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1. Introduction

This paper is devoted to the study of difference operators in arithmetic settings. It 
turns out that difference operators are special cases of so-called twisted derivations. To 
recall, a (σ-)twisted derivation on a k-algebra A, where k is commutative ring with unity, 
is a pair (σ, ∂σ), where σ, ∂σ ∈ Endk(A), such that

∂σ(ab) = ∂σ(a)b + σ(a)∂σ(b), a, b ∈ A.

See sections 2.2, 2.3 and 4.1.1for details. Normally we simply write ∂σ instead of the 
more cumbersome (σ, ∂σ).

The main points of this paper is to give a global version (Theorem 2.8) of a result 
from [HLS06] as well as giving a global definition of hom-Lie algebras. In addition several 
examples indicating the possible uses of twisted derivations and hom-Lie algebras in 
algebraic geometry and number theory are provided in the last section.

1.1. Philosophy

Let me begin by spending a few moments commenting on the philosophy behind the 
above construction in the context of arithmetic.

Assume for simplicity that we are given an abelian group scheme G/R over a ring R. 
Then it can, as in Lie theory, be argued that the Lie algebra to G should be something 
like logG and this should give us derivations on the ring of functions on G. Now, we can 
pretend (with a somewhat clear conscience) that the Taylor expansion of log(σ) is

log(σ) =
∑
i=1

(−1)i+1 (id−σ)i

i
,

and we see that the first-order term 
(
log(σ)

)
1 is id−σ.

Operators on the form a(id−σ) are the most common type of twisted derivations, 
and in fact, it can be shown that on many rings all twisted derivations are of this type 
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(again see sections 2.2 and 2.3). Therefore, as twisted derivations are the most natural 
source of hom-Lie algebras, we notice that it is reasonable to view hom-Lie algebras as 
first-order Lie algebras.

Pushing the analogy with Lie groups and Lie algebras and their relation g = log(G), 
it seems reasonable to view 

(
log(G)

)
1 as the “true” hom-Lie algebra. This is what I refer 

to as equivariant hom-Lie algebras in this paper. This is because the original definition 
of hom-Lie algebra involved only one σ. An unfortunate result of this, and the main 
point where the analogy with Lie theory is flawed, is that the product in the equivariant 
structure is performed “one σ at a time”.

As Lie algebras measure the “infinitesimal” action of the Lie group on some ring, 
hom-Lie algebras can be said to measure the “first-order infinitesimal” effect of the 
action as the following example hopefully illustrates.

Example 1.1. Let k be a complete field (for simplicity) and consider the field k(t) of 
rational functions over k in the variable t. Put σ(t) = εt, ε ∈ k. Then

Dε := (1 − ε)−1(id−σ)

is a twisted derivation on k(t) as is easily seen. The (left) k(t)-module k(t) ·Dε defines a 
hom-Lie algebra (as we will see). Now, as ε → 0 one can argue successfully that Dε → d

dt , 
the ordinary derivation along t. Therefore, choosing ε small enough, σ becomes close to 
the identity and Dε close to a derivation.

Of course, in general such a nice and clear-cut interpretation of something approaching 
zero, is not readily available but the intuition is still very much applicable. Note however, 
that in the p-adic world it is actually possible to make sense of such a limit (called 
“confluence”) between differential operators and difference operators. See A. Pulita’s 
paper [Pul08] for more details on this. In any case, intuitively, it is therefore natural to 
view the structure of hom-Lie algebras (at least the ones coming from twisted derivations) 
as measuring the relative effect of σ ∈ G, in a sense I hope to make sense of in the main 
text.

The subject of difference operators goes back centuries, but fell out of fashion during 
the past mid-century. Happily though, in recent time there has been a renewed interest 
in these kinds of operators, particularly in arithmetic. Let us briefly recall the essence.

Classically one was primarily interested in (algebraic) function fields over C, so we 
will assume this set-up below.

Example 1.2. Of particular interest was (are) the following types of operators. Let R be 
a C-algebra and consider a (not necessarily proper) subring of R((t)). Then

(a) σ(h)(f)(t) := f(t + h), for any h ∈ R,
(i) ∂(f)(t) := (id−σ(h))(f(t)) = f(t) − f(t + h),
(ii) ∂(f)(t) := h−1( id−σ(h)

)
(f(t)) = h−1(f(t) − f(t + h)

)
,

so-called shifted difference operators, and
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(b) σq(f)(t) := f(qt), for any q ∈ R,
(i) ∂(f)(t) := (id−σq)(f(t)) = f(t) − f(qt),
(ii) ∂(f)(t) :=

(
(1 − q)t

)−1( id−σq

)
(f(t)) =

(
(1 − q)t

)−1(
f(t) − f(qt)

)
so-called q-difference operators,

all define σ-derivations.

However, in the 70’s V. Drinfel’d used Frobenius difference operators on global func-
tion fields in connection with what he called elliptic modules (now called Drinfel’d 
modules). Since then a growing interest in difference operators and equations can be 
noted by a simple Google search.

For instance, recently q-difference operators has been studied in arithmetic contexts 
since the mid 90’s, for instance by Y. André, L. Di Vizio [And01,DV02] and the already 
mentioned A. Pulita [Pul08], just to name a few. Also, K. Kedlaya and many others 
(see for instance the recent book [Ked10] by Kedlaya) study difference operators in the 
context of p-adic differential equations (Frobenius structures) and rigid cohomology.

As we indicated above, the underlying reason for the paper [HLS06] (and its an-
tecedents [LS05,LS07]) is the study of the algebraic structure of q-difference operators. 
A standing assumption in these papers is that the ground field is C or a field of charac-
teristic zero, but this is really an unnecessary assumption. More or less every result in 
those papers are true in any characteristic (with the possible exception of characteristic 
2 or 3 at some places).

Therefore, it seems like a very good idea to have a “Lie algebra-like” structure in 
which to study these kind of operators.

1.2. Plan of the paper

Finally, let me briefly lay out the plan for the paper.
The paper starts out with a discussion of twisted derivations and a recollection of the 

main results from [HLS06]. Then in Section 2.3 comes the main theorem of the paper. 
In this section is the reader can also find a number of small examples. Then in Section 3
we define the main algebraic structure, equivariant hom-Lie algebras, as well as stating a 
number of simple base change results. Finally, in Section 4, a number of longer examples 
are provided. For instance, hom-Lie algebras associated with morphisms of schemes (in 
particular G-covers), and hom-Lie algebras of t-motives (where we indicate that these 
can be used in transcendence theory for t-motives).

Notation

The following notation will be adhered to throughout.

– k will denote a commutative, associative integral domain with unity.
– Com(k), Com(B) e.t.c, the category of, commutative, associative k-algebras

(B-algebras, e.t.c) with unity. Morphisms of k-algebras (B-algebras, e.t.c) are al-
ways unital, i.e., φ(1) = 1.
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– A× is the set of units in A (i.e., the set of invertible elements).
– Mod(A), the category of A-modules.
– End(A) := Endk(A), the k-module of k-algebra morphisms on A.
– �a,b,c ( · ) will mean cyclic addition of the expression in bracket.
– Sch, denotes the category of schemes; Sch/S denotes the category of schemes over S

(i.e., the category of S-schemes).
– We always assume that all schemes are Noetherian.
– When writing actions of group elements we will use the notations σ(a) and aσ, 

meaning the same thing: the action of σ on a.
– Sometimes we will use the notation A := Spec(A).

The condition that k must be a domain can certainly be relaxed at several places in the 
presentation. But for simplicity we keep it as a standing assumption.

2. Twisted derivations

2.1. Generalities

Let A ∈ ob(Com(k)) and let σ : A → A be a k-linear map on A. Then a (classical) 
twisted derivation on A is a k-linear map ∂ : A → A satisfying

∂(ab) = ∂(a)b + σ(a)∂(b).

We can generalize this as follows. Let φ ∈ End(A), and let M ∈ ob(Mod(A)). The 
action of a ∈ A on m ∈ M will for now be denoted a.m. Then, a twisted derivation on 
M is k-linear map ∂ : M → M such that

∂(a.m) = ∂A(a).m + σ(a).∂(m), (1)

where, by necessity, ∂A : A → A is a twisted derivation on A (in the first sense). We 
call ∂A the restriction of ∂ to A. Finally, a twisted module derivation is a k-linear map 
∂ : A → M such that

∂(ab) = b.∂(a) + σ(a).∂(b),

for σ ∈ End(A). Normally we will not differentiate between left and right module struc-
tures, but there are times when such a distinction is necessary.

We will sometimes refer to the above as σ-twisted (module) derivations if we want to 
emphasize which σ we refer to.

Let σ ∈ End(A) and denote by σ∗A := A ⊗A,σ A, the extension of scalars along σ. 
This means that we consider A as a left module over itself via σ, i.e., a.b := σ(a)b. The 
right module structure is left unchanged. This can also be viewed as the right A-module 
eA, with left structure given by the commutation rule ae = eσ(a).
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If M is an A-module, we put

σ∗M := σ∗A⊗A M = A⊗A,σ M,

i.e., M is endowed with left module structure a.m := σ(a)m, and once more, the right 
structure is unaffected.

We note that a σ-derivation dσ on A is actually a derivation d : A → σ∗A and 
conversely. Indeed,

d(ab) = d(a)b + a.d(b) = d(a)b + σ(a)d(b).

In the same manner, a σ-derivation dσ : A → M is a derivation d : A → σ∗M , and 
conversely. Therefore, there is a one-to-one correspondence between σ-derivations dσ :
A → M and derivations d : A → σ∗M .

There is another way to connect derivations and σ-derivations as follows. Let J be 
the ideal generated by the set (id−σ)(A) and form the blow-up algebra of J :

BlA(J) :=
∞⊕
i=0

J i/J i+1, J0 := A.

Then

id−σ : BlA(J) → BlA(J)

is in fact a graded derivation. Indeed, observe that σ(J) ⊆ J since

σ(J) = σ
(
A(id−σ)(A)

)
= σ(A)(id−σ)σ(A) ⊆ A(id−σ)(A) = J.

Similarly, we see that σ(J i) ⊆ J i. For x̄ ∈ J i/J i+1 and ȳ ∈ J l/J l+1, we have

(id−σ)(xy) = (id−σ)(x)y + x(id−σ)(y) − (x− σ(x))(y − σ(y))

and (x − σ(x))(y − σ(y)) is in Jj+l+1. It is easily seen that this is independent on the 
lifts of x̄ and ȳ.

This construction globalizes in the evident way.

2.1.1. Difference equations
Recall that a difference equation (or difference module) over A is an A-module M

together with a σ-linear endomorphism σ on M , i.e., σ(am) = σ(a)σ(m). Notice that 
this induces an A-linear homomorphism M → σ∗M .

A σ-difference operator σ induces a σ-connection

∇(σ) : M → σ∗A⊗M, m �→ 1 ⊗ (id−σ)
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and the solution space to the difference equations is ker∇(σ). Notice that we have the 
Leibniz rule

∇(σ)(am) = a∇(σ)(m) + a(id−σ)(a) ⊗m.

Conversely, a σ-connection

∇(σ)(m) := 1 ⊗ a(id−σ), a ∈ A,

induces a difference equation on M as the kernel of a(id−σ).
We refer to [And01] for more on this, including a Tannakian formalism of σ-connec-

tions.

Example 2.1. The “universal” (this designation will be amply demonstrated in what 
follows) example of a σ-derivation is the following. Let A ∈ ob(Com(k)) and M ∈
ob(Mod(A)). Suppose σ : M → M is σ-semilinear. Then a simple calculation shows 
that for all b ∈ A, ∂ := b(id−σ) : M → M , is a σ-twisted derivation on M . Notice that 
if M = A, we automatically get ϕ = σ.

Note 2.1. From now on we will usually not bother notationally separating σ as an endo-
morphism of A, and σ as an endomorphism of M . Both will in most instances be written 
as σ.

2.2. Modules of twisted derivations

Proposition 2.1. Let M be an A-module. Then the k-modules of σ-twisted derivations,

Derσ(M) := {∂ ∈ Endk(M) | ∂(a.m) = ∂A(a).m + σ(a).∂(m)}, and

Derσ(A,M) := {∂ ∈ Homk(A,M) | ∂(ab) = ∂(a).b + σ(a).∂(b)}

are left A-modules. Furthermore, we also have ∂(1) = 0.

Proof. The A-module structure is defined, in both cases, by (a.∂)(m) := a.∂(m) (for m
either in M or in A). Since A is commutative, we have

(b.∂)(a.m) = b.∂A(a).m + b.σ(a).∂(m) = b∂A(a).m + σ(a).(b.∂)(m).

That ∂(1) = 0 follows easily, noting that σ(1) = 1, by the usual calculation. �
Note that unlike the case of ordinary derivations, Derσ(M) or Derσ(A, M) are not 

Lie algebras.
Let, as before, A ∈ ob(Com(k)) and let σ ∈ End(A). Denote by Δσ a σ-twisted 

derivation on M whose restriction to A is ∂, i.e., Δσ ∈ Derσ(M) and ∂ ∈ Derσ(A). 
Assume that σ(Ann(Δσ)) ⊆ Ann(Δσ), where
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Ann(Δσ) := {a ∈ A | aΔσ(m) = 0, for all m ∈ M},

and that

∂ ◦ σ = q · σ ◦ ∂, for some q ∈ A. (2)

Form the left A-module

A · Δσ := {a · Δσ | a ∈ A}.

Define

〈〈 a · Δσ, b · Δσ 〉〉 := σ(a) · Δσ(b · Δσ) − σ(b) · Δσ(a · Δσ). (3)

This should be interpreted as

〈〈 a · Δσ, b · Δσ 〉〉 (m) := σ(a) · Δσ(b · Δσ(m)) − σ(b) · Δσ(a · Δσ(m)),

for m ∈ M . We now have the following fundamental theorem.

Theorem 2.2 (Affine version). Under the above assumptions, equation (3) gives a well-
defined k-linear product on A · Δσ such that

(i) 〈 〈 a · Δσ, b · Δσ 〉 〉 = (σ(a)∂(b) − σ(b)∂(a)) · Δσ;
(ii) 〈 〈 a · Δσ, a · Δσ 〉 〉 = 0;
(iii) �a,b,c

(
〈 〈 σ(a) · Δσ, 〈 〈 b · Δσ, c · Δσ 〉 〉 〉 〉 + q · 〈 〈 a · Δσ, 〈 〈 b · Δσ, c · Δσ 〉 〉 〉 〉 

)
= 0,

where, in (iii), q is the same as in (2).

Proof. Exactly the same proof as in [HLS06, Theorem 5]. �
Corollary 2.3. In the case Δσ ∈ Derσ(A, M), defining the algebra structure directly by 
property (i) in the theorem gives (ii) and (iii) on A · Δσ.

Proof. Obvious. �
We can extend σ to an algebra morphism on A ·Δσ by defining σ(a ·Δσ) := σ(a) ·Δσ.

Remark 2.2. Notice that for an ideal I ⊆ A and Δσ ∈ Derσ(A, I), the module A · Δσ

and the product from the theorem, makes perfect sense. In particular, if I is σ-stable, 
Δσ(I) ⊆ I so Δσ induces a twisted derivation Δ̄σ on A/I and we can form (A/I) · Δ̄σ

with induced product.
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Lemma 2.4. Let A ∈ ob(Com(k)) and suppose there is an x ∈ A, such that

x− σ(x) ∈ A×, id �= σ ∈ End(A),

then any σ-twisted derivation Δσ on M , with M ∈ ob(Mod(A)) and

σ ∈ End(M), σ(a.m) = σ(a).σ(m),

is of the form

Δσ = (x− σ(x))−1∂A(x)(id−σ),

where ∂A is the restriction of Δσ to A. If M is torsion-free over A, then A · Δσ =
Derσ(M) is free of rank one.

Proof. Let m ∈ M be arbitrary. Then the first statement follows from

0 = Δσ(m.x− x.m) = Δσ(m)(x− σ(x)) + (σ(m) −m)∂A(x).

By assumption, x − σ(x) is invertible, so

Δσ(m) = (x− σ(x))−1∂A(x)(id−σ)(m), for all m ∈ M.

Clearly, when M is torsion-free over A, aΔσ(m) = 0 ⇒ a = 0, so Derσ(M) is free of 
rank one. �

Hence, “up to a localization” (at x − σ(x)), every σ-twisted derivation on M ∈
ob(Mod(A)) is of the form given in the lemma. This means that if there is an x ∈ A

such that x − σ(x) is invertible, then giving a twisted derivation Δσ on M amounts to 
deciding what the restriction of Δσ to A is on x.

As an immediate consequence of the lemma we have:

Proposition 2.5. Let A be a k-algebra and id �= σ ∈ Endk(A), σ ∈ Endk(M) such that 
σ(a.m) = σ(a).σ(m). Suppose that for each p ∈ Spec(A) there is an x ∈ A such that 
x − σ(x) /∈ p. Then Derσ(M) is locally free of rank one over A.

Proof. For any p ∈ Spec(A), take x ∈ A such that x − σ(x) /∈ p. In the localization Ap

an element x − σ(x) is a unit so we can apply the lemma. �
In case M = A is a unique factorization domain (UFD), it is possible (see [HLS06, 

Theorem 4]) to prove a stronger version which does not assume the existence of x ∈ A

such that x − σ(x) ∈ A×:
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Theorem 2.6. If A is a UFD, and σ ∈ End(A), then

Δσ := id−σ

g

generates Derσ(A) as a left A-module, where g := gcd((id−σ)(A)).

Notice that the theorem and the proposition say slightly different things. The theorem 
states that g is a factor in (id−σ)(a) for all a ∈ A, and can be cancelled.

Example 2.2. When A = K/k is a field (extension) the above theorem implies that every 
σ-twisted derivation is on the form given in the statement.

2.3. Global twisted derivations

We keep the notations from above.
The definition of twisted derivations can be globalized. Let X f−→ S be an S-scheme 

and A a sheaf of coherent OX-algebras (notice the special case A = OX). Let G/S be 
a finite flat group scheme acting on A (this induces an action on the global spectrum 
SpecOX

(A )). In other words, we have a group homomorphism

G(R) → Aut(A )(R) = AutR(A ⊗S R)

for every OS-algebra R. Let σ ∈ G. By this we mean the choice of a σR in every G(R) for 
each S-scheme R. Then σ defines an automorphism of A ⊗R which we also denote σ.

Put Z = SpecOX
(A ) and let z : Z → X be the corresponding affine morphism. 

A σ-derivation on Z is an endomorphism ∂U ∈ E ndS(A )(U) for each U ⊆ Z such that 
we have

∂U (xy) = ∂U (x)y + σ|U (x)∂U (y), x, y ∈ A (U). (4)

We denote the sheaf of all σ-derivations on Z by Derσ(A ). The sheaf Derσ(A ) is 
coherent since E nd(A ) is. Clearly, Derσ(A ) is a left A -module.

Proposition 2.7. Suppose X is regular. Then Derσ(OX) is invertible.

Proof. Since X is regular, each stalk is a regular local ring, hence a UFD. Now apply 
Theorem 2.6. �

Now, suppose that E is a coherent sheaf of A -modules. We define Derσ(E ) in exactly 
the same way as Derσ(OX), but now (4) becomes

∂U (x.e) = ∂U |A (x).e + σ|U (x).∂U (e), x ∈ A (U), e ∈ E (U).
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Let ∂ ∈ Derσ(A ) and let Δ ∈ Derσ(E ) such that Δ|A = ∂. We define the A -module 
A nnA (Δ) as

A nnA (Δ)(U) :=
{
a ∈ A (U) | aΔ(e) = 0, for all e ∈ E (U)

}
.

Assume that

ΔU ◦ σ = qU · σ ◦ ΔU , qU ∈ A (U)

and form the left A -module A · Δ by

(A · Δ)(U) := A (U) · ΔU .

On A · Δ we introduce the product 〈 〈 ·, · 〉 〉 by

〈〈 a · ΔU , b · ΔU 〉〉U := σ(a) · ΔU (b · ΔU ) − σ(b) · ΔU (a · ΔU ), a, b ∈ A (U).

We now have the following global version of Theorem 2.2.

Theorem 2.8 (Global version). The above product is OS-linear and satisfies

(i) 〈 〈 a · ΔU , b · ΔU 〉 〉 U = (σ(a)∂U (b) − σ(b)∂U (a)) · ΔU ;
(ii) 〈 〈 a · ΔU , a · ΔU 〉 〉 U = 0;
(iii) �a,b,c

(
〈 〈 σ(a) ·ΔU , 〈 〈 b ·ΔU , c ·ΔU 〉 〉 U 〉 〉 U +qU · 〈 〈 a ·Δσ, 〈 〈 b ·ΔU , c ·ΔU 〉 〉 U 〉 〉 U

)
= 0,

where a, b, c ∈ A (U).

The proof of this global version is simply a gluing of the affine version (i.e., a standard 
descent argument).

Assume now that p ∈ X. The set of all σ ∈ G such that σ(p) ⊆ p is called the stabilizer 
group or decomposition group at p, denoted Dp. Notice that this means that p is a fixed 
point for all σ ∈ Dp. The subgroup of all σ ∈ Dp that reduces to the identity modulo p, 
i.e., on the residue class field k(p), is called the inertia group at p, Ip. We let Iσ(X)
denote the set of all points p in X such that σ ∈ Ip and

IG(X) :=
⋃
σ∈G

Iσ(X),

the inertia locus on X. Notice that if X is defined over an algebraically closed field, 
Dp = Ip.

If X/G exists as an S-scheme then π : X → X/G defines a generic G-torsor. This 
means that π is étale over an open, dense subscheme, whose complement is a divisor. This 
divisor is called the ramification divisor and is the annihilator of the sheaf ΩX/(X/G), 
denoted ram(π). The divisor π(ram(π)) is called the branch divisor, denoted branch(π).
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If p /∈ ram(π), q = π(p), then the extension of residue fields k(p)/k(q) is Galois and 
G acts transitively on the fibre π−1(q). Furthermore, we have an isomorphism Dp 

Gal(k(p)/k(q)). On the other hand, if p ∈ ram(π) then the extension k(p)/k(q) is normal 
(but not necessarily separable) and Dp maps surjectively onto Aut(k(p)/k(q)). The kernel 
of this map is the inertia group Ip.

Theorem 2.9. Let X/S be an integral S-scheme. Suppose G is a finite flat S-group act-
ing on X such that X/G exists as an S-scheme. Let E be a torsion-free and coherent 
OX-module.

(a) The sheaf Derσ(E ) is invertible on the complement Yσ := X \ Iσ(X), for all σ ∈
G \ {id}. Hence the image of the map

γ : G \ {id} → Pic(YG), σ �→ Derσ(E |YG
)

generates a subgroup of Pic(YG).
(b) If Iσ(X) is regular then Derσ(OX) can be extended to an invertible module on all 

of X, for all σ ∈ G \ {id}. Hence in this case, γ becomes

G \ {id} → Pic(X), σ �→ Derσ(OX)

and so generates a subgroup of Pic(X).

Remark 2.3.

(1) Notice that the only obstruction to Derσ(OX) being locally free on X is the singular 
points p such that p ∈ Iσ.

(2) If X → X/G is a G-torsor, then Derσ(OX) is locally free on X.
(3) As the proof below will show, generators of Derσ(E |Yσ

) is generated by elements 
(fi − σ(fi))−1 over a cover {Ui} of X. From this follows that there is an associated 
Cartier divisor which is the zero locus of fi − σ(fi) over each Ui.

Proof. Since π : X � X/〈σ〉 is étale on points with trivial inertia, the morphism X \
Iσ(X) → X/〈σ〉 is an étale torsor. The locus where a morphism is étale is open, which 
means that Iσ(X) is closed.

Fix σ ∈ G \{id} and take p ∈ Yσ := X\Iσ(X). Notice that G preserves the fibres above 
S as it acts over S; this means that Yσ is also G-invariant. Take an affine neighbourhood 
U = Spec(A) ⊆ Yσ of p such that σ(p) ∈ U (the existence of such a neighbourhood is 
guaranteed by the assumption that X/G exists as an S-scheme). Then there is an x ∈ A

such that x − σ(x) /∈ p (for simplicity we denote the scheme automorphism σ and the 
induced algebra morphism by the same symbol). Indeed, either (1) we have σ(p) � p, or 
(2) we have σ(p) ⊆ p (i.e., σ is in the decomposition group at p). In case (1) we can take 
x ∈ p such that σ(x) /∈ p; then x − σ(x) /∈ p. For case (2), assume that there is no t ∈ A
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such that (id−σ)(t) /∈ p, i.e., for all t ∈ A, (id−σ)(t) ∈ p. Then modulo p, σ reduces to 
the identity, which is a contradiction since p ∈ Yσ, and Yσ has no points with non-trivial 
inertia.

We can now apply Proposition 2.5, showing that Derσ(E ) is an invertible sheaf on Yσ. 
Hence we have an association G → Pic(Yσ) given by σ �→ Derσ(E |Yσ

). For the last part, 
since X is integral, [Har77, Prop. II.6.15] states that CDiv(Yσ) 
 Pic(Yσ), and [Har77, 
Rem. II.6.17.1] shows that Derσ(E |Yσ

) actually gives an effective Cartier divisor since it 
is locally generated by one element.

For (b), use Proposition 2.7. �
Remark 2.4. The above association gives us, for each n ∈ N, a map

σn �→ Derσn(E ) ∈ Pic(X).

However, note that if σ = id, then Derσ(E ) = Der(E ) /∈ Pic(X), so the association can 
certainly not be a group morphism.

Remark 2.5. It would obviously be very interesting to know what kind of subgroup the 
image of G generates inside Pic(X). For instance, are there sufficient conditions that 
〈im(γ)〉 = Pic(X)?

Example 2.3. Assume given π : X → S with X = oL and S = oK , where oL and oK are 
the ring of integers in a Galois extension L/K of number fields. Let E be a projective 
oL-module (which is automatically torsion-free since oL is a Dedekind domain) and let 
D be a divisor of S, such that π−1(D) includes all the ramified primes in X. In other 
words, D is a finite set of places in oK including the ramified ones in oL. Natural choices 
for E are of course oL itself and fractional ideals J ∈ Pic(oL). Then on X \ π−1(D), 
DerGal(L/K)(E ) is an invertible sheaf. Therefore, we have an association (dependent 
on D)

Gal(L/K) → Pic(oL \ π−1(D)), σ �→ Derσ(E |oL\π−1(D)),

for every E . However, since π−1(D) is regular Theorem 2.9(b) applies again, and we can 
extend to a the whole oL,

Gal(L/K) → Pic(oL), σ �→ Derσ(E ),

for every projective oL-module E . In fact, in this case we could argue by simply appealing 
to Theorem 2.6 directly since oL, being a Dedekind domain, is automatically regular and 
hence every localization is a UFD.

We can generalize this example. For this let us briefly recall the definition of a tamely 
ramified G-covering. We use a slightly more restrictive definition than usual for simplicity.
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Definition 2.1. Let π : X � S be a finite cover with S connected and normal and X
normal. We let D ⊂ S denote a normal crossings divisor such that π is étale over S \D
and assume that π−1(D) is regular. Then X � S is a (tamely) ramified extension if for 
every s ∈ D of codimension one (in S) and x ∈ X such that s = π(x), OX,x/OS,s is a 
(tamely) ramified extension of discrete valuation rings. If, in addition,

X ×S (S \D) → S \D

is a G-torsor, i.e., Galois covering with G = Gal(k(X)/k(S)), then π is a (tamely) 
ramified G-covering.

Example 2.4. Let π : X � S be a tamely ramified G-covering, ramified along a divisor 
D and let E be a torsion-free sheaf on X. Then D includes the points over which IG(X)
is non-zero. Therefore, the assumptions of Theorem 2.9 are satisfied and so

DerG
(
E |X\IG(X)

)
is a family of invertible sheaves on X \ IG(X). On the other hand, since by assumption 
π−1(D) is regular, by Theorem 2.9(b), we can extend DerG(E ) to a family of invertible 
sheaves on the whole of X.

3. Equivariant hom-Lie algebras

3.1. Global equivariant hom-Lie algebras

Let G denote a finite group scheme acting on X over S, and let A be an OX{G}-sheaf 
of OX -algebras. This means that A is an OX -algebra together with a G-action, compat-
ible with the G-action on X in the sense that σ(xa) = σ(x)σ(a), x ∈ OX , a ∈ A .

Definition 3.1. Given the above data, a G-equivariant hom-Lie algebra on X over A is a 
A {G}-module L together with, for each open U ⊂ X, an OS-bilinear product 〈 〈 ·, · 〉 〉 U
on L (U) such that

(hL1.) 〈 〈 a, a 〉 〉 U = 0, for all a ∈ L (U);
(hL2.) for all σ ∈ G and for each σ a qσ ∈ A (U), the identity

�a,b,c

{
〈〈σ(a), 〈〈 b, c 〉〉 U 〉〉 U + qσ · 〈〈 a, 〈〈 b, c 〉〉 U 〉〉 U

}
= 0,

holds.

A morphism of equivariant hom-Lie algebras (L , G) and (L ′, G′) is a pair (f, ψ) of a 
morphism of OX -modules f : L → L ′ and ψ : G → G′ such that f ◦ σ = ψ(σ) ◦ f , and 
f(U)

(
〈 〈 a, b 〉 〉 L ;U

)
= 〈 〈 f(U)(a), f(U)(b) 〉 〉 L ′;U .
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Hence, an equivariant hom-Lie algebra is a family of (possibly isomorphic) products 
parametrized by G. A product 〈 〈 ·, · 〉 〉 σ, for fixed σ ∈ G, is a hom-Lie algebra on L .

Notice that the definition implies that for a morphism

(f, ψ) : (L , G) → (L ′, G′)

we must have f(qσ) = qψ(σ).
We denote by EquiHomLieX/S

denote the category of all equivariant hom-Lie algebras 
on X with morphisms given in the definition. The category of hom-Lie algebras over 
X/S is denoted HomLieX/S

.
By the requirements that G is a group, every equivariant hom-Lie algebra includes 

a Lie algebra, possibly abelian, corresponding to e ∈ G (see Example 4.1 below). The 
hom-Lie algebras corresponding to g �= e in the equivariant hom-Lie algebra can be 
viewed as “deformations” of the Lie algebra in the equivariant hom-Lie algebra.

Remark 3.1. Clearly, we could use any Grothendieck topology on X for the above defi-
nition.

3.2. Base change

Proposition 3.1. Let f : X → Y be a morphism in Sch/S and let A be an OY -algebra 
on Y . Suppose that L is a hom-Lie algebra over A on Y . Then,

f∗L := f−1L ⊗f−1OY
OX , the pull-back of L ,

is a hom-Lie algebra over f∗A on X.

Proof. This is standard. �
We will now consider what happens when we change the group. For simplicity we 

consider only the special case. Everything globalizes without problem.
Let L be an A-module, A ∈ Com(k) equipped with an equivariant hom-Lie algebra 

with group G. Suppose we are given a sequence of groups

· · · → Hi+1
ϕi+1−−−→ Hi → · · · ϕ2−−→ H1

ϕ1−−→ H
ϕ−→ G

ψ−→ E.

Then we have the following proposition.

Proposition 3.2. The equivariant hom-Lie algebra on L over G descends to a canonical 
one, ϕ∗L, over H via ϕ. In addition, G will act on the invariants Lϕ(H) with induced 
equivariant hom-Lie algebra over G/ im(ϕ). We also have an induced map LG → Lϕ(H), 
or more generally
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· · · ← Lϕi+1(Hi+1) ←− Lϕi(Hi) ← · · · ←− Lϕ1(H1) ←− Lϕ(H) ←− LG,

with induced hom-Lie structures. Notice that LG is the trivial (abelian) equivariant hom-
Lie algebra. In addition, if ψ : G � E is a surjection, then Lker ψ ⊆ L is a equivariant 
hom-Lie algebra over E.

Proof. Obvious. �
Recall that the induced G-module coming from an H-module M , is defined as

IndH
G (M) := {ψ : G → M | ψ(hg) = hψ(g), for h ∈ H }.

The G-module structure on IndH
G (M) is defined by (g′.ψ)(g) := ψ(gg′).

Proposition 3.3. Suppose that the A-module L is an equivariant hom-Lie algebra over H. 
Then IndH

G (L) is an equivariant hom-Lie algebra over G with product defined by

〈〈ψ,ψ′ 〉〉 IndH
G (L)(g) := 〈〈ψ(g), ψ′(g) 〉〉 L

and A-module structure given by (a.ψ)(g) := aψ(g).

Proof. Obvious. �
Notice that I allow arbitrary group morphisms when defining induced modules, con-

trary to the ordinary usage, which restricts to injective morphisms. In general, induced 
modules are only useful when H is indeed a subgroup of G.

4. Examples

4.1. Basic examples

Example 4.1. Suppose G = {id}, the trivial group. Then the above definition amounts 
to a sheaf of OX -Lie algebras.

Example 4.2. Let A ∈ ob(Com(k)), L ∈ ob(Mod(A)) and G a group acting k-linearly 
on L. Then an equivariant hom-Lie algebra on L over A/k is family of k-bilinear products 
〈 〈 ·, · 〉 〉 g, g ∈ G, satisfying

〈〈 a, a 〉〉 g = 0 and �a,b,c

(
〈〈 ag + a, 〈〈 b, c 〉〉 g 〉〉 g

)
= 0, for all g ∈ G.

A morphism of equivariant hom-Lie algebras L and L′ over A/k is a morphism 
of k-modules such that f(ag) = f(a)g (i.e., G-equivariance) and f〈 〈 a, b 〉 〉 Lg =
〈 〈 f(a), f(b) 〉 〉 L′

g .
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If L and L′ comes equipped with different group actions, G and G′, we demand 
according to definition, instead of G-equivariance, that f(ag) = f(a)g′ , for all g �= e ∈ G, 
g′ �= e′ ∈ G′.

Example 4.3 (Twisted derivations). Let A ∈ ob(Com(k)) and assume M ∈ ob(Mod(A))
torsion-free. Suppose that σ ∈ End(A), δσ ∈ Derσ(M) are such that ∂ = a(id−σ), a ∈ A, 
and

∂ ◦ σ = q · σ ◦ ∂, with q ∈ A.

Assume in addition that

σAnn(∂) ⊆ Ann(∂),

which is automatic for instance when A is a domain. Then Theorem 2.2 endows A · δσ
with the structure of hom-Lie algebra. Taking a subgroup G ⊆ End(A) with a family 
δG ⊆ Derσ(M), δG := {δσ | σ ∈ G}, such that

∂σ ◦ σ = qσ · σ ◦ ∂σ, with qσ ∈ A, for each σ ∈ G,

and where σ(am) = σ(a)σ(m). Then Theorem 2.2 gives us an equivariant hom-Lie 
algebra for G on M . It is easy to see that if a ∈ A×, then qσ := a/σ(a) satisfies the 
assumptions on qσ. Indeed,

σ ◦ ∂σ(b) = σ ◦ (a(id−σ))(b) = σ(a)(id−σ) ◦ σ(b),

so multiplying by a/σ(a) gives the desired identity. Fixing a ∈ A×, we get an association 
G → A×, σ �→ a/σ(a). In other words, we get an element in B1(G, A×) (the group 
of 1-coboundaries in group cohomology). This gives a family {(qσ, ∂σ) | σ ∈ G, ∂σ =
a(id−σ)} satisfying the required conditions of Theorem 2.2.

Notice that we in particular get that if A is a domain, DerG(Fr(A)) is an equivariant 
hom-Lie algebra, where Fr(A) is the fraction field of A.

We can globalize this in the evident manner. Namely, let X be a scheme, A a sheaf 
of OX -algebras and E a torsion-free A -module. First, for U ⊆ X an open affine, let ∂
be a section of Derσ(A )(U) such that ∂ ◦ σ = qσ,U · σ ◦ ∂, for some qσ,U ∈ A (U), and 
σAnn(∂) ⊆ Ann(∂). Then to any δ ∈ Derσ(E )(U) such that

δ(am) = ∂(a)m + σ(a)δ(m),

is attached a canonical global hom-Lie algebra, A · δ ⊆ Derσ(A ), and therefore a global 
equivariant hom-Lie algebra, A · δG.
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4.1.1. Difference equations
In this section we will associate to every difference equation a canonical hom-Lie 

algebra encoding all the structure of the underlying equation.
There are several, more or less equivalent, ways to represent a difference equation. Let 

σ be an automorphism on A as usual. Then a difference equation can be given as either

(i)
∑n

i=0 aiσ
i, ai ∈ A, or as

(ii)
∑n

i=0 biΔi
σ, with Δσ = c(id−σ) a σ-derivation where c, bi ∈ A, or as

(iii) a finitely generated (most often locally free of finite rank) A-module M together 
with a σ-linear σ : M → M , or as

(iv) a finitely generated (most often locally free of finite rank) A-module M together 
with a σ-connection

∇(σ) : M → σ∗A⊗k M, m �→ 1 ⊗ a(id−σ),

with σ : M → M σ-linear.

It is rather easy to see that these are equivalent for most interesting k-algebras A and 
difference equations (see for instance [And01,DV02] or [Sau03]).

We will primarily use (iii) here. In this sense a difference equation is given by a matrix 
Σ with entries in A (once we have chosen a basis for M). A solution to this equation 
is then a vector f ∈ Rm such that Σf = f . Notice that we might need to enlarge 
the underlying ring A to a ring R (a so-called Picard–Vessiot ring associated to the 
difference equation) for solutions to exist. In fact, solutions are not guaranteed unless 
the underlying ring of constants Aσ is an algebraically closed field (see [vdPS97]). Clearly 
a solution to the difference equation is an element in ker(id−σ).

Form the symmetric A-algebra SA(M). Clearly σ extends to a σ-linear algebra mor-
phism, which we also denote σ, SA(M) σ−→ SA(M). The solution space ker(id−σ)
generates an ideal in SA(M) and any generator for this ideal is a solution to the difference 
equation (possibly after enlarging to a Picard–Vessiot ring).

We now look at the twisted derivation

Δσ := id−σ : SA(M) → SA(M).

Then the left SA(M)-module SA(M) · Δσ is naturally a hom-Lie algebra by the previ-
ous example. Obviously, this algebra encapsulates a lot of information of the difference 
equation. We will see an example of this in the last section of the paper. For now, let me 
briefly mention the following:

Example 4.4. Let k be a perfect field of characteristic p, and let W (k) be the ring of Witt 
vectors of k and K the field of fractions of W (k). The Frobenius automorphism σ(a) = ap

of k lifts to an automorphism φ of W (k). An F -crystal is then a free W (k)-module M
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together with a φ-linear endomorphism σ : M → M . An F -isocrystal is a free K-module 
M with a φ-linear σ.

There are versions of this definitions over (formal) schemes and rigid analytic spaces.

The above discussion globalizes in the evident manner.

4.2. Equivariant hom-Lie algebras of morphisms of schemes

4.2.1. Families of equivariant hom-Lie algebras
Let f : X/S → Y/S be a morphism of S-schemes and let E be a coherent OX -module. 

Assume that G is a group acting on X/S over Y/S (and over S) and equivariantly on E . 
The fibres Xy := X ⊗Y k(y) and Ey := E ⊗OY

k(y), y ∈ Y , are thus invariant under G.
Let {Ui} be an affine cover of X and let D be a rank-one subsheaf of Derσ(E )

with local generators over {Ui} given by Δi := ai(id−σ), with ai ∈ OX(Ui) satisfying 
ai = qiσ(ai), for some qi ∈ OX(Ui). Then D defines a family of hom-Lie algebras, 
parametrized by Y , by the rule D(Ui) = OX(Ui) ·Δi as in Example 4.3. The product is 
given locally over Ui as

〈〈αi · Δi, βi · Δi 〉〉 =
(
σ(αi)Δi(βi) − σ(βi)Δi(αi)

)
· Δi.

Let y ∈ Y . Then

Dy := D ⊗ k(y) =
(
OX · Δ

)
⊗ k(y) = OXy

· Δ|Xy

is the fibre over y ∈ Y in this family.

4.2.2. G-covers
Put X := SpecY (A ), for A a finite coherent OY -algebra and assume that f : X/S →

Y/S is a (finite) G-cover, with X and Y connected. Notice that this implies that Y = X/G

and that X → Y is étale over the complement of the branch locus. This also implies that 
σ(A (U)) ⊆ A (U) for all open U ⊂ Y . Since f is finite, A is a locally free sheaf of finite 
rank. Take σ ∈ G and consider Derσ(A ). This is an invertible sheaf over X \ ram(f)
which can be extended to an invertible sheaf on the whole X if ram(f) is regular.

Put, for each U ⊆ Y , Δσ(U) := aU (id−σ) and assume that we have aU = qUσ(aU ), 
for some qU ∈ A (U). We now look at the submodule A ·Δσ inside Derσ(A ). Explicitly,

(A · Δσ)(U) =
n⊕

i=0
OY (U)eiΔσ =

⊕
i=0

OY (U)εi, U ⊆ Y,

with εi := eiΔσ, and ei generating sections of A over U . We consider the hom-Lie 
algebra (A · Δσ, 〈 〈 , 〉 〉 ).
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4.2.3. Witt hom-Lie algebras
Keep the above notation and let ckij ∈ OY (U) be the structure constants for A (U). 

Assume in addition that σ ∈ G acts as σ(ei) =
∑n−1

k=0 sikek with sik ∈ OY (U).

Proposition 4.1. The pair

WA
σ := (A · Δσ, 〈〈 , 〉〉 )

defines a hom-Lie algebra on A over Y and is given by

〈〈 εi, εj 〉〉 = a
n−1∑
�=0

( n−1∑
k=0

(
sikc

�
kj − sjkc

�
ki

))
ε�.

Proof. Simple computation. �
Notice the special case when σ(ei) = qiei, with qi ∈ O×

Y (U):

〈〈 εi, εj 〉〉 = a
n−1∑
k=0

(qi − qj)ckijεk. (5)

We call WA
σ the (generalized) Witt hom-Lie algebra (over OY ) associated with σ

and A .

4.2.4. Kummer–Witt hom-Lie algebras
In this section we study the simplest family of examples of G-covers, namely, cyclic 

covers. In this case

A (U) 
 OY (U)[z]/(zn −BU ) =
n−1⊕
i=0

OY (U)ei, ei := zi,

for a section BU ∈ OY (U). We assume that OY includes the n-th roots of unity. In fact, 
SpecY (A ) is a cyclic cover of Y with σ(z) := ξrz, 0 ≤ r ≤ n − 1, for ξ a primitive n-th 
root of unity. It is easy to see that BU represents the branch divisor over U .

Observe that we allow BU = 0 in which case we view A as an “infinitesimal thicken-
ing” of Y .

Put εi := ziΔσ.

Corollary 4.2. When σ(z) = ξrz, the hom-Lie algebra structure on A · Δσ is given by

〈〈 εi, εj 〉〉 = ξri(1 − ξr(j−i))B�
U ε{i+j mod n}, i ≤ j,

where B�
U means that BU is included when i + j ≥ n.
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Proof. Follows immediately from Proposition 4.1. �
We denote the locally free algebra in the proposition by KWA (ξr) and refer to it as 

a Kummer–Witt hom-Lie algebra.
Here comes a few illustrative examples. Let Y be the projective line:

Y = P1
k = Spec(k[s, s−1]) ∪ Spec(k[t, t−1]) = U ∪ V,

glued (as always) along s → t−1, and let B be the divisor

BU = (s2 + 1)s3, BV = (t−2 + 1)t−3.

Then π : X → Y , with X := SpecY (A ), is defined by

π−1(U) = Spec
(
k[s, s−1, z]/

(
zn − (s2 + 1)s3)),

π−1(V ) = Spec
(
k[t, t−1, z]/

(
zn − (t−2 + 1)t−3)).

Notice that the branch points of π are dependent on whether 
√
−1 ∈ k or not. If 

√
−1 /∈ k

then π is étale over Y \ {∞}, otherwise it is ramified over s = ±
√
−1.

Example 4.5. We first look at the example when n = 3 and σ(z) = ξz, ξ3 = 1. Putting 
this into the structure-constant-machine in the above corollary gives

〈〈 ε0, ε1 〉〉 = (1 − ξ)ε1, 〈〈 ε0, ε2 〉〉 = (1 − ξ2)ε2, 〈〈 ε1, ε2 〉〉 = ξ(1 − ξ)Bε0.

The fibre over s = 1 is the spectrum of the algebra

A1 = k( 3
√

2)f0 × k( 3
√

2)f1 × k( 3
√

2)f2,

since z3 − 2 = (z− 3
√

2)(z− ξ 3
√

2)(z− ξ2 3
√

2) over k( 3
√

2). The induced action of σ on the 
fibre becomes f0 �→ f1 �→ f2 �→ f0. The hom-Lie algebra over s = 1 then has products

〈〈 ε0, ε1 〉〉 = (1 − ξ)ε1, 〈〈 ε0, ε2 〉〉 = (1 − ξ2)ε2, 〈〈 ε1, ε2 〉〉 = 2ξ(1 − ξ)ε0.

The fibre over s = ξ is the spectrum of the algebra

Aξ = k( 3
√

ξ2 + 1)f0 × k( 3
√

ξ2 + 1)f1 × k( 3
√

ξ2 + 1)f2,

and the hom-Lie algebra over s = ξ is

〈〈 ε0, ε1 〉〉 = (1 − ξ)ε1, 〈〈 ε0, ε2 〉〉 = (1 − ξ2)ε2, 〈〈 ε1, ε2 〉〉 = (1 − ξ2)ε0.

The fibre over a branch point is clearly a fat point of order three and there the hom-Lie 
algebra becomes
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〈〈 ε0, ε1 〉〉 = (1 − ξ)ε1, 〈〈 ε0, ε2 〉〉 = (1 − ξ2)ε2, 〈〈 ε1, ε2 〉〉 = 0.

Taking instead σ(t) = ξ2t gives

〈〈 ε0, ε1 〉〉 = (1 − ξ2)ε1, 〈〈 ε0, ε2 〉〉 = (1 − ξ)ε2, 〈〈 ε1, ε2 〉〉 = −ξ(1 − ξ)Bε0,

and the products on the fibres over s = 1 and s = ξ are

〈〈 ε0, ε1 〉〉 = (1 − ξ2)ε1, 〈〈 ε0, ε2 〉〉 = (1 − ξ)ε2, 〈〈 ε1, ε2 〉〉 = −2ξ(1 − ξ)ε0

and

〈〈 ε0, ε1 〉〉 = (1 − ξ2)ε1, 〈〈 ε0, ε2 〉〉 = (1 − ξ)ε2, 〈〈 ε1, ε2 〉〉 = −(1 − ξ2)ε0.

Over a branch point, we get

〈〈 ε0, ε1 〉〉 = (1 − ξ2)ε1, 〈〈 ε0, ε2 〉〉 = (1 − ξ)ε2, 〈〈 ε1, ε2 〉〉 = 0.

Obviously, the case when σ is the identity gives the abelian hom-Lie algebra. Notice 
that the three algebras in the equivariant structure are non-isomorphic over Y .

The reader is invited to study the case n = 4, in particular when σ(t) = ξ2t = −t.
For all σ ∈ G we have the following subalgebra in the general situation:

Proposition 4.3. The algebra JB(ξr) given by

〈〈 ε0, ε1 〉〉 = (1 − ξr)ε1

〈〈 ε0, εn−1 〉〉 = (1 − ξr(n−1))εn−1

〈〈 ε1, εn−1 〉〉 = ξ(1 − ξr(n−2))BUε0

(6)

is a subalgebra of KWA (ξr). Furthermore, if B �= 0, it is non-solvable if n = p > 2 is a 
prime. If n = 2, JB(ξ) is clearly solvable. In fact, it is actually a Lie algebra.

Proof. The first statement follows from Corollary 4.2, whereas the second follows from 
〈 〈 JB(ξr), JB(ξr) 〉 〉 = JB(ξr) and induction. �

Notice the similarity between JB(ξr) and the Jackson-sl2 from [LS07]. It is therefore 
natural to call the algebra JB(ξr) the Jackson subalgebra of KWA (ξr).

Conjecture 1. If n is composite then there is at least one σ ∈ G such that KWA (ξr) is 
solvable.

In the cases I’ve investigated this seems to be true and the following proposition gives 
some support for this claim.
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Proposition 4.4. Let n be composite. Then for some σ ∈ G there are 0 ≤ i �= j ≤ n − 1
such that

〈〈 εi, εj 〉〉 = 0.

Proof. Let ξ be a primitive n-th root of unity. Since n is composite there is a k < n such 
that k|n. Consider σ(t) = ξkt. Then there are i < j < n such that k(j − i) = n. The 
claim follows from Corollary 4.2. �
4.3. Hom-Lie algebras associated with t-motives

We need some notation and terminology first. For this, we will primarily follow [Pap08]
and [CY07], with some slight modifications.

Let p be a prime and put, q = pr, A := Fq[θ] and k := Fr(A) = Fq(θ), where θ
is transcendental over Fq. We also use the notation k∞ := Fq((θ−1)), with algebraic 

closure k∞. Finally, we put C∞ := ̂̄k∞, the completion of k∞ under the ∞-norm with 
|θ|∞ = q. The Frobenius morphism

σ : C∞ → C∞, a �→ a1/q

is extended to C∞((t)) by the rule

σ
(∑

i∈Z

fit
i
)

:=
∑
i∈Z

f
1/q
i ti.

Notice that, with this definition,

σr
(∑

i∈Z

fit
i
)

:=
∑
i∈Z

f
1/qr
i ti.

We now have the following two definitions (cf. [Pap08]):

Definition 4.1. An Anderson t-motive is a module M together with a σ-linear morphism 
σ : M → M, such that M is free of finite rank over both k[t] and k[σ], in addition to 
(t − θ)nM ⊆ σ(M), for some n ≥ 0.

Definition 4.2. A pre-t-motive is a difference equation σ over k(t). In other words, a 
k(t)-vector space of finite dimension together with a σ-linear morphism σ : M → M .

These notions define categories with the obvious morphisms.
Fixing a basis for M or M, we can assume that σ is given by a matrix Σ with entries 

in k(t) and k[t], respectively.
From an Anderson t-motive M we get a pre-t-motive M by base-change along k[t] →

k(t), with the action of σ extended diagonally:
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M = M ⊗k[t] k(t), σ(m⊗ f) := σ(m) ⊗ σ(f).

We are primarily interested in the following two examples.

Example 4.6. The Anderson unit t-motive, 1, is defined as the module k[t]e, with 
σ(fe) := σ(f)e. The corresponding unit pre-t-motive, also denoted 1, is naturally k(t)e
with σ(fe) := σ(f)e. Clearly, Σ = 1 for the unit motive.

Example 4.7. The other basic example we need is the (Anderson–)Carlitz t-motive, C, 
and its associated pre-t-motive C. We define C and C as

C := (k[t]e,σ), σ(fe) = σ(f)σ(e) := σ(f)(t− θ)e,

and

C := (k(t)e,σ), σ(fe) = σ(f)σ(e) := σ(f)(t− θ)e,

respectively. More generally, we can form the Tate twists, n ≥ 0,

C(n) := C⊗n, σ(c1 ⊗ c2 ⊗ · · · ⊗ cn) := σ(c1) ⊗ σ(c2) ⊗ · · · ⊗ σ(cn),

with tensor products over k[t], and similarly for C. Notice that C(0) = 1, and that

σ(en) = (t− θ)nen, where en := e ⊗ e ⊗ · · · ⊗ e.

In this case, Σ = (t − θ).

Other examples can be constructed from Drinfel’d modules.
We also need the notion of rigid analytically trivial motives. For this we use the 

equivalences Propositions 3.3.9(a) and 3.4.7(a) in [Pap08] to simplify our exposition. Let 
T be the Tate algebra

T := C∞〈t〉 := {f ∈ C∞((t)) | |fi|∞ → 0, i → ∞},

where f =
∑

fit
i. This is a domain, and we denote the fraction field as L.

An Anderson t-motive M of rank m is called rigid analytically trivial if there is a 
Ψ ∈ GLm(T) such that σΨ = ΣΨ, where σ acts on Ψ element-wise. This notion is stable 
under change of basis. Observe that Ψ actually gives a fundamental matrix of solutions 
to the difference equation σ(x) = Σx, x ∈ M. Therefore, T is actually a Picard–Vessiot 
ring for M. The matrix Ψ is called a rigid analytic trivialization for M, and Ψ(θ)−1 is 
the so-called period matrix (for M).

Similarly, a pre-t-motive is rigid analytically trivial if the matrix Ψ is in Glm(L).
Both the unit motive and the Carlitz motive is rigid analytically trivial (see [Pap08, 

3.3.3 and 3.3.6]. In fact, a trivialization for C is given by the function
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Ω(t) := (−θ)−
q

q−1

∞∏
i=1

(1 − t/θq
i

) ∈ k∞
(
(−θ)−

q
q−1

)
[[t]].

The period matrix π̃ := −Ω(θ)−1 is called the Carlitz period and is fundamental to the 
theory of t-motives. It is possible to show that the zeros of Ω(t) are exactly θq

i , i ≥ 1.
We noted above that there is a functor (base-change) from the category of Anderson 

t-motives to the category of pre-t-motives. The images of rigid analytically trivial An-
derson t-motives inside the category of pre-t-motives, generate the category of t-motives.

4.3.1. The t-motivic hom-Lie algebras
Finally, we come to the connection with hom-Lie algebras. Since an Anderson t-motive 

(and hence pre-t-motive) can be seen as a difference equation over k[t], there is a canonical 
hom-Lie algebra by the discussion in (4.1.1). We will study this hom-Lie algebra for the 
Carlitz and unit motive in some detail.

Let M be an Anderson t-motive of rank n. We are interested in the k[t]-algebra Sk[t](M)
and the induced operator

Δσ := id−σ : Sk[t](M) → Sk[t](M),

and hom-Lie algebra

L(M) := (Sk[t](M) · Δσ, 〈〈 , 〉〉 ).

See (4.1.1). To be perfectly explicit, we consider the case of the Carlitz motive from now 
on. For simplicity of notation, put q := (t − θ). Notice that

Sk[t](C) =
∞⊕

n=0
C⊗n =

∞⊕
n=0

C(n) =
∞⊕

n=0
k[t]en = k[t][e],

with

σ(fen) = σ(f)σ(en) = σ(f)(t− θ)nen.

Therefore,

Δσ(fen) =
(
Δσ(f) + σ(f)(1 − q){n}q

)
en,

where we used the “q-number” notation {n}q := 1 +q +q2+ · · ·+qn−1. From this follows, 
after some computation, that the product on L(C) is given as

〈〈 fen · Δσ, gem · Δσ 〉〉 C =
(
qnσ(f)g − qmσ(g)f

)
en+m · Δσ.

Let us introduce the notation
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An,m(f, g)(t) :=
(
qnσ(f)g − qmσ(g)f

)
(t).

Notice the special case m = −n:

An,−n(f, g)(t) :=
(
qnσ(f)g − q−nσ(g)f

)
(t).

Similarly, we have that L(1) has product

〈〈 fen · Δσ, gem · Δσ 〉〉 1 =
(
σ(f)g − σ(g)f

)
en+m · Δσ.

Obviously, the same constructions work if we replace k[t] with k(t), i.e., if we work 
with pre-t-motives instead of Anderson motives.

As we will see, the structure becomes even richer if we invert the Carlitz motive:

C(−1) := k[t](t−θ)e, σ(fe) := σ(f)(t− θ)−1e,

similarly with C. It is then clear what C(−n) (for n > 1) should mean. In this way we 
can form the Laurent polynomial rings

Sk[t](C)(t−θ) =
⊕
n∈Z

C(n) =
⊕
n∈Z

k[t](t−θ)en = k[t, (t− θ)−1][e, e−1],

with the associated hom-Lie algebra structure,

Lloc(C) := (Sk[t](C)(t−θ) · Δσ, 〈〈 , 〉〉 ).

Notice that over k(t) we have isomorphisms C(−n) ⊗ C(n) 
 1 as pre-t-motives.
We define the function Lα,l(t) as

Lα,l(t) := α +
∞∑
i=1

αqi

(t− θq)l(t− θq2)l · · · (t− θqi)l
,

and its evaluation Lα,l(θ) is called the l-th Carlitz polylogarithm. From the definition one 
sees that

σ(Lα,l) = σ(α) + Lα,l

ql .

In order for Lα,l to converge we need to assume that |α|∞ < |θ|
lq

q−1
∞ .

We are particularly interested in evaluating the products at θi:

〈〈 fen · Δσ, gem · Δσ 〉〉 |t=θi = An,m(f, g)(θi)en+m · Δσ.

Observe that q(θ) = 0 so not all products are non-zero.
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1. We begin with the “trivial” case f = g:

An,m(f, f) = (qn − qm)σ(f)f ;

in particular, if f = g = id, we get

An,m(id, id) = (qn − qm).

Compare this with the q-deformed Witt algebra in [HLS06, Example 3.1].
2. f = α(t − θq

s)i, g = qlΩj :

An,m(f, g) = Ωj
(
σ(α)(t− θq

s−1
)iqn+l − α(t− θq

s

)i(t− θ1/q)lqj+m
)
.

Notice that if j �= 0, we need to make a base change to k∞[[t] ].
3. By making a base change to T one can also look at f = α(t − θq

s)i, g = qjLα,l:

An,m(f, g) =
(
σ(α)(t− θq

s−1
)iLα,lqn+j − σ(α)α(t− θq

s

)i(t− θ1/q)jqm

− α(t− θq
s

)i(t− θ1/q)jLα,lqm−l
)
.

4. f = α(t − θq
s)i, g = ΩlLβ,l:

〈〈α(t− θq
s

)ien · Δσ,ΩlLβ,lem · Δσ 〉〉

=
(
σ(α)(t− θq

s−1
)iΩlLβ,lqn − ασ(β)(t− θq

s

)iΩlqm+l

− α(t− θq
s

)iΩlLβ,lqm
)
en+m · Δσ.

The reason why this last case is interesting is that when s = 1, the elements σ(fi), for 
fi = αi(t − θ)i, form a difference equation for a t-motive, with ΩlLαi,l a rigid analytic 
trivialization (i.e., β = αi above). This t-motive is intimately connected to the special 
values of Lαi,n for αi = θi. See [CY07], for instance.

4.3.2. The “t-motivic sl2”
As indicated before the special case m = −n is quite interesting. The reason for this 

is that the k[t]-span of {e−n · Δσ, e0 · Δσ, en · Δσ} generates a subalgebra of Lloc(C).
We will now look at the k[t][f, g, h]-span of {fe−n · Δσ, ge0 · Δσ, he1 · Δσ}.

• We begin in the situation 1 above: f = h = Ωn. We then get

An,−n = (1 − qn)Ω2n, A−n,0 = ΩnΔσ(g), An,0 = Ωn(q2ng − σ(g)).

Evaluating at t = θa, for a ≥ 1, we see that particularly interesting are the cases 
t = θ and t = θq

i :
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(i) t = θ:

An,−n = π̃−2n, A−n,0 = π̃−nΔσ(g), An,0 = −π̃−2nσ(g);

(ii) t = θq
i : A−n,n = A−n,0 = An,0 = 0.

• In situation 2, we now replace g with h to follow the current usage of notation. We 
begin by separating the cases j = 0, j > 0 and j < 0. For simplicity we assume that 
s = 1 throughout. In addition, we assume that l = 0. The case l �= 0 is similar but 
there is a shift in degrees. We invite the reader to analyse this case for her/him-self.
j = 0: Here we have

An,m(f, h) = σ(α)(t− θ)iqn − α(t− θq)iqm,

so

A−n,n = σ(α)(t− θ)i−n − α(t− θq)i(t− θ)n.

The other structure-constants become

A−n,0(f, g) = σ(α)g(t− θ)i−n − σ(g)(t− θq)i,

and

An,0(h, g) = g(t− θ)i+n − σ(g).

Notice that with our assumptions h = id. We now evaluate the different cases for 
i and n at t = θa.
(i) i = n:

A−n,n =
{
σ(α), a = 1 or q, else
σ(α) − α(θa − θq)n(θa − θ)n,

A−n,0 =
{
σ(α)g(θq), a = q, else
σ(α)g(θa) − σ(g)(θa)(θa − θq)n,

An,0 =
{
−σ(g)(θ), a = 1, else
g(θa)(θa − θ)2n − σ(g)(θa).

(ii) i > n:

A−n,n =

⎧⎪⎪⎨⎪⎪⎩
0, a = 1,
σ(α)(θq − θ)i−n, a = q, else
σ(α)(θa − θ)i−n − α(θa − θq)i(θa − θ)n,
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A−n,0 =

⎧⎪⎪⎨⎪⎪⎩
−σ(g)(θ)(θ − θq)i, a = 1,
σ(α)g(θq)(θq − θ)i−n, a = q, else
σ(α)g(θa)(θa − θ)i−n − σ(g)(θa)(θa − θq)i,

An,0 =
{
−σ(g)(θ), a = 1, else
g(θa)(θa − θ)2n − σ(g)(θa).

We skip the case i < n. In this case we must assume that g = β(t − θ)n.
j > 0: Here we have h = Ωj , so we get

A−n,n = Ωj
(
σ(α)(t− θ)i−n − α(t− θq)i(t− θ)j+n

)
,

A−n,0 = σ(α)g(t− θ)i−n − σ(g)(t− θq)i,

An,0 = Ωj
(
g(t− θ)n+j − σ(g)

)
.

When i = n we get

A−n,n =

⎧⎪⎪⎨⎪⎪⎩
(−π̃)−jσ(α), a = 1,
0, a = q, else
Ω(θa)j

(
σ(α) − α(θa − θq)n(θa − θ)j+n

)
,

A−n,0 =
{
σ(α)g(θq), a = q, else
σ(α)g(θa) − σ(g)(θa)(θa − θq)n,

An,0 =

⎧⎪⎪⎨⎪⎪⎩
−(−π̃)−jσ(g)(θ), a = 1,
0, a = q, else
Ω(θa)

(
g(θa)(θa − θ)n+j − σ(g)(θa)

)
.

We leave it to the reader to write out the other cases i > n and i < n.
j < 0: This case is actually vacuous since A−n,0 is undefined.

• We skip case 3 above and jump to case 4. Remember that g is now h. We assume 
from the start that i = n and s = 1. Hence, f = α(t − θq)n and h = ΩlLβ,l. We find 
that

A−n,n = Ωl
(
σ(α)Lβ,l − ασ(β)(t− θq)n(t− θ)n+l − α(t− θq)nLβ,l(t− θ)n,

A−n,0 = σ(α)g − ασ(g)(t− θq)n, and

An,0 = Ωl
(
σ(β)(t− θ)n+lg + Lβ,lg(t− θ)n − σ(g)Lβ,l

)
.

From this we see that

A−n,n =

⎧⎪⎪⎨⎪⎪⎩
(−π̃)−lσ(α)Lβ,l(θ), a = 1,
0, a = q,

and generally by the above formula,
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A−n,0 =

⎧⎪⎪⎨⎪⎪⎩
σ(α)g(θ) − ασ(g)(θ)(θ − θq)n, a = 1,
σ(α)g(θq), a = q,

and generally by the above formula,

An,0 =

⎧⎪⎪⎨⎪⎪⎩
−(−π̃)−lσ(g)(θ)Lβ,l(θ), a = 1,
0, a = q,

and generally by the above formula.

Notice the special choice g = id in the examples above.
The above results indicate that it could possibly be a worthwhile endeavour to continue 

the study of hom-Lie algebras within the theory of global function fields.
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