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bound for the number of representations of a positive integer 
n into the form �√a1� + �√a2� + . . . + �√ak�, where k and 
a1, a2, . . . , ak are positive integers. We also give an asymptotic 
formula for this number as n → ∞.
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1. Introduction

The number of representations of a positive integer n of the form �√a1� + �√a2� +
· · ·+ �√ak� with positive integers k and a1 ≤ a2 ≤ · · · ≤ ak was introduced by Balasub-
ramanian and Luca in [1]. In their paper, they investigated the size of the set
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F(x) = {Δ(n) ≤ x},

where Δ(n) is the number of unordered factorizations of the positive integer n into 
factors > 1. They proved that for all x ≥ 1,

|F(x)| ≤ exp
(
9(log x)2/3

)
. (1)

Their proof of inequality (1) however depended on the following bound, which was also 
proved in the same paper:

q(n) ≤ exp
(
5n2/3

)
, (2)

where q(n) denotes the number of representations of n of the form

n = �√a1� + �√a2� + . . . + �√ak�,

where k and a1 ≤ a2 ≤ · · · ≤ ak are positive integers.
Chen and Li [2] found a gap in the proof of (2). They provided an alternative proof 

that gives a weaker upper bound as well as a lower bound for q(n). Their result is the 
following:

exp
(
c1n

2/3
)
≤ q(n) ≤ exp

(
c2n

2/3
)
,

where c1 ≈ 5.385 ×10−24 and c2 ≈ 22.962. In this paper, we use the saddle point method 
to obtain the following explicit upper bound on q(n):

Theorem 1. For n ≥ 50 we have

log q(n) ≤ 6ζ(3)1/3

42/3 n2/3
(

1 + 3.2
3
√
n + 2

)
, (3)

with

6ζ(3)1/3

42/3 ≈ 2.532.

The condition n ≥ 50 is only a technicality that we assume to obtain a relatively 
small constant in the second term of the bound in (3). For n ≤ 50, Fig. 1 shows that an 
even better upper bound holds (in Fig. 1 the curve represents the graph of the function 

x �→ 6ζ(3)1/3

42/3 x2/3 and the dotted line represents the graph of the sequence of general term 
log q(n)).

Note that if n ≥ 50 then

6ζ(3)1/3
2/3

(
1 + 3.2

3
√

)
≥ 6ζ(3)1/3

2/3

(
1 + 3.2

3
√

)
≈ 4.7,
4 n + 2 4 52
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Fig. 1. Graphs of log q(n) and x �→ 6ζ(3)1/3

42/3 x2/3.

so Theorem 1 and Fig. 1 show that the Balasubramanian–Luca bound (2) is true for all 
n ≥ 1.

Fig. 1 seems to suggest that 6ζ(3)
1/3

42/3 n2/3 is an upper bound for log q(n). Unfortunately, 
this is not the case for large n as we can see in the following asymptotic formula:

Theorem 2. As n → ∞, we have

q(n) ∼ Kn−8/9 exp
(

6ζ(3)1/3

42/3 n2/3 + ζ(2)
(4ζ(3))1/3

n1/3
)

where

K = (4ζ(3))7/18

πA2
√

12
exp

(
4ζ(3) − ζ(2)2

24ζ(3)

)
≈ 0.110678,

and A is the Glaisher–Kinkelin constant [3, Section 2.15].

The saddle-point method is a standard technique to obtain asymptotic results for 
the number of partitions of positive integers. Here, we are interested in counting the 
number of partitions of n into members of the sequence �

√
1�, �

√
2�, �

√
3�, . . . . There is 

a general scheme due to Meinardus [6] that gives an asymptotic formula for the number 
of partitions of n into members of a given sequence of positive integers Λ, provided that Λ
satisfies certain properties known as the Meinardus’ scheme. However, this scheme does 
not apply to our case since the Dirichlet series associated to our sequence has multiple 
poles on the positive real axis: one can show that the Dirichlet series associated to the 
integer part of the square-root sequence is

D(s) =
∞∑ 2k + 1

ks
.

k=1
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The function D(s) is analytic in the half-plane Re(s) > 2. Moreover, we have D(s) =
2ζ(s −1) +ζ(s), where ζ(s) is the Riemann zeta function. Hence, D(s) admits an analytic 
continuation to the entire complex plane with simple poles at s = 2 and s = 1. In order 
to apply the Meinardus’ result directly, it is required that the Dirichlet series admits only 
one simple pole in the half-plane Re(s) > 0. There is a generalization of the Meinardus’ 
result that can be applied to our case which has been given in [5]. However, the coefficients 
in the asymptotic formula of [5] were only given implicitly and have never been computed. 
Since, we are also interested in obtaining an explicit bound, we will present full proofs 
of our theorems in this paper.

2. Estimates of sums via Mellin transform

Consider the following function

f(x) = −
∞∑
k=1

(2k + 1) log(1 − e−kx).

We use Mellin transform to estimate f (l)(x) for l = 0, 1, 2, 3, when x is a small positive 
number, where f (l) is the l-th derivative of f . For a more elaborate account of the Mellin 
transform technique, the reader can consult [4]. We begin with f(x). Its Mellin transform 
is

Φ0(s) = ζ(s + 1)Γ(s)(2ζ(s− 1) + ζ(s)).

The Mellin inversion formula yields

f(x) = 1
2πi

3+i∞∫
3−i∞

Φ0(s)x−sds.

By shifting the path of integration in the Mellin inversion formula to Re(s) = 0.5, we 
obtain

f(x) = 2ζ(3)x−2 + ζ(2)x−1 + E0(x),

where

E0(x) = 1
2πi

0.5+i∞∫
0.5−i∞

Φ0(s)x−sds.

The first two terms in the above estimate are the contributions of the poles at s = 2
and s = 1 of Φ0(s). Note that we are allowed to shift the path of integration since 
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|Γ(s)| decreases exponentially along any fixed vertical line while |ζ(s)| can grow at most 
polynomially on such lines. Now we estimate the error term E0(x). We have

|E0(x)| ≤ x−1/2 ζ(1.5)
2π

(
2

∞∫
−∞

∣∣∣Γ(0.5 + it)ζ(−0.5 + it)
∣∣∣dt +

∞∫
−∞

∣∣∣Γ(0.5 + it)ζ(0.5 + it)
∣∣∣dt).

The integrals on the right hand side are both convergent, so |E0(x)| is bounded by 
Cx−1/2, where C is a positive constant. To estimate C, we make use of the following 
bounds:

|Γ(0.5 + it)| =
√

π

cosh(πt) ; (4)

|ζ(0.5 + it)| ≤ 0.732|4.678 + it|1/6 log |4.678 + it|; (5)

|ζ(−0.5 + it)| ≤ ζ(1.5)√
2π3

∣∣∣ sin(−π + 2iπt
4

)
Γ(1.5 + it)

∣∣∣. (6)

Equation (4) is a well-known property of Γ(s) (a consequence of the Euler’s reflection 
formula), inequality (5) can be found in [7], and inequality (6) follows from the functional 
equation of ζ(s). Using these estimates, one can numerically estimate a bound for the 
constant C. We get

|E0(x)| ≤ 2.8x−1/2.

For l = 1, 2, 3, the Mellin transform of f (l)(x) is

Φl(s) := (−1)lζ(s− l + 1)Γ(s)
(
2ζ(s− l − 1) + ζ(s− l)

)
.

We apply the same technique as before: the Mellin inversion formula gives us

f (l)(x) = 1
2πi

l+3+i∞∫
l+3−i∞

Φl(s)x−sds.

We only need to shift the path of integration to Re(s) = 0.5 + l. Hence, for any x > 0
we obtain
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f ′(x) = −4ζ(3)x−3 − ζ(2)x−2 + E1(x) with |E1(x)| ≤ 2.9 x−3/2, (7)

f ′′(x) = 12ζ(3)x−4 + 2ζ(2)x−3 + E2(x) with |E2(x)| ≤ 6.1 x−5/2, (8)

f ′′′(x) = −48ζ(3)x−5 − 6ζ(2)x−4 + E3(x) with |E3(x)| ≤ 19.1 x−7/3. (9)

The upper bounds given for the above error terms are not best possible but they are 
good enough for our purpose.

3. Saddle point method

We consider the generating function

F (z) =
∞∏
k=1

(
1 − zk

)−2k−1
. (10)

One can easily show that for a positive integer n, q(n) is the coefficient of zn in F (z). 
In addition, F (z) is analytic in the disk |z| < 1. Therefore, Cauchy’s integral formula 
yields

q(n) = 1
2πi

∮
|z|=ρ

F (z) dz

zn+1 , (11)

for any positive number ρ < 1. Setting z = e−τ where τ = r + it with r > 0, and 
f(τ) = logF (e−τ ), we deduce that

q(n) = 1
2π

π∫
−π

exp
(
f(r + it) + int

)
dt. (12)

We now estimate the integral on the right hand side of (12): we first choose r to be the 
unique positive solution of the equation

n = −f ′(r) =
∞∑
k=1

k(2k + 1)
ekr − 1 . (13)

The existence and uniqueness of the positive solution r can be verified by noting that the 
series on the right hand side above is a monotone decreasing function of r. In particular, 
we have r = r(n) → 0 as n → ∞. Furthermore, since −f ′(1) = 5.82956 . . . , from now 
on, we will assume that n ≥ 6 so that r < 1 (we need this fact later).

Next, we split the integral in (12) into two parts, namely

I1 = 1
2π

t0∫
exp

(
f(r + it) + int

)
dt,
−t0
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where t0 = r11/6, and I2 = q(n) − I1 so that q(n) = I1 + I2. We estimate I1 and I2
separately.

3.1. Estimate of I1

We can approximate f(r+ it) by means of its Taylor expansion. For |t| ≤ t0, we have

f(r + it) = f(r) + f ′(r)it− f ′′(r) t
2

2 + R(t, r),

where the error term R(t, r) satisfies

|R(t, r)| ≤ r11/2

6 max
|η|≤t0

|f ′′′(r + iη)|.

The following lemma provides an explicit upper bound for the error term R(t, r).

Lemma 3. For 0 < r ≤ 1 and |t| ≤ r11/6 we have

|R(t, r)| ≤ 15
√
r.

Proof. By definition

f ′′′(τ) = −
∞∑
k=1

k3(2k + 1)ekτ (1 + ekτ )
(ekτ − 1)3 .

Hence,

|f ′′′(r + iη)| ≤
∞∑
k=1

k3(2k + 1)ekr(1 + ekr)
|ek(r+iη) − 1|3

≤
∞∑
k=1

k3(2k + 1)ekr(1 + ekr)
(ekr − 1)3 ,

since |ek(r+iη) − 1
∣∣∣ ≥ ekr − 1 for any real number η. Thus,

|f ′′′(r + iη)| ≤ |f ′′′(r)|.

Now by the estimate of f ′′′(r) in (9) we have

|f ′′′(r + iη)| ≤ 48ζ(3)r−5 + 6ζ(2)r−4 + 19.1r−7/3

≤
(
48ζ(3) + 6ζ(2) + 19.1

)
r−5 (r ≤ 1).

Therefore,
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|R(t, r)| ≤ 48ζ(3) + 6ζ(2) + 19.1
6

√
r ≤ 15

√
r,

which completes the proof of the lemma. �
Lemma 4. We have

t0∫
−t0

exp
(
− f ′′(r) t

2

2

)
dt =

√
2π

f ′′(r) + J1(r),

with

|J1(r)| ≤ 0.4 r13/6 exp(−5 r−1/3).

Proof. Note that f ′′(r) is positive when r is positive. So we have

∞∫
−∞

exp
(
− f ′′(r) t

2

2

)
dt =

√
2π

f ′′(r) .

Hence,
∣∣∣∣∣∣

t0∫
−t0

exp
(
− f ′′(r) t

2

2

)
dt−

√
2π

f ′′(r)

∣∣∣∣∣∣ ≤ 2
∞∫

t0

exp
(
− f ′′(r) t

2

2

)
dt

≤ 2
∞∫

t0

exp
(
− t0f

′′(r) t2

)
dt

≤
4 exp

(
− t20f

′′(r)/2
)

t0f ′′(r) . (14)

Since r < 1, using (8) we obtain

f ′′(r) ≥ 12ζ(3)r−4 + 2ζ(2)r−3 − 6.1r−5/2

≥
(
12ζ(3) + 2ζ(2) − 6.1

)
r−4

≥ 10 r−4. (15)

Combining the last inequality (15) with the above upper bound (14) proves the result. �
We are now ready to estimate I1. Recall that

I1 = enr+f(r)

2π

t0∫
exp

(
− f ′′(r) t

2

2 + R(t, r)
)
dt.
−t0
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Applying the bounds in Lemma 3 and Lemma 4, we have

|I1| ≤ exp
(
nr + f(r) + 15

√
r
)(

1√
2πf ′′(r)

+ |J1(r)|
2π

)

≤ exp
(
nr + f(r) + 15

√
r
)(

r2
√

20π
+ |J1(r)|

2π

)
.

Here, we used the lower bound (15) that is only valid for r < 1. By the upper bound 
on |J1| from Lemma 4, and assuming still that r < 1, we finally deduce the following 
estimate for |I1|:

|I1| ≤ 0.13 exp
(
nr + f(r) + 15

√
r
)
. (16)

For r → 0+, one can easily deduce the following asymptotic estimate from Lemma 3 and 
Lemma 4:

I1 = enr+f(r)√
2πf ′′(r)

(
1 + O(

√
r)
)
. (17)

3.2. Estimate of I2

We continue to assume that n ≥ 6 so r < 1. We start with the following lemma.

Lemma 5. For real t with t0 ≤ |t| ≤ π, we have

|F (e−r−it)|
F (e−r) ≤ exp

(
−r−1/3

64

)
.

Proof. In view of (10), we have

|F (e−r−it)|
F (e−r) = expRe

( ∞∑
k=1

(2k + 1)
(

log
(
1 − e−kr

)
− log

(
1 − e−k(r+it)

)))

= exp
(
−

∞∑
k=1

(2k + 1)
( ∞∑

l=1

e−klr

l

(
1 − cos(klt)

)))

≤ exp
(
−

∞∑
k=1

(2k + 1)e−kr
(
1 − cos(kt)

))

≤ exp
(
−2

∞∑
k=1

ke−kr
(
1 − cos(kt)

))
.
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Furthermore, we have

∞∑
k=1

ke−kr
(
1 − cos(kt)

)
= e−r

(1 − e−r)2 − Re
(

e−r−it

(1 − e−r−it)2

)

≥ e−r

(1 − e−r)2 − e−r

|1 − e−r−it|2

≥ 2e−2r(1 − cos t)
(1 − e−r)2(1 − 2e−r cos t + e−2r) .

Since the function r �→ r2e−2r/(1 − e−r)2 is decreasing for r ∈ (0, 1], we get

e−2r

(1 − e−r)2 ≥ e−2

(1 − e−1)2 r
−2.

Moreover, we have

1 − cos t
1 − 2e−r cos t + e−2r = 1

2

(
er − er(1 − e−r)2

1 − 2e−r cos t + e−2r

)
.

So for fixed r, the above term is smallest when cos t is nearest to 1, that is when t = t0. 
In this case (i.e., when t = t0), we have the following bounds:

1 − cos t ≥ min
{

1, 4
π2 t

2
}

= 4
π2 r

11/3,

and

1 − 2e−r cos t + e−2r = |1 − e−r−it|2

≤
(
|r + it|

∞∑
k=1

|r + it|k−1

k!

)2

≤ |r + it|2e2|r+it|

≤ 2e2
√

2r2.

Putting these estimates together, we obtain

∞∑
k=1

ke−kr
(
1 − cos(kt)

)
≥ 4e−2

√
2

(e− 1)2π2 r
−1/3,

which implies
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|F (e−r−it)|
F (e−r) ≤ exp

(
− 8e−2

√
2

(e− 1)2π2 r
−1/3

)
.

This completes the proof since

1
64 ≤ 8e−2

√
2

(e− 1)2π2 ≈ 0.0162. �

We notice from Lemma 5 that for |t| ≥ t0, |F (e−r−it)| is small compared to F (r) as 
r → 0+, so the contribution of I2 to q(n) should also be small. We show that this is 
indeed the case by bounding the ratio |I2|/|I1|. We deduce from the definition of I2 that

|I2| ≤
enr

π

π∫
t0

|F (e−r−it)|dt = enr+f(r)

π

π∫
t0

|F (e−r−it)|
F (e−r) dt.

Hence, Lemma 5 yields

|I2| ≤ exp
(
nr + f(r) − r−1/3

64

)
. (18)

Furthermore, by (17) and (15) we deduce the following bound:

|I2|
|I1|

= O
(
r−2 exp

(
− r−1/3

64

))
(r → 0+). (19)

3.3. Estimates of q(n)

For n ≥ 6 (to guarantee that r < 1), by (16) and (18), we have the following bound:

q(n) ≤ exp
(
nr + f(r) + 15

√
r
)(

0.13 + exp
(
− 15

√
r − r−1/3

64

))
.

The minimum of the function r �→ 15
√
r + r−1/3

64 is obtained in r = 1440−6/5 and equals 
0.477544 . . . > 0.47. Thus,

0.13 + exp
(
− 15

√
r − r−1/3

64

)
≤ 0.13 + e−0.47 < 1.

Therefore,

q(n) ≤ exp
(
nr + f(r) + 15

√
r
)
. (20)
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Furthermore, if n → ∞ (so, r → 0+) then by (19), the ratio |I2|/|I1| tends to zero faster 
than any power of r. Thus, I1 is the main term of q(n) and from (17) we deduce the 
asymptotic formula

q(n) = enr+f(r)√
2πf ′′(r)

(
1 + O(

√
r)
)
, (21)

as n → ∞.
We are now ready to prove our main theorems. In fact, they follow by expressing the 

estimates (20) and (21) in terms of n.

4. Proof of Theorem 1

We make use of the following estimates proved in Section 2:∣∣∣f(r) − 2ζ(3)r−2 − ζ(2)r−1
∣∣∣ ≤ 2.8 r−1/2; (22)∣∣∣f ′(r) + 4ζ(3)r−3 + ζ(2)r−2
∣∣∣ ≤ 2.9 r−3/2. (23)

One can easily check from (13) that r < 0.5 if n ≥ 50. We assume from now on that 
n ≥ 50, therefore that r < 0.5. Using (22), we have

nr + f(r) + 15
√
r ≤ 6ζ(3)r−2 + 2ζ(2)r−1 + 6r−1/2 + 15

√
r

≤ 6ζ(3)r−2 + 2(3
√
r + ζ(2))r−1 + 15

√
r

≤ 6ζ(3)r−2 + 2(2.2 + ζ(2))r−1 + 11. (24)

On the other hand, we also have the lower bound

n ≥ 4ζ(3)r−3 + ζ(2)r−2 − 3r−3/2 ≥ 4ζ(3)r−3 − 2. (25)

In the last inequality above we used the fact that the minimum of the function x �→
ζ(2)x2 − 3x3/2 is at x = 64/(9π4) and its value there is −1.42017 . . . > −2. Thus, 
inequality (25) gives

r−1 ≤
(n + 2

4ζ(3)

)1/3
.

Finally, from inequalities (24) and (25), we get

nr + f(r) + 15
√
r ≤ 6ζ(3)

(n + 2
4ζ(3)

)2/3
+ 2(2.2 + ζ(2))

(n + 2
4ζ(3)

)1/3
+ 11.

The last expression above is smaller than
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6ζ(3)1/3

42/3 n2/3
(

1 + 3.2
(n + 2)1/3

)
,

for n ≥ 50, which via (20) finishes the proof.

5. Proof of Theorem 2

To obtain an asymptotic formula for q(n) as n → ∞, we need more terms in the 
estimates of f(r) and f ′(r) in Section 2. In the integral expressions of f(r) and f ′(r)
via Mellin inversion formula, we can shift their paths of integration further to the left 
to obtain more terms in their asymptotic expansions as r → 0+. Aside from the poles 
that we considered in Section 2, Φ0(s) has a double pole at s = 0, and s = 2, 1, 0 are the 
only singularities of Φ0(s) in the right half-plane Re(s) > −1. In addition, the Laurent 
expansion of Φ0(s) about s = 0 is

D(0)
s2 + D′(0)

s
+ O(1) = −2

3s2 + D′(0)
s

+ O(1),

where D(s) = 2ζ(s − 1) + ζ(s). Therefore, as r → 0+, we have

f(r) = 2ζ(3)r−2 + ζ(2)r−1 + 2
3 log r + D′(0) + O(r). (26)

Similarly, by looking at the contribution of the simple pole s = 1 of Φ1(s) (which is 
the only singularity of Φ1(s), aside from s = 3 and 2, that lies in the right half-plane 
Re(s) > 0), we have the asymptotic estimate for f ′(r) as r → 0+:

f ′(r) = −4ζ(3)r−3 − ζ(2)r−2 + 2
3r

−1 + O(1). (27)

From (13), we immediately obtain an estimate of n in terms of r

n = 4ζ(3)r−3 + ζ(2)r−2 − 2
3r

−1 + O(1).

Since we need r in terms of n instead, we have to invert the above estimate. This is done 
in the next lemma.

Lemma 6. As n → ∞, we have

r−1 = A1n
1/3 + A2 + A3n

−1/3 + O(n−2/3), (28)

where

A1 = (4ζ(3))−1/3, A2 = − ζ(2)
12ζ(3) , and A3 = ζ(2)2 + 8ζ(3)

9(4ζ(3))5/3
.
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Proof. We adopt the following abbreviations in this proof:

x = r−1, a = 4ζ(3), b = ζ(2), and c = −2
3 .

Thus, we have

n = ax3 + bx2 + cx + O(1). (29)

We write

x = A1n
1/3 + A2 + A3n

−1/3 + O(1),

and compute

x2 = A2
1n

2/3 + (2A1A2)n1/3 + (A2
2 + 2A1A3) + O(n−1/3);

x3 = A3
1n + (3A2

1A2)n2/3 + (3A2
1A3 + 3A1A

2
2)n1/3 + O(1).

We get

n = ax3 + bx2 + cx + O(1)

= aA3
1n + (3aA2

1A2 + bA2
1)n2/3

+ (3aA2
1A3 + 3aA1A

2
2 + 2bA1A2 + cA3)n1/3 + O(1).

Identifying coefficients of n, n2/3 and n1/3, we get

aA3
1 = 1

3aA2
1A2 + bA2

1 = 0

3aA2
1A3 + 3aA1A

2
2 + 2bA1A2 + cA1 = 0.

Solving we get

A1 = a−1/3, A2 = − b

3a, A3 = b2 − 3ac
9a5/3 ,

which is what we wanted. �
Recall the asymptotic formula (21) for q(n) that we proved in Section 3:

q(n) = enr+f(r)√
2πf ′′(r)

(
1 + O(

√
r)
)
.

Next, we recall from (8) that f ′′(r) = 12ζ(3)r−4 + O(r−3) as r → 0+. Hence,
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q(n) = r2enr+f(r)√
24πζ(3)

(
1 + O(

√
r)
)
. (30)

Similarly, from (13) together with (26) and (27), we have

nr + f(r) = 6ζ(3)r−2 + 2ζ(2)r−1 + 2
3 log r + D′(0) − 2

3 + O(r). (31)

Applying the estimate (28) for r−1 from Lemma 6, we obtain

r−2 = A2
1n

2/3 + 2A1A2n
1/3 + 2A1A3 + A2

2 + O(n−1/3);

r−1 = A1n
1/3 + A2 + O(n−1/3);

log r = −1
3 log n− logA1 + O(n−1/3).

Finally, (30) together with (31) and the three last estimates above yield

q(n) = Kn−8/9 exp
(
6ζ(3)A2

1n
2/3 + 2A1(ζ(2) + 6ζ(3)A2)n1/3

)(
1 + O(n−1/6)

)
,

where

K =
exp

(
6ζ(3)(2A1A3 + A2

2) + 2ζ(2)A2 − 2
3 logA1 + D′(0) − 2/3

)
A2

1
√

24πζ(3)
.

Replacing A1, A2 and A3 by their definitions in Lemma 6, and noting that

D′(0) = 2ζ ′(−1) + ζ ′(0) = 1
6 − 2 log A − log

√
2π,

where A is the Glaisher–Kinkelin constant, we complete the proof of Theorem 2.
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