |Tp2)(a∞) = −2f(ax) + 2f(ay) − 2f(az),

(f |Tp3)(a∞) = −2f(ax) − 2f(ay) + 2f(az). (5.6)

On the other hand, f |Tpi
= (q2 + 1)f = 10f . This implies

4f(ax) = 4f(ay) = 4f(az). (5.7)

By (5.5),

−4f(a∞) = 4f |(Wxy + Wxz + Wyz)(a∞)

= 4(f |Wx)(ay) + 4(f |Wy)(az) + 4(f |Wz)(ax).
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Since f |Wx, f |Wy, f |Wz ∈ E00(n, R), we can apply (5.7) to each of these functions indi-
vidually to conclude that the previous expression is equal to

4(f |Wx)(ax) + 4(f |Wy)(ay) + 4(f |Wz)(az)

= 4f(a∞) + 4f(a∞) + 4f(a∞) = 12f(a∞).

Hence 16f(a∞) = 0, i.e., f(a∞) ∈ R[(q+1)(q−1)2]. Finally, multiply (5.6) by 2 and use 
16f(a∞) = 0 to get

4f(a∞) = 4f(ax) − 4f(ay) − 4(az).

Using (5.7), we get

4(f(ax) + f(a∞)) = 0.

By a similar argument, 4(f(ay) + f(a∞)) = 4(f(az) + f(a∞)) = 0.
The overall conclusion is that for any q ≥ 3, there is an injection

E00(n, R) ↪→ R[(q + 1)(q − 1)2] ⊕R[q + 1] ⊕R[q + 1]

f 	→ (f(a∞), f(ax) + f(a∞), f(ay) + f(a∞)).

Let N be the exponent of T/E as an abelian group, and R = Z/NZ. Then TR/ER
∼=

T/E, and

E00(n, R) ∼= HomR(TR/ER, R) ∼= T/E.

This implies that T/E is a subgroup of Z/NZ[(q+1)(q−1)2] ⊕Z/NZ[q+1] ⊕Z/NZ[q+1]. 
This latter group is obviously a subgroup of

Z/(q + 1)(q − 1)2Z⊕ Z/(q + 1)Z⊕ Z/(q + 1)Z ∼= Φ∞.

5.5. Φ∞ is Eisenstein

Here we prove the fact that was needed in the proof of Theorem 5.1:

Proposition 5.2. When deg(n) = 3, the component group Φ∞ is Eisenstein.

When n = T 3 or T 2(T − 1), the proposition easily follows from our earlier results. 
Indeed, we have shown that in these cases the canonical specialization map ℘∞ : C(n) →
Φ∞ is an isomorphism. Since ℘∞ is T(n)-equivariant and C(n) is annihilated by E(n)
(see Lemma 3.5), the claim follows. When n is irreducible or n = T (T − 1)(T − c), we 
will need a different argument.
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5.5.1. n is irreducible
There is an isomorphism (cf. Fig. 5)

H0(n, R) ∼→
⊕
u∈Fq

R

f 	→ (f(bu)).

Let hu ∈ H0(n, Z) be the harmonic cochain defined by hu(bu′) = δu,u′ . Then the set 
{hu} forms a Z-basis of H0(n, Z). Enumerate the elements of Fq from 0 to q − 1. Let 
f0 = h0 and fi = hi − hi−1, 1 ≤ i ≤ q− 1. This is again a basis of H0(n, Z). Let {ψi} be 
the dual basis of Hom(H0(n, Z), Z), i.e., ψi(fj) = δij .

It is easy to see that f0(a∞) = 1, f0(d∞) = −(q− 1), f0(a1) = −1, and f0(bu) = δ0,u. 
Similarly, fi(bj) = δi,j − δi−1,j for 1 ≤ i ≤ q−1. Recall that n(d∞) = q−1, and n(e) = 1
for all other edges of (Γ0(n) \ T )0; for the definition of n(e) see (2.8). Now one easily 
computes that the pairing (2.9) gives

(f0, f0) = q + 2, (f0, f1) = −1, (f0, fi) = 0 for i ≥ 2;

and for 1 ≤ i ≤ q − 1

(fi, fj) =

⎧⎨
⎩

2, if i = j,

−1, if j = i− 1 or j = i + 1,
0, otherwise.

Hence the map ι : f 	→ (f, ·) in (2.10) sends

f0 	→ (q + 2)ψ0 − ψ1

fi 	→ −ψi−1 + 2ψi − ψi+1 for 1 ≤ i ≤ q − 2

fq−1 	→ −ψq−2 + 2ψq−1.

Applying the exact sequence (2.10), we conclude that Φ∞ is generated by ψ0 modulo 
the relation (q2 + q + 1)ψ0 = 0, i.e., Φ∞ ∼= Z/(q2 + q + 1)Z.

Remark 5.3. Of course, we already knew that Φ∞ ∼= Z/(q2 + q + 1)Z from the compu-
tations in Section 3. The advantage of using (2.10) is that it relates Φ∞ to the cuspidal 
harmonic cochains, and so allows to compute the action of Hecke operators on Φ∞. 
On the other hand, the method used in Section 3 is better suited for computing the 
specialization map C(n) → Φ∞.

Let N = q2 + q + 1. Consider the commutative diagram obtained from (2.10) by 
multiplication by N :
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0 H0(n,Z)

N

Hom(H0(n,Z),Z)

N

Φ∞

N

0

0 H0(n,Z) Hom(H0(n,Z),Z) Φ∞ 0

(5.8)

The snake lemma gives an injection Φ∞ ↪→ H00(n, Z/NZ). Our previous calculations 
allow us to explicitly describe the image of Φ∞. Indeed, in Hom(H0(n, Z), Z) we have

Nψ0 =
q−1∑
i=0

(q − i) · ι(fi).

Therefore, the image of Φ∞ in H00(n, Z/NZ) is generated by the cuspidal harmonic 
cochain

f := qf0 + (q − 1)f1 + · · · + fq−1 mod N.

Since the above commutative diagram is compatible with the action of T(n), to conclude 
that Φ∞ is Eisenstein, now it is enough to show that f ∈ E00(n, Z/NZ).

Definition 5.4. Assume for the moment that n �A is an arbitrary non-zero ideal. Define

ν(n) =
{

1, if deg(n) is even;
q + 1, if deg(n) is odd.

The Eisenstein series of level n is the function on E(T ) defined in terms of Fourier 
expansion

En

((
πk y

0 1

))
= ν(n) · q−k+1 ·

⎡
⎢⎢⎣1 − |n|

1 − q2 +
∑

0
=m∈A,
deg(m)≤k−2

σn(m)η(my)

⎤
⎥⎥⎦ ,

where σn(m) := σ(m) − |n| · σ(m/n), and σ is the divisor function

σ(m) :=

⎧⎪⎨
⎪⎩

∑
monic m′∈A,

m′|m

|m′|, if m ∈ A;

0, otherwise.

(Here η is the additive character in (2.5).) This function is in fact a (non-cuspidal) 
harmonic cochain in H(n, Z); see [12]. Note that for each prime p � A and m ∈ A,

σ(mp) = σ(p)σ(m) − |p|σ(m/p).
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Therefore the Fourier expansion of En|Tp for each prime p not dividing n tells us that

En|Tp = (|p| + 1)En. (5.9)

Returning to the case when n is irreducible of degree 3, we relate f to the reduction of 
En modulo N . From the definition of f , it is easy to see that f(bu) = 1 for all u ∈ Fq, and 
as we have discussed, this uniquely characterizes f in H00(n, Z/NZ). Next, we compute

En(s∞) = En

((
π 0
0 1

))
= (q + 1)q

3 − 1
q2 − 1 = q2 + q + 1.

En(bu) = En

((
π3 π + uπ2

0 1

))
= (q + 1)

q2

⎡
⎢⎣q3 − 1
q2 − 1 +

∑
0�=m∈A,
deg(m)≤1

σn(m)η(m(π + uπ2))

⎤
⎥⎦

= (q + 1)
q2

⎡
⎣q3 − 1
q2 − 1 +

∑
m∈F×

q

η(m(π + uπ2)) + q
∑

deg(m)=1

η(m(π + uπ2))

⎤
⎦

= (q + 1)
q2

[
q3 − 1
q2 − 1 − 1 + 0 · q

]
= 1.

Therefore,

En ≡ f mod N,

and (5.9) implies f |Tp = (|p| + 1)f as was required to show.

5.5.2. n = T (T − 1)(T − c), c ∈ Fq \ {0, 1}
The strategy of the proof of Proposition 5.2 in this case is similar to the case when 

n is irreducible, but the calculations become much more complicated. As before, any 
harmonic cochain in H0(n, R) is uniquely determined by its values on the edges {bu |
u ∈ Fq}; see Fig. 8. Let hu ∈ H0(n, Z) be defined by hu(bu′) = δu,u′ . Then {hu | u ∈ Fq}
is a Z-basis of H0(n, Z). Let

f1 = −h0 − h1 + (q2 − 2q)hc −
∑

u 
=0,1,c

hu,

f2 = h0 − hc,

f3 = h1 − hc.

The pairing (2.9) gives

(h0, f1) = 0, (h1, f1) = 0, (hc, f1) = (q + 1)(q − 1)2, (hu, f1) = 0 for u �= 0, 1, c;

(h0, f2) = q + 1, (h1, f2) = 0, (hc, f2) = −(q + 1), (hu, f2) = 0 for u �= 0, 1, c;

(h0, f3) = 0, (h1, f3) = q + 1, (hc, f3) = −(q + 1), (hu, f3) = 0 for u �= 0, 1, c.
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Table 1
Values of Eisenstein series on Γ0(xyz) \ T .

s∞ s1 sx sy sz syz sxz sxy d∞ dx dy dz a∞ a′
∞ ax a′

x ay a′
y az a′

z bu

Ex 1 q2 −q2 q q 1 −q −q q q −1 −1 −1 −q −q −1 1 −1 1 −1 1
Exy 1 q 0 0 1 0 0 −q 1 0 0 −1 0 −1 0 0 0 0 0 −1 0
E′

xy 0 0 −q q 0 1 −1 0 0 1 −1 0 0 0 −1 0 1 0 0 0 0
Eyz 1 q 1 0 0 −q 0 0 1 −1 0 0 0 −1 0 −1 0 0 0 0 0
E′

yz 0 0 0 −q q 0 1 −1 0 0 1 −1 0 0 0 0 −1 0 1 0 0
Exz 1 q 0 1 0 0 −q 0 1 0 −1 0 0 −1 0 0 0 −1 0 0 0
E′

xyz q + 1 q + 1 0 0 q + 1 0 0 −q − 1 2 0 0 −2 1 −1 0 0 0 0 1 −1 0

This implies that ψ1 := ι(f1)
(q+1)(q−1)2 , ψ2 := ι(f2)

(q+1) , ψ3 := ι(f3)
(q+1) are in Hom(H0(n, Z), Z). 

One computes that

Φ∞ ∼= Hom(H0(n,Z),Z)
ι(H0(n,Z))

∼= Z

(q + 1)(q − 1)2Zψ1 ⊕
Z

(q + 1)Zψ2 ⊕
Z

(q + 1)Zψ3.

Using the diagram (5.8) with N = (q + 1)(q − 1)2, we get an injection from Φ∞ into 
H00(n, Z/NZ), and the image is generated by f1, f2, and f3. Now it is enough to show 
that the reductions of these harmonic cochains are Eisenstein.

Let x := T , y := T − 1, z := T − c. The Eisenstein series Ex, Ey, Ez, Exy, Exz, Eyz, 
Exyz are in H(n, Z). Further, denote

E′
xy = Ex −Ey, E′

yz = Ey − Ez, E′
xyz = Exy + (q + 1)−1(Exyz − Ez).

One can check that E′
xyz is Z-valued by computing its values on the edges of Γ0(n) \T . 

(Note that the matrix representatives of the edges are given after Fig. 8.) Moreover, by 
computing the values of other Eisenstein series on the edges of Γ0(n) \ T (see Table 1), 
it is possible to show that modulo N we have

f1 ≡ −(q + 1)Ex + (q2 + 1)Exy + (q2 + q + 1)E′
xy + qEyz

+ (q2 + 1)E′
yz + qExz − qE′

xyz,

and modulo q + 1 we have

f2 ≡ −Exy −E′
xy + Eyz − E′

yz

f3 ≡ −Exy −E′
yz + Exz.

This proves that Φ∞ is Eisenstein.

5.6. Alternative definitions of the Eisenstein ideal

The original definition of the Eisenstein ideal in [19] includes also a congruence on 
the Up operator. Another definition of Eisenstein ideal for prime level p is given in [32, 
p. 230] as the kernel of T(p) → EndZ(C(p)).
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For non-zero n �A, the cuspidal divisor group C(n) is preserved by the action of T(n), 
so one can consider

I(n) = ker(T(n) → EndZ(C(n))).

Since, in general, C(n) is not Eisenstein, I(n) will be different from the Eisenstein ideal. 
On the other hand, when deg(n) = 3, C(n) is Eisenstein (see Lemma 3.5), so E(n) ⊆ I(n).

Lemma 5.5. Assume deg(n) = 3.

(i) If n is irreducible, or n = T 3, or n = T 2(T − 1), then E(n) = I(n).
(ii) If n = xy, where x and y are irreducibles of degree 1 and 2, respectively, then 

E(n) = I(n) if and only if q is even.

Proof. For all these n we know that T(n)/E(n) ∼= Z/N(n)Z, where N(n) is the order of 
C(n). The inclusion E(n) ⊆ I(n) induces a surjection T(n)/E(n) → T(n)/I(n), so this 
latter group is also cyclic: T(n)/I(n) ∼= Z/M(n)Z, where M(n)|N(n). From the definition 
of I(n) we see that M(n) is the exponent of the group C(n). If n is irreducible, or n = T 3, 
or n = T 2(T − 1), C(n) is a cyclic, so M(n) = N(n). For n = xy, C(n) is cyclic if and 
only if q is even. �

If n is one of the ideals in the previous lemma, then T(n)/E(n) is cyclic. This implies 
that Up is congruent to an integer modulo E(n). If p2|n, then we know that Up = 0. If 
p ‖ n, then Up = −Wp, so one can determine the integer in question by studying the 
action of Wp on Φ∞ (since Φ∞ ∼= T(n)/E(n)). This is easy to do by considering the 
action of Wp on the cusps. The results are the following:

(1) If n is irreducible, then Un − 1 ∈ E(n).
(2) If n = T 2(T − 1), then UT−1 + (q2 − q − 1) ∈ E(n).
(3) If n = xy, where x and y are irreducible of degree 1 and 2, respectively, then Ux + q2

and Uy − q2 are in E(n).
(4) If n = xyz, where x, y, and z are distinct irreducibles of degree 1, then by a similar 

calculation one can show that none of Ux, Uy, Uz is a scalar modulo E(n), although

UxUyUz = −Wn ≡ 1 (mod E(n)),

Ux + Uy + Uz ≡ −(q2 − 2q − 2) (mod E(n)).

Lemma 5.6. Let p � A be an arbitrary prime. Then E(p) = I(p) and Up − 1 ∈ E(p).

Proof. In the notation of Section 8, the cuspidal divisor group C(p) is generated by c0 =
[0] − [∞], which has order N(p) given in (8.2). By Theorem 8.9, T(p)/E(p) ∼= Z/N(p)Z. 
Since c0 is Eisenstein, we can repeat the argument in Lemma 5.5 to get the equality 
E(p) = I(p). Since Wp = −Up acts as −1 on c0, we have Up − 1 ∈ I(p). �



422 M. Papikian, F.-T. Wei / Journal of Number Theory 161 (2016) 384–434
Remark 5.7. The previous lemma implies that we could have defined E(p) to be the ideal 
generated by Tq−(|q| +1) for all q �= p, and Up−1. This is the exact analogue of Mazur’s 
definition of the Eisenstein ideal in [19].

6. Integral version of a theorem of Atkin and Lehner

Let n = T (T − 1)(T − c), where c ∈ Fq \ {0, 1}. We proved that T(n)/E(n) is not a 
cyclic group, for example, it contains three distinct subgroups of order q+1. On the other 
hand, by Lemma 2.9, T(n)0/E(n)0 is cyclic. Hence the index [T(n) : T(n)0] is finite but 
strictly larger than 1. In this subsection we deduce some information about this index as 
a consequence of a general result which can be considered as a certain integral version 
of Theorem 1 in [1].

Following [21], we say that R is a coefficient ring if p ∈ R× and R is a quotient of 
a discrete valuation ring which contains p-th roots of unity. As is observed in [21], the 
theory of Fourier expansions discussed in Section 2.4 works over any coefficient ring.

Let m ∈ A be a non-zero ideal and denote

Bm =
(
m 0
0 1

)
.

It is easy to check that for any f ∈ H(n, R), we have f |Bm ∈ H(nm, R).

Theorem 6.1. Let n �A be a non-zero ideal. Suppose there are three distinct prime ideals 
p1, p2, p3 of A which divide n but are coprime to n/(p1p2p3). Let f ∈ H(n, R), where 
R is a coefficient ring. Suppose f∗(m) = 0 unless pi|m for some i = 1, 2, 3. Then there 
exist fi ∈ H(n/pi, R), 1 ≤ i ≤ 3, such that

sp1,p2sp1,p3sp2,p3 · f = f1|Bp1 + f2|Bp2 + f3|Bp3 ,

where spi,pj
= gcd(|pi| + 1, |pj | + 1).

Proof. Let

φ3 := |p3|−1f |Up3 ∈ H(n, R).

Using Lemma 2.17 and Lemma 2.22 in [27], we have

(φ3|Bp3)∗(m) =
{

0 if p3 � m;
f∗(m) if p3 | m.

Therefore (f − (φ3|Bp3))
∗ (m) = 0 unless p1 or p2 divides m. By Lemma 2.23 and Theo-

rem 2.24 in [27], there exist φ1 ∈ H(np3/p1, R) and φ2 ∈ H(np3/p2, R) such that

sp1,p2 (f − (φ3|Bp3)) = φ1|Bp1 + φ2|Bp2 .
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Next, by Proposition 2.12 and Lemma 2.21 in [27], φ3|Bp3 |(Wp3 + Up3) = (|p3| + 1)φ3. 
Hence,

sp1,p2φ3|Bp3 |(Wp3 + Up3) = (|p3| + 1)sp1,p2φ3

= sp1,p2f
′ − φ′

1|Bp1 − φ′
2|Bp2 ,

where

f ′ = f |(Up3 + Wp3) ∈ H(n/p3, R) (cf. Lemma 2.6),

φ′
1 = φ1|(Up3 + Wp3) ∈ H(n/p1, R), φ′

2 = φ2|(Up3 + Wp3) ∈ H(n/p2, R).

Let φ′
3 := sp1,p2f

′. Then

f ′′ := sp1,p2(|p3| + 1)f − sp1,p2φ
′
3|Bp3

= ((|p3| + 1)φ1 − φ′
1|Bp3)|Bp1 + ((|p3| + 1)φ2 − φ′

2|Bp3)|Bp2 .

This implies that f ′′ ∈ H(n, R) has (f ′′)∗(m) = 0 unless p1 or p2 divides m. Therefore, 
applying Theorem 2.24 in [27] one more time, we deduce that there exist φ′′

1 ∈ H(n/p1, R)
and φ′′

2 ∈ H(n/p2, R) such that sp1,p2f
′′ = φ′′

1 |Bp1 + φ′′
2 |Bp2 . If we denote φ′′

3 = s2
p1,p2

φ′
3, 

then we proved

s2
p1,p2

(|p3| + 1)f = φ′′
1 |Bp1 + φ′′

2 |Bp2 + φ′′
3 |Bp3 .

We can interchange the roles of the primes p1, p2, p3 and repeat the same argument 
to conclude that there exist fi ∈ H(n/pi, R), 1 ≤ i ≤ 3, such that

sf = f1|Bp1 + f2|Bp2 + f3|Bp3 ,

where

s = gcd
(
s2
p1,p2

(|p3| + 1), s2
p1,p3

(|p2| + 1), s2
p2,p3

(|p1| + 1)
)
.

Finally, by Lemma 6.2, s = sp1,p2sp1,p3sp2,p3 . �
Lemma 6.2. Let m1, m2, m3 be positive integers. Put si,j = gcd(mi, mj) for 1 ≤ i <
j ≤ 3. Then

gcd(s2
1,2m3, s

2
1,3m2, s

2
2,3m1) = s1,2s1,3s2,3.

Proof. Let p be an arbitrary prime number. Let pi, pj , pk be the largest powers of p
dividing m1, m2, m3, respectively. We can assume without loss of generality that i ≤
j ≤ k. Then the largest power of p dividing s1,2s1,3s2,3 is pn, where n = i + i +j = 2i +j. 



424 M. Papikian, F.-T. Wei / Journal of Number Theory 161 (2016) 384–434
On the other hand, the largest power of p dividing gcd(s2
1,2m3, s2

1,3m2, s2
2,3m1) is pn′ , 

where

n′ = min(2i + k, 2i + j, 2j + i) = 2i + j = n. �
Corollary 6.3. Assume n = xyz, where x, y, z � A are distinct primes of degree 1. If a 
prime number � divides the index [T(n) : T(n)0], then � divides q(q+1). Conversely, any 
prime dividing q + 1 also divides [T(n) : T(n)0].

Proof. Assume � � q(q + 1). Consider the F�-linear map

H00(n,F�) → Hom(T(n)0 ⊗ F�,F�)

obtained from the pairing (4.3). If � divides the index [T(n) : T(n)0], then the kernel 
of the above map is non-zero. This means that there is 0 �= f ∈ H00(n, F�) such that 
f∗(m) = 0 unless x, y, or z divides m. Applying Theorem 6.1, we can write

f = f1|Bx + f2|By + f3|Bz

for some f1 ∈ H(xy, F�), f2 ∈ H(xz, F�), f3 ∈ H(yz, F�). Moreover, it is not hard to see 
from the construction of f1, f2, f3 in the proofs of Theorem 6.1 and [27, Thm. 2.24] that 
we can choose these harmonic cochains to be from the H00 part of their correspond-
ing spaces. But H0(n′, Z) = 0 for any deg(n′) = 2, which implies that f must be 0, 
a contradiction.

To prove the second statement, let � be a prime not dividing [T(n) : T(n)0]. Then 
T(n) ⊗F� = T(n)0 ⊗F�. This implies that (T(n)/E(n)) ⊗F� is cyclic. On the other hand, 
if � | (q + 1), then (T(n)/E(n)) ⊗ F�

∼= F� × F� × F� by Theorem 5.1. �
Remark 6.4. The harmonic cochains f1, f2, f3 in Theorem 6.1 are not necessarily unique. 
For example, for distinct x, y, z of degree 1

(Ez −Eyz)|Bx − (Ez − Exz)|By − (Ex −Ey)|Bz = 0,

where Em ∈ H(m, C) are the Eisenstein series normalized so that the first Fourier coef-
ficient is 1.

7. The rational torsion subgroup

Let n �A be a non-zero ideal and J := J0(n). By the Lang–Néron theorem (see [3]), the 
group of F -rational points of J is finitely generated, in particular, its torsion subgroup 
T (n) := J(F )tor is finite. Corollary 3.3 and Lemma 3.5 imply that C(n) ⊆ T (n) when 
deg(n) = 3. (Also, in this case the rank of J(F ) is zero, so J(F ) = T (n).)



M. Papikian, F.-T. Wei / Journal of Number Theory 161 (2016) 384–434 425
For a prime number �, denote by T (n)� the �-primary subgroup of T (n). If � �= p, then 
the Eichler–Shimura congruence relation can be used to show that T (n)� is Eisenstein; cf. 
[21, Lem. 7.16]. This implies that if (� �= p and T (n)� �= 0), then � is an Eisenstein prime 
number. (As far as we know, it is not known in general whether T (n)p is Eisenstein.)

Theorem 7.1. If n = T 3, then T (n) = C(n) ∼= Z/q2Z.

Proof. Since T(n)/E(n) ∼= Z/q2Z, the only Eisenstein prime number is p, so T (n)� = 0
if � �= p. We just need to prove that G := T (n)p = C(n). Let J denote the Néron model 
of J over O∞. By the extension property for étale points of Néron models, G extends to 
a finite flat subgroup scheme G of J . Consider the connected-étale sequence of G:

0 → G0 → G → Get → 0.

The formation of this sequence is compatible with any local base change to another 
henselian local ring, so the special fibre G0

F∞
is a subgroup scheme of J 0

F∞
. Since J 0

F∞
is 

isomorphic to a product of copies of the multiplicative group Gm,F∞, whose p-primary 
torsion is connected, the scheme-theoretic intersection GF∞∩J 0

F∞
is G0

F∞
, and the Cartier 

dual of G0
F∞

is étale. On the other hand, the Cartier dual of G is connected, since G is a 
constant p-primary group scheme. This implies that the Cartier dual of G0 has connected 
generic fibre but étale closed fibre, which is not possible unless G0 is trivial. This implies 
that the canonical specialization map

℘∞ : T (n)p −→ Φ∞

is injective. But, as we know, the restriction of ℘∞ to C(n)p is surjective, so C(n)p =
T (n)p. �
Example 7.2. Assume q = 2. In this case X0(T 3) is an elliptic curve given by the Weier-
strass equation

E : Y 2 + TXY = X3 + T 2,

see [16, (9.7.3)]. One easily checks that E(F ) ∼= Z/4Z, generated by (T, T ). This agrees 
with Theorem 7.1.

Theorem 7.3. If n = T 2(T − 1), then T (n) = C(n) ∼= Z/q(q2 − 1)Z.

Proof. As in the proof of Theorem 7.1 we have an injection T (n)p ↪→ Φ∞. Since we know 
that ℘∞ : C(n) → Φ∞ is an isomorphism, C(n)p = T (n)p. Now it is enough to show that 
for any prime � �= p,

#T (n)� ≤ #C(n)� = #(Z/(q2 − 1)Z)�.
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The theory of Chapters 12 and 13 in [17] applied in the function field setting implies 
that X0(n) has a model over OT whose special fibre consists of three projective lines 
intersecting transversally in one point (this point corresponds to the supersingular Drin-
feld A-module of rank 2 over FT ). Two of these projective lines are reduced and the third 
one has multiplicity q − 1.

Adapting the methods of [5] and [18] to this special situation, one shows that the 
reduction of J at T is purely additive, i.e., J 0

FT
is a unipotent linear group, and #ΦT =

q2−1. Since a unipotent group has no points of order � �= p, the Néron mapping property 
implies that T (n)� maps injectively into ΦT . Therefore,

#T (n)� ≤ #(ΦT )� = #(Z/(q2 − 1)Z)�,

as was required to show. �
Remark 7.4. The previous proof is not very satisfactory since the analogues of the results 
of [17,18,5] for Drinfeld modular curves have not yet appeared in literature.

Example 7.5. Assume q = 2. In this case X0(T 2(T − 1)) is an elliptic curve given by the 
Weierstrass equation

E : Y 2 + TXY + TY = X3,

see [16, (9.7.2)]. It is easy to check by elementary methods that E(F ) ∼= Z/6Z, generated 
by (T, T ). Moreover, using the Tate algorithm, one computes that the special fibre of E
at T is of Kodaira type IV. This means that the special fibre of the minimal regular model 
of E over OT consists of three projective lines intersecting in one point, the reduction of 
E at T is additive, and ΦT

∼= Z/3Z. This agrees with Theorem 7.3 and the claims in its 
proof.

8. Characteristic as an Eisenstein prime number

Theorem 8.1. Assume n = p2m, where p � A is prime and m � A is a proper non-zero 
ideal. (We do not assume m to be coprime to p.) Then p divides #T(n)/E(n), and hence 
also #T(n)0/E(n)0.

We will prove the theorem in several steps. We start with a simple observation. Con-
sider the following condition:

(�) There exists c ∈ C(n) which is Eisenstein and has order divisible by p.

Lemma 8.2. If (�) holds, then p divides #T(n)/E(n).
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Proof. By considering an appropriate multiple of c, we can assume c has order p. Suppose 
on the contrary that p is invertible in T(n)/E(n). Then we can find t ∈ T(n) and e ∈ E(n)
such that 1 = pt +e. Since c is annihilated by e and p, we get that 1 ∈ T(n) annihilates c. 
This is a contradiction since the action of 1 ∈ T(n) is the same as the action of 1 ∈ Z ⊂
T(n). �

Let [0] and [∞] be the cusps of X0(n) corresponding to 
(

0
1

)
and 

(
1
0

)
, respectively. 

(For n of degree 3 this slightly differs from our earlier notation, where we were denoting 
[0] by [1].) These cusps are always rational, so c0 := [0] − [∞] in J0(n) is an F -rational 
torsion point.

Lemma 8.3. The cuspidal divisor c0 is Eisenstein. If the level n is not square-free and is 
divisible by a prime q �A such that n/q is coprime to q, then the order of c0 is divisible 
by p. In particular, (�) holds for n.

Proof. Any upper-triangular matrix in GL2(F ) fixes 
(

1
0

)
∈ P1(F ). Thus, Tp with 

p � n, as a correspondence on X0(n), satisfies Tp[∞] = (|p| + 1)[∞]. The Atkin–Lehner 
involution Wn interchanges [0] and [∞], and commutes with Tp, so

Tp[0] = TpWn[∞] = WnTp[∞] = (|p| + 1)Wn[∞] = (|p| + 1)[0].

This shows that c0 is Eisenstein.
Assume q is a prime strictly dividing n. As follows from Theorem 5.1 and Lemma 5.2 

in [27], the special fibre of the minimal regular model of X0(n) over Oq is geometrically 
reduced and consists of two geometrically irreducible components Z, Z ′, both isomorphic 
to X0(n/q)Fq

, intersecting transversally in a certain number of points. Moreover, Z, Z ′

might also be joined by a certain number of chains of projective lines of length q + 1 as 
in Fig. 2. (The number of points in the intersection of Z and Z ′, as well as the number of 
chains of projective lines, can be deduced from [27, Lem. 5.2].) In other words, the special 
fibre X0(n)Fq

of this model looks like the figures in Section 3. A calculation similar to 

the calculation in Section 3.4 shows that the image of multiplication Φq
q+1−−−→ Φq lies in 

the subgroup of Φq generated by z := Z − Z ′. Thus, we have an equality of p-primary 
subgroups (Φq)p = 〈z〉p. If n/q is not square-free, then (Φq)p �= 0; this follows from 
Theorem 5.3 in [27], which gives a complete description of Φq as an abelian group.

Now consider the image of c0 under the canonical specialization ℘q. The reductions 
of the cusps [0], [∞] lie on the components Z, Z ′, away from the singular points of 
X0(n)Fq

. This is a consequence of the reduction properties of the cusps (cf. [17, Ch. 10]). 
The Atkin–Lehner involution Wq interchanges the components Z and Z ′, and Wn/q maps 
each component to itself; this follows from the modular interpretation of X0(n)Fq

. Assume 
that we have labelled these two components so that [∞] ∈ Z ′. Since Wn = WqWn/q and 
Wn[∞] = [0], we conclude that the reduction of [0] lies on Z. Hence ℘q(c0) = z. But 
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Fig. 9. Cusps of X0(p3).

from the previous paragraph we know that if n/q is not square-free, then p divides the 
order of z. This implies that p also divides the order of c0. �
Lemma 8.4. Assume n = p3, where p � A is prime. There exists c ∈ C(n) satisfying (�). 
Moreover, c can be chosen to be rational over F .

Proof. Consider the functorial morphism X0(p3) → X0(p2) → X0(p) → X0(1). The 
cusps of these curves and the ramification indices under the morphisms are given in 
Fig. 9, where

m = |p| − 1
q − 1 .

The ramification indices can be computed using [12, (3.10)]. The cusps z̃1, · · · , ̃zm are 

given by 
(
u

p

)
, u is monic of degree < deg(p); i.e., they have height 1 in the terminology 

of [12]. This implies that z̃1, · · · , ̃zm are conjugate over F ; see Lemma 3.1. (The cusps 
ω1, · · · , ωm are also conjugate over F , so only the cusps [0] and [∞] of X0(p3) are rational 
over F , unless deg(p) = 1.)

Consider

c :=
m∑
i=1

(z̃i − [0]) ∈ C(p3).

Note that the cusps appearing in c are exactly the ones which totally ramify under f̃ . 
From the previous discussion we see that c is rational over F . Let q �= p be a prime. Any 

matrix of the form 
(
q 0
0 1

)
or 
(

1 s

0 q

)
, s ∈ A, preserves the heights of the cusps, and 

induces a permutation of the set {z̃1, · · · , ̃zm}. This implies that Tqc = (|q| + 1)c, so c is 
Eisenstein. It remains to show that the order of c is divisible by p.

Let Δ(z), z ∈ Ω, be the Drinfeld discriminant function. This is a C∞-valued modular 
form for GL2(A) of weight q2 − 1 and type 0; cf. [12]. For a ∈ A, denote Δa(z) = Δ(az). 
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The functions Δ/Δp and Δp/Δp2 are Γ0(p3) invariant, so can be considered as rational 
functions on X0(p3)C∞ . One computes that

div
((

Δp

Δ

)|p|
·
(

Δp

Δp2

))
= (|p|2 − 1)(q − 1)|p| · c. (8.1)

If the order of c is not divisible by p, then the order of c divides (|p|2 − 1)(q − 1). This 
implies that there exists a function Θ ∈ C∞(X0(p3)) such that div(Θ) = (|p|2−1)(q−1)c. 
Comparing with (8.1), we get

Θ|p| = α

(
Δp

Δ

)|p|
·
(

Δp

Δp2

)
for some α ∈ C×

∞.

Therefore, Δp

Δ
p2

(z) = Δ
Δp

(pz) is a |p|-th power in O(Ω)× (= the group of nowhere van-
ishing holomorphic functions on Ω). But according to [12, Cor. 3.5] the largest integer 
r such that Δ/Δa has an r-th root in O(Ω)× divides (q − 1)(q2 − 1). This leads to a 
contradiction. �
Lemma 8.5. Let m, n � A. Assume m divides n. If there is c ∈ C(m) satisfying (�), then 
there is c′ ∈ C(n) satisfying (�). Moreover, if c is F -rational, then c′ also can be chosen 
to be F -rational.

Proof. By Picard functoriality, the morphism f : X0(n) → X0(m) in (2.7) induces a 
homomorphism f∗ : J0(m) → J0(n) defined over F . Moreover, f∗ is compatible with 
the action of Tp for any prime p � n, and restricts to a homomorphism C(m) → C(n). 
Therefore, it is enough to show that the kernel of f∗ does not have any torsion points of 
order p.

Let Γ := Γ0(m) and Δ := Γ0(n). Denote by Γab the abelianization of Γ and let 
Γ := Γab/(Γab)tor be the maximal abelian torsion-free quotient of Γ. The inclusion Δ ↪→ Γ
induces a homomorphism V : Γ → Δ, the transfer map; see [16, p. 71]. First, we note 
that the homomorphism V : Γ → Δ is injective with torsion-free cokernel. Indeed, by 
[16, p. 72], there is a commutative diagram

Γ
jΓ

V

H0(m,Z)

Δ
jΔ H0(n,Z)

where the right vertical map is the natural injection. This last homomorphism obviously 
has torsion-free cokernel. Since by [15] jΓ and jΔ are isomorphisms, the claim follows.
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Next, by the results in Sections 6 and 7 of [16], there is a commutative diagram

0 Γ

V

Hom(Γ,C×
∞)

φ

J0(m)

f∗

0

0 Δ Hom(Δ,C×
∞) J0(n) 0.

Since the cokernel of V is a free Z-module, ker(f∗) = ker(φ). Finally, φ is a homomor-
phism of tori in characteristic p, so the p-primary part of its kernel is connected. �
Proof of Theorem 8.1. Assume the level n is divisible by p2 for some prime p, but n �= p2. 
Thanks to Lemma 8.2 and Lemma 8.5, it is enough to show that (�) holds for n = p3

and n = p2q, where q �= p is prime. This follows from Lemma 8.3 and Lemma 8.4. �
Corollary 8.6. Assume n is divisible by p2 for some prime p �A, but n �= p2. Then there 
is a cuspidal divisor of order divisible by p which is Eisenstein and rational over F . In 
particular, C(n)(F )p �= 0 and T (n)p �= 0.

The only non-square-free level excluded from Theorem 8.1 is n = p2. We will show 
that this is a necessary restriction. First, we show that, in contrast to Corollary 8.6, 
C(p2) does not have any F -rational points of order p.

Lemma 8.7. C(p2)(F )p = 0.

Proof. With notation as in Fig. 9, let ci := zi − [∞], 1 ≤ i ≤ m. As in the proof 
of Lemma 8.4, the cusps z1, . . . , zm are conjugate over F , so C(p2)(F ) is generated by 
c0 = [0] − [∞] and c :=

∑m
i=1(zi − [∞]). By [12, Cor. 3.25], the order of c0 is

M(p) =
{ |p|2−1

q2−1 if q is even or deg(p) is odd;
|p|2−1
2(q2−1) otherwise.

Thus, it is enough to show that the order of c is coprime to p. By [12, Cor. 3.23], the 
cuspidal divisor ([0] − [∞]) ∈ C(p) has order

N(p) =
{ |p|−1

q−1 if deg(p) is odd;
|p|−1
q2−1 if deg(p) is even.

(8.2)

On the other hand, f∗([0] − [∞]) = |p|c0 − (q− 1)c. Hence M(p)N(p)(q− 1)c = 0. Since 
M(p)N(p)(q − 1) is coprime to p, the claim follows. �
Example 8.8. Assume q = 2, p = T 2 + T + 1, and n = p2. The genus of X0(n) is 2. To 
simplify the notation, we will write C for C(n) and T for T(n). The cusps of X0(n) are 
[0], [∞], and
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Fig. 10. Γ0((T 2 + T + 1)2) \ T .

z1 =
(

1
p

)
, z2 =

(
T

p

)
, z3 =

(
1 + T

p

)
.

In the notation of Lemma 8.7, C is generated by c0, c1, c2, c3. The divisor [0] − [∞] is 
principal on X0(p), since X0(p) has genus 0. Therefore

0 = f∗([0] − [∞]) = 4c0 − (c1 + c2 + c3).

On the other hand, the order of c0 is 5, so the previous relation implies that c1+c2+c3 =
−c0. Thus,

C(F ) = 〈c0〉 ∼= Z/5Z.

To compute the whole group C one could use the fact that in this case X0(n) is 
hyperelliptic, and the Atkin–Lehner involution Wn is the hyperelliptic involution; see [30]. 
Wn fixes the cusps z1, z2, z3, and interchanges [0] ↔ [∞]. Arguing as in Section 3, i.e., 
pulling back from X0(n)/Wn

∼= P1
F different principal divisors supported on the images 

of the cusps, one obtains the relations

c0 = 2c1 = 2c2 = 2c3.

This implies that C is a quotient of Z/5Z × Z/2Z × Z/2Z. Next, one can compute the 
quotient graph Γ0(n) \T using the algorithm in [15]. The result is given in Fig. 10. The 
dashed edges indicate the half-lines corresponding to the cusps, and a∞, d∞ correspond 
to the same elements of GL2(F∞) as in Fig. 5. From this one easily computes, as in 
Section 3, that Φ∞ ∼= Z/5Z × Z/2Z × Z/2Z and ℘∞ : C → Φ∞ is surjective. Therefore

C
℘∞∼= Φ∞ ∼= Z/5Z× Z/2Z× Z/2Z.

In particular, Cp ∼= Z/2Z × Z/2Z is non-trivial, although C(F )p = 0.
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Next, we consider the Eisenstein ideal. Calculations similar to those in Section 4.4
show that

T = T0 ∼= ZTT ⊕ ZTT+1,

and

TT + TT+1 = 1.

This implies T/E ∼= Z/NZ is cyclic, and N divides 5 (as TT + TT+1 = 1 modulo E
becomes 3 + 3 = 1). Since c0 is Eisenstein of order 5, we get

T/E ∼= Z/5Z.

Hence C[E] ⊆ C[5], and we get

C[E] = 〈c0〉 = C(F ).

Since ℘∞ is T-equivariant, we also get

Φ∞[E] ∼= C[E] ∼= T/E ∼= Z/5Z.

Hence neither Φ∞ nor C is Eisenstein, and p is not an Eisenstein prime number.
Finally, consider the rational torsion subgroup T of J := J0(n). We apply the argu-

ment in the proof of Theorem 7.1, which shows that there is an injection T ↪→ J (F∞). 
Since J 0 is a split torus, J 0(F2) ∼= F×

2 × F×
2 = 1. Hence T ↪→ Φ∞. This shows that if 

T �= C(F ), then J has a rational 2-torsion point. But J is 2-dimensional and the char-
acteristic is 2, so J [2] ⊆ Z/2Z × Z/2Z. Since C[2] ∼= Z/2Z × Z/2Z, we get J [2] = C[2]. 
This is a contradiction as C(F )[2] = 0. Hence

T = C(F ) ∼= Z/5Z.

Theorem 8.9. Let p � A be prime. Then

T(p)/E(p) ∼= Φ∞[E(p)] ∼= Z/N(p)Z,

where N(p) is defined in (8.2). In particular, p is not an Eisenstein prime for level p.

Proof. By [22, Thm. 1.2],

T(p)0/E(p)0 ∼= Z/N(p)Z. (8.3)

(Note that what we denote by T(p)0 in this paper is denoted by T(p) in [22].) The 
perfectness of the pairing (4.3) after inverting p, or rather the argument used in the 
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proof of [9, Thm. 3.17] and Corollary 6.3, implies that

T(p) ⊗ Z[p−1] = T(p)0 ⊗ Z[p−1]. (8.4)

Since p does not divide #T(p)0/E(p)0, by Lemma 2.9, p does not divide #T(p)/E(p)
either. Combining this with (8.3) and (8.4), we get T(p)/E(p) ∼= Z/N(p)Z.

Since p is not an Eisenstein prime number, Φ∞ cannot have Eisenstein elements 
of order divisible by p. Thus, after tensoring (2.10) with Z[p−1], and again using the 
perfectness of (4.3) after inverting p, we get a surjection T(p)/E(p) → Φ∞[E(p)]. It 
remains to show that Φ∞[E(p)] ⊇ Z/N(p)Z.

Let J [E(p)] denote J0(p)(F̄ )[E(p)], i.e., the subgroup of the Jacobian annihilated by 
E(p). It is clear from the definitions that J [E(p)] = J [E(p)0] and Φ∞[E(p)] = Φ∞[E(p)0], 
where on the right-hand side we consider J0(p)(F̄ ) and Φ∞ as T(p)0-modules. By [24, 
Thm. 2.5], J [E(p)0] is unramified over F , and, as an abelian group, it is isomorphic to 
Z/N(p)Z × Z/N(p)Z. If we denote by J the Néron model of J over O∞, then we get

J [E(p)0] ∼= JF∞ [E(p)0] ∼= Z/N(p)Z× Z/N(p)Z.

It can be deduced from [21, p. 194] that J 0
F∞

[E(p)0] ∼= Z/N(p)Z (in fact, this coincides 
with the image of the Shimura subgroup of J0(p)). This last isomorphism, as well as 
[24, Thm. 2.5] used earlier, rely on the fact that the completion of T(p)0 at any prime 
ideal in the support of E(p)0 is Gorenstein – a rather deep property of the Hecke algebra 
established in [21]. Since Φ∞ ∼= JF∞/J 0

F∞
, we conclude that Z/N(p)Z ⊆ Φ∞[E(p)0]. �

Example 8.10. Let q = 2 and p be either T 4 + T 3 + 1 or T 4 + T + 1, which both are 
irreducible over F2. In both cases, rankZ T(p) = 4, T(p)/E(p) ∼= Z/5Z, C(p) ∼= Z/5Z, and 
℘∞ : C(p) → Φ∞ is injective. However, Φ∞ ∼= Z/2Z × Z/80Z for p = T 4 + T 3 + 1 and 
Φ∞ ∼= Z/45Z for p = T 4 + T + 1; see [11, (5.3.3)]. Theorem 8.9 shows that in both cases 
Φ∞ is not Eisenstein, and Φ∞[E(p)] coincides with C(p).
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