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1. Introduction

Let d ≥ 2 be a positive integer which is not a perfect square. It is well-known that 
the Pell equation

x2 − dy2 = ±1 (1)

has infinitely many positive integer solutions (x, y). Letting (x1, y1) be the smallest 
positive solution, all solutions are of the form (xn, yn) for some positive integer n, where

xn + yn
√
d = (x1 + y1

√
d)n for all n ≥ 1. (2)

Recently, Luca and Togbé [18] considered the Diophantine equation

xn = Fm, (3)

where {Fm}m≥0 is the sequence of Fibonacci numbers given by F0 = 0, F1 = 1, and 
Fm+2 = Fm+1 + Fm for all m ≥ 0. They proved that equation (3) has at most one 
solution (n, m) in positive integers except for d = 2, in which case equation (3) has the 
three solutions (n, m) = (1, 1), (1, 2), (2, 4).

Luca, Montejano, Szalay, and Togbé [17] considered the Diophantine equation

xn = Tm, (4)

where {Tm}m≥0 is the sequence of Tribonacci numbers given by T0 = 0, T1 = 1, T2 = 1, 
and Tm+3 = Tm+2 + Tm+1 + Tm for all m ≥ 0. They proved that equation (4) has at 
most one solution (n, m) in positive integers for all d except for d = 2 when equation 
(4) has the three solutions (n, m) = (1, 1), (1, 2), (3, 5) and when d = 3 case in which 
equation (4) has the two solutions (n, m) = (1, 3), (2, 5).

The purpose of this paper is to generalize the previous results. Let k ≥ 2 be an integer. 
We consider a generalization of Fibonacci sequence called the k–generalized Fibonacci 
sequence {F (k)

m }m≥2−k defined as

F (k)
m = F

(k)
m−1 + F

(k)
m−2 + · · · + F

(k)
m−k, (5)

with the initial conditions

F
(k)
−(k−2) = F

(k)
−(k−3) = · · · = F

(k)
0 = 0 and F

(k)
1 = 1.

We call F (k)
m the mth k–generalized Fibonacci number. Note that when k = 2, it coincides 

with the Fibonacci numbers and when k = 3 it is the Tribonacci number.
The first k + 1 nonzero terms in F (k)

m are powers of 2, namely

F
(k)
1 = 1, F

(k)
2 = 1, F

(k)
3 = 2, F

(k)
4 = 4, . . . , F (k)

k+1 = 2k−1.
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Furthermore, the next term is F (k)
k+2 = 2k − 1. Thus, we have that

F (k)
m = 2m−2 holds for all 2 ≤ m ≤ k + 1. (6)

We also observe that the recursion (5) implies the three–term recursion

F (k)
m = 2F (k)

m−1 − F
(k)
m−k−1 for all m ≥ 3,

which can be used to prove by induction on m that F (k)
m < 2m−2 for all m ≥ k + 2 (see 

also [4], Lemma 2).

2. Main result

In this paper, we show that there is at most one value of the positive integer x par-
ticipating in (1) which is a k–generalized Fibonacci number, with a couple of parametric 
exceptions that we completely characterize. This can be interpreted as solving the system 
of equations

xn1 = F (k)
m1

, xn2 = F (k)
m2

, (7)

with n2 > n1 ≥ 1, m2 > m1 ≥ 2, and k ≥ 2. The fact that F (k)
1 = F

(k)
2 = 1, allows us 

to assume that m ≥ 2. That is, if F (k)
m = 1 for some positive integer m, then we will 

assume that m = 2. As we already mentioned, the cases k = 2 and k = 3 have been 
solved completely by Luca and Togbé [18] and Luca, Montejano, Szalay, and Togbé [17], 
respectively. So, we focus on the case k ≥ 4.

We put ε := x2
1 − dy2

1 . Note that dy2
1 = x2

1 − ε, so the pair (x1, ε) determines d, y1. 
Our main result is the following:

Theorem 1. Let k ≥ 4 be a fixed integer. Let d ≥ 2 be a square-free integer. Assume that

xn1 = F (k)
m1

, and xn2 = F (k)
m2

(8)

for positive integers m2 > m1 ≥ 2 and n2 > n1 ≥ 1, where xn is the x–coordinate of the 
nth solution of the Pell equation (1). Then, either:

(i) n1 = 1, n2 = 2, m1 = (k + 3)/2, m2 = k + 2, and ε = 1; or
(ii) n1 = 1, n2 = 3, k = 3 × 2a+1 + 3a − 5, m1 = 3 × 2a + a − 1, m2 = 9 × 2a + 3a − 5

for some positive integer a and ε = 1.

3. Preliminary results

Here, we recall some of the facts and properties of the k–generalized Fibonacci se-
quence and solutions to Pell equations which will be used later in this paper.
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3.1. Notations and terminology from algebraic number theory

We begin by recalling some basic notions from algebraic number theory.
Let η be an algebraic number of degree d with minimal primitive polynomial over the 

integers

a0x
d + a1x

d−1 + · · · + ad = a0

d∏
i=1

(x− η(i)),

where the leading coefficient a0 is positive and the η(i)’s are the conjugates of η. Then 
the logarithmic height of η is given by

h(η) := 1
d

(
log a0 +

d∑
i=1

log
(
max{|η(i)|, 1}

))
.

In particular, if η = p/q is a rational number with gcd(p, q) = 1 and q > 0, then 
h(η) = log max{|p|, q}. The following are some of the properties of the logarithmic height 
function h(·), which will be used in the next sections of this paper without reference:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ), (9)

h(ηs) = |s|h(η) (s ∈ Z).

3.2. k-generalized Fibonacci numbers

It is known that the characteristic polynomial of the k–generalized Fibonacci numbers 
F (k) := (F (k)

m )m≥2−k, namely

Ψk(x) := xk − xk−1 − · · · − x− 1,

is irreducible over Q[x] and has just one root outside the unit circle. Let α := α(k)
denote that single root, which is located between 2 

(
1 − 2−k

)
and 2 (see [9]). To sim-

plify notation, in our application we shall omit the dependence on k of α. We shall use 
α(1), . . . , α(k) for all roots of Ψk(x) with the convention that α(1) := α.

We now consider for an integer k ≥ 2, the function

fk(z) = z − 1
2 + (k + 1)(z − 2) for z ∈ C. (10)

With this notation, Dresden and Du presented in [9] the following “Binet–like” formula 
for the terms of F (k):
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F (k)
m =

k∑
i=1

fk(α(i))α(i)m−1
. (11)

It was proved in [9] that the contribution of the roots which are inside the unit circle to 
the formula (11) is very small, namely that the approximation

∣∣∣F (k)
m − fk(α)αm−1

∣∣∣ < 1
2 holds for all m � 2 − k. (12)

It was proved by Bravo and Luca in [4] that

αm−2 ≤ F (k)
m ≤ αm−1 holds for all m ≥ 1 and k ≥ 2. (13)

The observations from the expressions (11) to (13) lead us to call α the dominant root
of F (k).

Before we conclude this section, we present some useful lemmas that will be used in 
the next sections on this paper. The following lemma was proved by Bravo and Luca 
([4], pp. 72–73).

Lemma 1 (Bravo, Luca). Let k ≥ 2, α be the dominant root of {F (k)
m }m≥2−k, and consider 

the function fk(z) defined in (10). Then:

(i) The inequalities

1
2 < fk(α) < 3

4 and |fk(α(i))| < 1, 2 ≤ i ≤ k

hold. In particular, the number fk(α) is not an algebraic integer.
(ii) The logarithmic height of fk(α) satisfies h(fk(α)) < 3 log k.

Next, we recall the following result due to Cooper and Howard ([8], Theorem 2.5, pp. 
234).

Lemma 2 (Cooper, Howard). For k ≥ 2 and m ≥ k + 2,

F (k)
m = 2m−2 +

�m+k
k+1 �−1∑
j=1

Cm,j 2m−(k+1)j−2,

where

Cm,j = (−1)j
[(

m− jk

j

)
−

(
m− jk − 2

j − 2

)]
.
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In the above, we have denoted by �x� the greatest integer less than or equal to x and 

used the convention that 
(
a

b

)
= 0 if either a < b or if one of a or b is negative.

Before going further, let us see some particular cases of Lemma 2.

Example 1.

(i) Assume that m ∈ [2, k + 1]. Then 1 < m+k
k+1 < 2, so �m+k

k+1 � = 1. In this case,

F (k)
m = 2m−2,

a fact which we already knew.
(ii) Assume that m ∈ [k + 2, 2k + 2]. Then 2 ≤ m+k

k+1 < 3, so �m+k
k+1 � = 2. In this case,

F (k)
m = 2m−2 + Cm,12m−(k+1)−2

= 2m−2 −
((

m− k

1

)
−
(
m− k − 2

−1

))
2m−k−3

= 2m−2 − (m− k)2m−k−3.

(iii) Assume that m ∈ [2k + 3, 3k + 3]. Then 3 ≤ m+k
k+1 < 4, so �m+k

k+1 � = 3. In this case,

F (k)
m = 2m−2 + Cm,12m−(k+1)−2 + Cm,22m−2(k+1)−2

= 2m−2 − (m− k)2m−k−3 +
((

m− 2k
2

)
−

(
m− 2k − 2

0

))
2m−2k−4

= 2m−2 − (m− k)2m−k−3 +
(

(m− 2k)(m− 2k − 1)
2 − 1

)
2m−2k−4

= 2m−2 − (m− k)2m−k−3 + (m− 2k + 1)(m− 2k − 2)2m−2k−5.

Gómez and Luca ([12], Lemma 2, pp. 189) derived from the Cooper and Howard’s 
formula the following asymptotic expansion of F (k)

m valid when 2 ≤ m < 2k.

Lemma 3 (Gómez, Luca). If m < 2k, then the following estimate holds:

F (k)
m = 2m−2

(
1 + δ1(m)k −m

2k+1 + δ2(m)f(k,m)
22k+2 + η(k,m)

)
, (14)

where f(k, m) := 1
2 (z − 1)(z + 2); z = 2k −m, η := η(k, m) is a real number satisfying

|η| < 4m3

23k+3 ,

and δi(m) is the characteristic function of the set {m > i(k + 1)} for i = 1, 2.
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3.3. Linear forms in logarithms and continued fractions

To prove our main result Theorem 1, we need to use several times a Baker–type lower 
bound for a nonzero linear form in logarithms of algebraic numbers. There are many 
such in the literature like that of Baker and Wüstholz from [2]. We start by recalling the 
result of Bugeaud, Mignotte, and Siksek ([6], Theorem 9.4, pp. 989), which is a modified 
version of the result of Matveev [19]. This result is one of our main tools in this paper.

Theorem 2 (Matveev according to Bugeaud, Mignotte, Siksek). Let γ1, . . . , γt be positive 
real algebraic numbers in a number field K of degree D, b1, . . . , bt be nonzero integers, 
and assume that

Λ := γb1
1 · · · γbt

t − 1, (15)

is nonzero. Then,

log |Λ| > −1.4 × 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At,

where

B ≥ max{|b1|, . . . , |bt|},

and

Ai ≥ max{Dh(γi), | log γi|, 0.16}, for all i = 1, . . . , t.

When t = 2 and γ1 and γ2 are positive and multiplicatively independent, we can use 
a result of Laurent, Mignotte, and Nesterenko [14]. Namely, let in this case B1 and B2
be real numbers larger than 1 such that

logBi ≥ max
{
h(γi),

| log γi|
D

,
1
D

}
, for i = 1, 2,

and put

b′ := |b1|
D logB2

+ |b2|
D logB1

.

Put

Γ := b1 log γ1 + b2 log γ2. (16)

We note that Γ �= 0 because γ1 and γ2 are multiplicatively independent. The following 
result is due to Laurent, Mignotte, and Nesterenko ([14], Corollary 2, pp. 288).
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Theorem 3 (Laurent, Mignotte, Nesterenko). With the above notations, assuming that 
η1 and η2 are positive and multiplicatively independent, then

log |Γ| > −24.34D4
(

max
{

log b′ + 0.14, 21
D

,
1
2

})2

logB1 logB2. (17)

Note that with Γ given by (16), we have eΓ − 1 = Λ, where Λ is given by (15) in case 
t = 2, which explains the connection between Theorem 2 and Theorem 3.

During the course of our calculations, we get some upper bounds on our variables 
which are too large, thus we need to reduce them. To do so, we use some results from 
the theory of continued fractions. Specifically, for a nonhomogeneous linear form in two 
integer variables, we use a slight variation of a result due to Dujella and Pethő ([10], 
Lemma 5a, pp. 303–304), which itself is a generalization of a result of Baker and Dav-
enport [1].

For a real number X, we write ||X|| := min{|X −n| : n ∈ Z} for the distance from X
to the nearest integer.

Lemma 4 (Dujella, Pethő). Let M be a positive integer, p/q be a convergent of the con-
tinued fraction of the irrational number τ such that q > 6M , and A, B, μ be some real 
numbers with A > 0 and B > 1. Furthermore, let ε := ||μq|| − M ||τq||. If ε > 0, then 
there is no solution to the inequality

0 < |uτ − v + μ| < AB−w,

in positive integers u, v, and w with

u ≤ M and w ≥ log(Aq/ε)
logB .

The above lemma cannot be applied when μ = 0 (since then ε < 0). In this case, we 
use the following classical result in the theory of Diophantine approximation, which is 
the well-known Legendre criterion.

Lemma 5 (Legendre). Let τ be real number and x, y integers such that
∣∣∣∣τ − x

y

∣∣∣∣ < 1
2y2 . (18)

Then x/y = pk/qk is a convergent of τ . Furthermore,
∣∣∣∣τ − x

y

∣∣∣∣ ≥ 1
(ak+1 + 2)y2 . (19)

Finally, the following lemma is also useful. It is a result due to Gúzman and Luca 
([13], Lemma 7, pp. 173).
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Lemma 6 (Gúzman, Luca). If m � 1, T > (4m2)m, and T > x/(log x)m, then

x < 2mT (log T )m.

3.4. Pell equations and Dickson polynomials

Let d ≥ 2 be square-free. We put δ := x1 +
√
x2

1 − ε for the minimal positive integer 
x1 such that

x2
1 − dy2

1 = ε, ε ∈ {±1}

for some positive integer y1. Then,

xn +
√
dyn = δn and xn −

√
dyn = ηn, where η := εδ−1.

From the above, we get

2xn = δn + (εδ−1)n for all n ≥ 1. (20)

There is a formula expressing 2xn in terms of 2x1 by means of the Dickson polynomial 
Dn(2x1, ε), where

Dn(x, ν) =
�n/2�∑
i=0

n

n− i

(
n− i

i

)
(−ν)ixn−2i.

These polynomials appear naturally in many number theory problems and results, most 
notably in a result of Bilu and Tichy [3] concerning polynomials f(X), g(X) ∈ Z[X] such 
that the Diophantine equation f(x) = g(y) has infinitely many integer solutions (x, y).

Example 2.

(i) n = 2. We have

2x2 =
1∑

i=0

2
2 − i

(
2 − i

i

)
(−ε)i(2x1)2−2i = 4x2

1 − 2ε, so x2 = 2x2
1 − ε.

(ii) n = 3. We have

2x3 =
1∑

i=0

3
3 − i

(
3 − i

i

)
(−ε)i(2x1)3−2i = (2x1)3 − 3ε(2x1), so x3 = 4x3

1 − 3εx1.
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(iii) n ≥ 4. We have

2xn =
�n/2�∑
i=0

n

n− i

(
n− i

i

)
(−ε)i(2x1)n−2i

= (2x1)n − nε(2x1)n−2 + n(n− 3)
2 (2x1)n−4 +

�n/2�∑
i≥3

n(−ε)i

n− i

(
n− i

i

)
(2x1)n−2i.

The following variation of a result of Luca [16] is useful. Let P (m) denote the largest 
prime factor of the positive integer m.

Lemma 7. If P (xn) ≤ 5, then either n = 1, or n = 2 and x2 ∈ {3, 9, 243}.

Proof. In [16], it was shown that if ε = 1 and P (xn) ≤ 5, then n = 1. We give here 
a proof for both cases ε ∈ {±1}. Since xn = y2n/yn, where ym = (δm − ηm)/(δ − η), 
it follows, by Carmichael’s Primitive Divisor Theorem [7], that if n ≥ 7, then xn has a 
prime factor which is primitive for y2n. In particular, this prime is ≥ 2n − 1 > 5. Thus, 
n ≤ 6. Next, assume that n > 1. If n ∈ {3, 6}, then xn is of the form x(4x2 ± 3), where 
x = x� with 
 = n/3 ∈ {1, 2}. The factor 4x2 ± 3 is larger than 1 (since xn > x�) odd 

(hence, coprime to 2), not a multiple of 9, and coprime to 5 since 
(
±3
5

)
= −1. Thus, the 

only possibility is 4x2 ± 3 = 3, equation which does not have a positive integer solution 
x. If n ∈ {2, 4}, then xn = 2x2 ± 1, where x = x� and 
 = n/2 ∈ {1, 2}. Further, if 

 = 2 only the case with the −1 on the right is possible. The expression 2x2 − 1 is odd, 

and coprime to both 3 and 5 since 
(

2
3

)
=

(
2
5

)
= −1, so the case xn = 2x2

� − 1 is not 

possible. Finally, if xn = 2x2
� + 1, then n = 2, 
 = 1. Further, 2x2 + 1 is coprime to 2

and 5 so we must have 2x2 + 1 = 3b for some exponent b. Thus, x2 = (3b − 1)/(3 − 1), 
and the only solutions are b ∈ {1, 2, 5} by a result of Ljunggren [15]. �

Since none of 3, 9, 243 are of the form F (k)
m for any m ≥ 1, k ≥ 4, for our practical 

purpose we will use the implication that if xn = F
(k)
m and P (xn) ≤ 5, then n = 1.

4. A small linear form in logarithms

We assume that (x1, y1) is the fundamental solution of the Pell equation (1). As in 
Subsection 3.4, we set

x2
1 − dy2

1 =: ε, ε ∈ {±1},

and put

δ := x1 +
√
dy1 and η := x1 −

√
dy1 = εδ−1.
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From (2) (or (20)), we get

xn = 1
2 (δn + ηn) . (21)

Since δ ≥ 1 +
√

2 > 2 > α, it follows that the estimate

δn

α2 ≤ xn < δn holds for all n ≥ 1. (22)

We now assume, as in the hypothesis of Theorem 1, that (n1, m1) and (n2, m2) are pairs 
of positive integers with n1 < n2, 2 ≤ m1 < m2 and

xn1 = F (k)
m1

and xn2 = F (k)
m2

.

By setting (n, m) = (nj , mj) for j ∈ {1, 2} and using the inequalities (13) and (22), we 
get that

αm−2 ≤ F (k)
m = xn < δn and δn

α2 ≤ xn = F (k)
m ≤ αm−1. (23)

Hence,

nc1 log δ ≤ m + 1 ≤ nc1 log δ + 3, c1 := 1/ logα. (24)

Next, by using (11) and (21), we get

1
2 (δn + ηn) = fk(α)αm−1 + (F (k)

m − fk(α)αm−1),

so

δn(2fk(α))−1α−(m−1) − 1 = −ηn

2fk(α)αm−1 + (F (k)
m − fk(α)αm−1)
fk(α)αm−1 .

Hence, by using (12) and Lemma 1(i), we have

|δn(2fk(α))−1α−(m−1) − 1| ≤ 1
αm−1δn

+ 1
αm−1 <

1.5
αm−1 . (25)

In the above, we have used the facts that 1/fk(α) < 2, |F (k)
m − fk(α)αm−1| < 1/2, 

|η| = δ−1, as well as the fact that δ > 2. We let Λ be the expression inside the absolute 
value of the left–hand side above. We put

Γ := n log δ − log(2fk(α)) − (m− 1) logα. (26)
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Note that eΓ − 1 = Λ. Inequality (25) implies that

|Γ| < 3
αm−1 . (27)

Indeed, for m ≥ 3, we have that 1.5
αm−1 < 1

2 , and then inequality (27) follows from (25)
via the fact that

|eΓ − 1| < x implies |Γ| < 2x, whenever x ∈ (0, 1/2), (28)

with x := 1.5
αm−1 . When m = 2, we have xn = F

(k)
m = 1, so n = 1, ε = 1, δ = 1 +

√
2, and 

then

|Γ| = | log(1 +
√

2) − log(2fk(α)α)| < max{log(1 +
√

2), log(2fk(α)α)} < log 3 <
3
α
,

where we used the fact that 1 < 2fk(α)α < 3 (see Lemma 1, (i)). Hence, inequality (26)
holds for all pairs (n, m) with xn = F

(k)
m with m ≥ 2.

Let us recall what we have proved, since this will be important later-on.

Lemma 8. If (n, m) are positive integers with m ≥ 2 such that xn = F
(k)
m , then with 

δ = x1 +
√
x2

1 − ε, we have

|n log δ − log(2fk(α)) − (m− 1) logα| < 3
αm−1 . (29)

5. Bounding n in terms of m and k

We next apply Theorem 2 on the left-hand side of (25). First we need to check that

Λ = δn(2fk(α))−1α−(m−1) − 1

is nonzero. Well, if it were, then δn = 2fk(α)αm−1. So, 2fk(α) = δnα−(m−1) is a unit. To 
see that this is not so, we perform a norm calculation of the element 2fk(α) in L := Q(α). 
For i ∈ {2, . . . , k}, we have that |α(i)| < 1, so that, by the absolute value inequality, we 
have

|2fk(α(i))| = 2|α(i) − 1|
|2 + (k + 1)(α(i) − 2)| ≤

4
(k + 1)(2 − |α(i)|) − 2

<
4

k − 1 ≤ 4
5 for k ≥ 6.

Thus, for k ≥ 6, using also Lemma 1 (i), we get

|NL/Q(2fk(α))| < |2fk(α)|
k∏

|2fk(α(i))| < 3
2

(
4
5

)k−1

≤ 3
2

(
4
5

)5

< 1.

i=2
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This is for k ≥ 6. For k = 4, 5 one checks that |NL/Q(2fk(α))| < 1 as well. In fact, the 
norm of 2fk(α) has been computed (for all k ≥ 2) in [11], and the formula is

|NL/Q(2fk(α))| = 2k(k − 1)2

2k+1kk − (k + 1)k+1 .

One can check directly that the above number is always smaller than 1 for all k ≥ 2 (in 
particular, for k = 4, 5). Thus, Λ �= 0, and we can apply Theorem 2. We take

t = 3, γ1 = δ, γ2 = 2fk(α), γ3 = α, b1 = n, b2 = −1, b3 = −(m− 1).

We take K = Q(
√
d, α) which has degree D ≤ 2k. Since δ ≥ 1 +

√
2 > α, the second 

inequality in (23) tells us right-away that n ≤ m, so we can take B := m. We have 
h(γ1) = (1/2) log δ and h(γ3) = (1/k) logα. Further,

h(γ2) = h(2fk(α)) ≤ h(2) + h(fk(α)) < 3 log k + log 2 < 4 log k (30)

by Lemma 1 (ii). So, we can take A1 := k log δ, A2 := 8k log k and A3 := 2 log 2. Now 
Theorem 2 tells us that

log |Λ| > −1.4 × 306 × 34.5 × (2k)2(1 + log 2k)(1 + logm)(k log δ)(8k log k)(2 log 2),

> −1.6 × 1013k4(log k)2 log(δ)(1 + logm).

In the above, we used the fact that k ≥ 4, therefore 2k ≤ k3/2, so

1 + log(2k) ≤ 1 + 1.5 log k < 2.5 log k.

By comparing the above inequality with inequality (25), we get

(m− 1) logα− log 3 < 1.6 × 1013k4(log k)2(log δ)(1 + logm).

Thus,

(m + 1) logα < 1.7 × 1013k4(log k)2(log δ)(1 + logm).

Since αm+1 ≥ δn by the second inequality in (23), we get that

n < 1.7 × 1013k4(log k)2(1 + logm). (31)

Furthermore, since α > 1.927, we get

m < 2.6 × 1013k4(log k)2(log δ)(1 + logm). (32)

We now record what we have proved so far, which are estimates (31) and (32).
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Lemma 9. If xn = F
(k)
m and m ≥ 2, then

n < 1.7 × 1013k4(log k)2(1 + logm) and m < 2.6 × 1013k4(log k)2(log δ)(1 + logm).

Note that in the above bound, n is bounded only in terms of m and k (but not δ).

6. Bounding m1, n1, m2, n2 in terms of k

Next, we write down inequalities (29) for both pairs (n, m) = (nj , mj) with j = 1, 2, 
multiply the one for j = 1 with n2 and the one with j = 2 with n1, subtract them and 
apply the triangle inequality to the result to get that

|(n2 − n1) log(2fk(α)) − (n1m2 − n2m1 + n2 − n1) logα|
≤ n2|n1 log δ − log(2fk(α)) − (m1 − 1) logα|
+ n1|n2 log δ − log(2fk(α)) − (m2 − 1) logα|

≤ 3n2

αm1−1 + 3n1

αm2−1 <
6n2

αm1−1 .

Therefore, we have

|(n2 − n1) log(2fk(α)) − (n1m2 − n2m1 + n2 − n1) logα| < 6n2

αm1−1 . (33)

We are now set to apply Theorem 3 with

γ1 = 2fk(α), γ2 = α, b1 = n2 − n1, b2 = −(n1m2 − n2m1 + n2 − n1).

The fact that γ1 and γ2 are multiplicatively independent follows because α is a unit and 
2fk(α) isn’t by a previous argument. Next, we observe that n2 − n1 < n2, while by the 
absolute value of the inequality in (33), we have

|n1m2 − n2m1 + n2 − n1| ≤ (n2 − n1)
log(2fk(α))

logα + 6n2

αm1−1 logα < 6n2.

In the above, we used that

log(2fk(α))
logα <

log(1.5)
logα < 1 and 6

αm1−1 logα < 5,

because α ≥ α4 > 1.92 and m1 ≥ 2. We take K := Q(α) which has degree D = k. So, 
we can take

logB1 = 4 log k > max
{
h(γ1),

| log γ1|
k

,
1
k

}

(see inequality (30)), and
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logB2 = 1
k

= max
{
h(γ2),

| log γ2|
k

,
1
k

}
.

Thus,

b′ = (n2 − n1)
k × (1/k) + |n1m2 − n2m1 + n2 − n1|

4k log k < n2 + 6n2

4k log k < 1.3n2.

Now Theorem 3 tells us that with

Γ := (n2 − n1) log(2fk(α)) − (n1m2 − n2m1 + n2 − n1) logα,

we have

log |Γ| > −24.34 × k4
(

max
{

log(1.3n2) + 0.14, 21
k
,
1
2

})2

(4 log k)
(

1
k

)
.

Thus,

log |Γ| > −97.4k3 log k
(

max
{

log(1.5n2),
21
k
,
1
2

})2

,

where we used the fact that log(1.3n2) + 0.14 = log(1.3 × e0.14n2) < log(1.5n2). By 
combining the above inequality with (33), we get

(m1 − 1) logα− log(6n2) < 97.4k3 log k
(

max
{

log(1.5n2),
21
k
,
1
2

})2

. (34)

Since log(1.5n2) ≥ log 3 > 1.098, the maximum in the right–hand side above cannot be 
1/2. If it is not log(1.5n2), we then get

1.098 < log(1.5n2) ≤
21
k

≤ 5.25, so k ≤ 19 and n2 ≤ 127. (35)

Then, the above inequality (34) gives

(m1 + 1) logα < 97.4 × 212k log k + log(6 × 127) + 2 logα

< 4.3 × 105k log k. (36)

Since α ≥ 1.927, we get that

m1 + 1 < 6.6 × 105k log k. (37)

Further, we have
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(α(m1+1))n2 > (3F (k)
m1

)n2 ≥ (2F (k)
m1

+ 1)n2 = (2xn1 + 1)n2

= (δn1 + (1 + ηn1))n2 > δn1n2 = (δn2)n1

= (2xn2 − ηn2)n1 > 2xn2 − 1 > xn2 = F (k)
m2

> αm2−2,

so

m2 ≤ 1 + n2(m1 + 1) < 8.4 × 107k log k. (38)

Since n1 < n2, inequalities (35), (37) and (38) bound m1, n1, m2, n2 in terms of k when 
the maximum in the right–hand side of (34) is 21/k.

Assume next that the maximum in the right–hand side of (34) is log(1.5n2). Then

(m1 + 1) logα < 97.4k3 log k(log(1.5n2))2 + 2 logα + log(6n2)

< 97.4k3(log k)(log 1.5 + logn2)2 + log(24n2)

< 97.5 × 2.56k3(log k)(log n2)2 + 6 logn2

< 249.6k3(log k)(log n2)2 + 6 logn2

< 249.6k3(log k)(log n2)2
(

1 + 6
249.6k3(log k)(logn2)

)

< 250k3(log k)(log n2)2. (39)

For the above inequality, we used that 2 logα + log(6n2) < log(24n2) ≤ 6 logn2 (since 
n2 ≥ 2 and α < 2), the fact that log(1.5n2) < 1.6 logn2 holds for n2 ≥ 2 and the fact 
that

1 + 6
249.6k3(log k)(log n2)

< 1.0004 holds for k ≥ 4 and n2 ≥ 2.

In turn, since α ≥ α4 ≥ 1.927, (39) yields

m1 < 4 × 102k3(log k)(log n2)2. (40)

Since αm1+1 > δn1 ≥ δ (see the second relation in (25)), we get

log δ ≤ n1 log δ < (m1 + 1) logα < 250k3(log k)(log n2)2. (41)

By combining the above inequality with Lemma 9 for (n, m) := (n2, m2) together with 
the fact that n2 < m2, we get

m2 < 2.6 × 1013k4(log k)2(log δ)(1 + logm2)

< 2.6 × 1013k4(log k)2(2.5 × 102k3(log k))(logm2)2(1.92 logm2)

< 1.25 × 1016k7(log k)3(logm2)3. (42)
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In the above, we used that 1 + logm2 ≤ 1.92 logm2 holds for all m2 ≥ 3. We now apply 
Lemma 6 with m := 3 and T := 1.25 × 1016k7(log k)3 (which satisfies the hypothesis 
T > (4 ·m2)m), to get

m2 < 8 × 1.25 × 1016k7(log k)3(log T )3

< 1017k7(log k)3(7 log k + 3 log log k + log(1.25 × 1016))3

< 1017 × (4.1 × 105)k7(log k)6

< 4.1 × 1022k7(log k)6. (43)

In the above calculation, we used that

(
7 log k + 3 log log k + log(1016)

log k

)3

< 4.1 × 105 for all k ≥ 4.

By substituting the upper bound (43) for m2 in the first inequality of Lemma 9, we get

n2 < 1.7 × 1013k4(log k)2(1 + logm2)

< 1.7 × 1013k4(log k)2(1 + log(4.1 × 1022) + 7 log k + 6 log log k)

< 1.7 × 1013 × 48k4(log k)3

< 8.2 × 1014k4(log k)3, (44)

where we used the fact that

7 log k + 6 log log k + log(4.1 × 1022) + 1
log k < 48 for all k ≥ 4.

Finally, if we substitute the upper bound (44) for n2 into the inequality (39), we get

(m1 + 1) logα < 2.5 × 102k3(log k)(logn2)2

< 2.5 × 102k3(log k)(1 + log(4 × 1016) + 4 log k + 3 log log k)2

< 2.5 × 102(9.2 × 102)k3(log k)3

< 2.3 × 105k3(log k)3. (45)

In the above, we used that

(
4 log k + 3 log log k + log(3.4 × 1016) + 1

log k

)2

< 9.2 × 102 for all k ≥ 4.

Thus, using α > 1.927, we get

m1 < 3.6 × 105k3(log k)3. (46)
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Thus, inequalities (43), (44), (46) give upper bounds for m2, n2 and m1, respectively, in 
the case in which the maximum in the right–hand side of inequality (34) is log(1.5n2). 
Comparing inequalities (43) with (38), (44) with (35), and (45) with (37), respectively, 
we conclude that (43), (44) and (46) always hold. Let us summarise what we have proved 
again, which are the bounds (43), (44) and (46).

Lemma 10. If xnj
= F

(k)
mj for j ∈ {1, 2} with 2 ≤ m1 < m2, and n1 < n2, then

m1 < 3.6 × 105k3(log k)3, m2 < 4.1 × 1022k7(log k)6, n2 < 8.2 × 1014k4(log k)3.

Since n1 ≤ m1, the above lemma gives bounds for all of m1, n1, m2, n2 in terms of k
only.

7. The case k > 500

Lemma 11. If k > 500, then

8m3
2 < 2k. (47)

Proof. In light of the upper bound given by Lemma 10 on m2, this is implied by

4.1 × 1022k7(log k)6 < 2k/3−1,

which indeed holds for all k ≥ 462 as confirmed by Mathematica. �
From now on, we assume that k > 500. Thus, (47) holds. The main result of this 

section is the following.

Lemma 12. If k > 500, then m1 ≤ k+1. In particular, xn1 = F
(k)
m1 = 2m1−2, and n1 = 1.

For the proof, we go to Lemma 3 and write for m := mj with j = 1, 2 the following 
approximations

F (k)
m = 2m−2(1 + ζm) = 2m−2

(
1 + δm

(
k −m

2k+1

)
+ γm

)
, (48)

where δm ∈ {0, 1} and

|ζm| ≤ m

2k+1 + m2

22k+2 + 4m3

23k+3 <
1

22k/3

(
1
2 + 1

22+2k/3 + 1
24+4k/3

)
<

1
22k/3 , (49)

|γm| ≤ m2

22k+2 + 4m3

23k+3 <
1

24k/3

(
1
22 + 1

22k/3+4

)
<

1
24k/3 ,

where we used that m < 2k/3−1 (see (47)) and k ≥ 4. We then write
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|F (k)
m − xn| = 0,

from where we deduce

|2m−1(1 + ζm) − δn| = 1
δn

. (50)

Thus,

|2m−1 − δn| = 1
δn

+ |ζm|2m−1,

so

|1 − δn2−(m−1)| = 1
2m−1δn

+ |ζm| < 1
2m + 1

22k/3 ≤ 1
2min{2k/3−1,m−1} . (51)

In the above, we used that δn ≥ δ ≥ 1 +
√

2 > 2. The right–hand side above is < 1/2, 
so we may pass to logarithmic form as in (28) to get that

|n log δ − (m− 1) log 2| < 1
2min{2k/3−2,m−2} . (52)

We write the above inequality for (n1, m1) and (n2, m2) cross-multiply the one for 
(n1, m1) by n2 and the one for (n2, m2) by n1 and subtract them to get

|(n1(m2 − 1) − n2(m1 − 1)) log 2| < n2

2min{2k/3−2,m1−2} + n1

2min{2k/3−2,m2−2} .

Assume n1(m2 − 1) �= n2(m1 − 1). Then the left–hand side above is ≥ log 2 > 1/2. In 
particular, either

2min{2k/3−2,m1−2} < 4n2 or 2min{2k/3−2,m2−2} < 4n1.

The first one is weaker than the second one and is implied by the second one, so the first 
one must hold. If the minimum is 2k/3 − 2, we then get

22k/3−2 ≤ 4n2 < 2k/3+1,

because n2 ≤ m2 < 2k/3−1, so 2k/3 − 2 < k/3 + 1, or k < 9, a contradiction. Thus,

2m1−2 < 4n2 < 2k/3+1,

getting

m1 < k/3 + 3 < k + 2.

Thus, by Example 1 (i), we get that xn1 = F
(k)
m1 = 2m1−2, which by Lemma 7, implies 

that n1 = 1.
So, we got the following partial result.
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Lemma 13. For k > 500, either n1 = 1 and m1 < k/3 +3, or n1/n2 = (m1−1)/(m2−1).

To finish the proof of Lemma 12, assume for a contradiction that m1 ≥ k+2. Lemma 13
shows that n1/n2 = (m1 − 1)/(m2 − 1). Further, in (48), we have δm1 = δm2 = 1. Thus, 
we can rewrite equation (50) using γm for both m ∈ {m1, m2}. We get

∣∣∣∣2m−1
(

1 + k −m

2k+1 + γm

)
− δn

∣∣∣∣ = 1
δn

,

so ∣∣∣∣2m−1
(

1 + k −m

2k+1

)
− δn

∣∣∣∣ ≤ 1
δn

+ 2m−1|γm|,

therefore ∣∣∣∣
(

1 + k −m

2k+1

)
− δn2−(m−1)

∣∣∣∣ ≤ 1
2m−1δn

+ |γm|.

Now δn ≥ αm−2 by the first inequality in (23). Thus,

2m−1δn ≥ 2m−1αm−2 ≥ 2m−120.9(m−2) > 21.9m−3 > 21.9k > 24k/3,

where we used the fact that m ≥ k + 2 and that α ≥ α4 = 1.9275 . . . > 20.9. Since also 
|γm| ≤ 1

24k/3 , we get that

∣∣∣∣
(

1 + k −m

2k+1

)
− δn2−(m−1)

∣∣∣∣ < 2
24k/3 .

The expression 1 + (k −m)/2k+1 is in [1/2, 2]. Thus,

∣∣∣1 − δn2−(m−1)(1 + (k −m)/2k+1)−1
∣∣∣ < 4

24k/3 .

The right–hand side is < 1/2 for all k ≥ 4. We pass to logarithms via implication (28)
getting that

∣∣∣∣n log δ − (m− 1) log 2 − log
(

1 + k −m

2k+1

)∣∣∣∣ < 8
24k/3 .

We evaluate the above in (n, m) := (nj , mj) for j = 1, 2. We multiply the expression for 
j = 1 with n2, the one with j = 2 with n1, subtract them and use n2(m1−1) = n1(m2−1), 
to get

∣∣∣∣n1 log
(

1 + k −m2
k+1

)
− n2

(
1 + k −m1

k+1

)∣∣∣∣ < 16n2
4k/3 . (53)
2 2 2
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One checks that in our range we have

16n2 < 2k/4. (54)

By Lemma 10, this is fulfilled if

16 × 8.2 × 1014k4(log k)3 < 2k/4,

and Mathematica checks that this is so for all k ≥ 346. Thus, inequality (53) implies
∣∣∣∣n1 log

(
1 + k −m2

2k+1

)
− n2

(
1 + k −m1

2k+1

)∣∣∣∣ < 2k/4

24k/3 <
1

213k/12 .

Using the fact that the inequality

| log(1 + x) − x| < 2x2 holds for |x| < 1/2,

with xj := (k −mj)/2k+1 for j = 1, 2, and noting that 2x2
j < 2m2

2/22k+2 holds for both 
j = 1, 2, we get ∣∣∣∣n1(k −m2)

2k+1 − n2(k −m1)
2k+1

∣∣∣∣ < 4n2m
2
2

22k+2 + 1
213k/12 .

In the right–hand side, we have

4n2m
2
2

22k+2 <
22+(k/4−4)+2(k/3−1)

22k+2 = 1
213k/12+5 .

Hence, ∣∣∣∣n1(k −m2)
2k+1 − n2(k −m1)

2k+1

∣∣∣∣ < 2
213k/12 ,

which implies

|n1(k −m2) − n2(k −m1)| <
4

2k/12
.

Since k > 500, the right–hand side is smaller than 1. Since the left–hand side is an 
integer, it must be the zero integer. Thus,

n1/n2 = (k −m1)/(k −m2).

Since also n1/n2 = (m1−1)/(m2−1), we get that (m1−1)/(m2−1) = (m1−k)/(m2−k), 
or (m1 − 1)/(m1 − k) = (m2 − 1)/(m2 − k). This gives 1 + (k − 1)/(m1 − k) = 1 + (k −
1)/(m2 − k), so m1 = m2, a contradiction.

Thus, m1 ≤ k + 1. By Example 1 (i), we get that xn1 = 2m1−2, which by Lemma 7
implies that n1 = 1. This finishes the proof of Lemma 12.
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8. The case m1 > 376

Since k > 500, we know, by Lemma 12, that m1 ≤ k + 1 and n1 = 1. In this section, 
we prove that if m1 > 376, then the only solutions are the ones shown at (i) and (ii) of 
the Theorem 1. This finishes the proof of Theorem 1 in the case k > 500 and m1 > 376. 
The remaining cases are handled computationally in the next section.

8.1. A lower bound for m1 in terms of m2

The main goal of this subsection is to prove the following result.

Lemma 14. Assume that m1 > 376. Then 2m1−6 > max{k4, n2
2}.

Proof. Assume m1 > 376. We evaluate (51) in (n, m) := (n2, m2). Further, by Lemma 7, 
xn2 is not a power of 2, so m2 ≥ k + 2, therefore min{2k/3 − 2, m2 − 2} = 2k/3 − 2, 
getting

|n2 log δ − (m2 − 1) log 2| < 1
22k/3−2 . (55)

We write a lower bound for the left–hand side using Theorem 3. Let

Λ := n2 log δ − (m2 − 1) log 2. (56)

We have

γ1 = δ, γ2 = 2, b1 = n2, b2 = −(m2 − 1).

We have K := Q(δ) has D = 2. Further, h(γ1) = (log δ)/2 and h(γ2) = log 2. Thus, we 
can take logB1 = (log δ)/2, logB2 = log 2,

b′ = n2

2 log 2 + m2 − 1
log δ < m2

(
1

2 log 2 + 1
log(1 +

√
2)

)
< 2m2.

Furthermore, Theorem 3 is applicable since γ1 and γ2 are real positive and multiplica-
tively independent (this last condition follows because δ is a unit and 2 isn’t). Theorem 3
shows that

log |Λ| > −24.34·24E2(log δ/2) log 2 > −195 log 2(log δ)E2, E := max{log(3m2), 10.5}2,

where we used log(3m2) > 0.14 + log(2m2) > 0.14 + log b′. Thus,

|Λ| > 2−195(log δ)E2
. (57)



JID:YJNTH AID:6337 /FLA [m1L; v1.260; Prn:29/08/2019; 12:51] P.23 (1-40)
M. Ddamulira, F. Luca / Journal of Number Theory ••• (••••) •••–••• 23
Comparing (55) and (57), we get

195(log δ)E2 > 2k/3 − 2. (58)

Since

2m1−1 = 2x1 = δ + ε

δ
>

δ

2 ,

we get δ < 2m1 , so log δ < m1 log 2. Thus,

(m1 log 2)(195E2) > 2k/3 − 2.

Now let us assume that in fact the inequality 2m1−6 < max{k4, n2
2} holds. Assume first 

that the above maximum is n2
2. Then m1 log 2 < log(26n2

2). We thus get that

2k/3 − 2 < 195 log(64n2
2)E2.

Since by Lemma 10, 64n2
2 < 64 × 8.22 × 1028k8(log k)6, and 3m2 < 12.3 × 1022k7(log k)5, 

we get that

2k/3 − 2 < 195 log(64 × 8.22 × 1028k8(log k)6) max{10.5, log(12.3 × 1022k7(log k)5)}2,

which gives k < 4 × 109. Thus,

n2 < 8.2 × 1014k4(log k)3 < 5 × 1055,

and since

2m1−6 ≤ n2
2 < (5 × 1055)2,

we get m1 < 6 +2(log 5 ×1055)/(log 2) < 377, contradicting the fact that m1 > 376. This 
was in the case n2 ≥ k2. But if n2 < k2, then max{n2

2, k
4} = k4 and the same argument 

gives us an even smaller bound on k; hence, on m1. This contradiction finishes the proof 
of this lemma. �
8.2. We have m2 − 1 = n2(m1 − 1)

The aim of this subsection is to prove the following result.

Lemma 15. If k > 500 and m1 > 376, then n2(m1 − 1) = m2 − 1.
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For the proof, we write

2x1 = δ + ε

δ
= 2F (k)

m1
= 2m1−1;

2xn2 = δn2 +
( ε

δ

)n2
= 2F (k)

m2
.

Thus,

2F (k)
m2

=
�n2/2�∑
i=0

n2

n2 − i

(
n2 − i

i

)
(−ε)i2(m1−1)(n2−2i)

= 2(m1−1)n2

⎛
⎝1 +

�n2/2�∑
i=1

n2

n2 − i

(
n2 − i

i

)(
− ε

22(m1−1)

)i

⎞
⎠ .

Note that

n2

n2 − i

(
n2 − i

i

)
< ni

2.

Thus, ∣∣∣∣ n2

n2 − i

(
n2 − i

i

)(
− ε

22(m1−1)

)i
∣∣∣∣ < ( n2

22(m1−1)

)i

. (59)

Since m1 > 376, we have 2m1−6 > n2
2 by Lemma 14. In this case, (59) tells us that∣∣∣∣ n2

n2 − i

(
n2 − i

i

)(
− ε

22(m1−1)

)i
∣∣∣∣ < 1

21.5m1i

( n2

20.5m1−2

)i

<
1

21.5m1i

(
1
2i

)
. (60)

Combining (60) with (49),

2xn2 = 2(m1−1)n2

⎛
⎝1 +

�n2/2�∑
i=1

n2

n2 − i

(
n2 − i

i

)(
− ε

22(m1−1)

)i

⎞
⎠

:= 2(m1−1)n2(1 + ζ ′n2
)

2F (k)
m2

= 2m2−1 (1 + ζm2) ,

where

ζ ′n2
:=

�n2/2�∑
i=1

n2

n2 − i

(
n2 − i

i

)(
− ε

22(m1−1)

)i

.

Since 2xn2 = 2F (k)
m2 , we then have

|2(m1−1)n2 − 2m2−1| ≤ 2(m1−1)n2 |ζ ′n | + 2m2−1|ζm2 |.
2
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If (m1 − 1)n2 �= m2 − 1, then putting R := max{2(m1−1)n2 , 2m2−1}, the left–hand side 
above is ≥ R/2, while the right-side above is < R/2, since

|ζm2 | <
1

22k/3 <
1
4 and |ζ ′n2

| <
∑
i≥1

1
21.5m1i

(
1
2i

)
<

1
21.5m1

∑
i≥1

1
2i <

1
21.5m1

<
1
4 .

This contradiction shows that m2−1 = n2(m1−1), which finishes the proof of Lemma 15.

8.3. The case n2 = 2

By Lemma 15, we get m2 = 2m1 − 1. Since m1 ≤ k + 1, we get that m2 ≤ 2k + 1. 
Also, m2 ≥ k + 2. By Example 1 (ii), we have

F (k)
m2

= 2m2−2 − (m2 − k)2m2−k−3 = x2 = 2x2
1 − ε = 2(2m1−2)2 − ε.

We thus get

22m1−3 − (2m1 − k − 1)22m1−k−4 = 22m1−3 − ε.

We get that the ε = 1, and further (2m1 − k− 1)22m1−k−4 = 1, so m1 = (k + 3)/2. This 
gives the parametric family (i) from Theorem 1.

8.4. The case n2 = 3

By Lemma 15, we get m2 = 3(m1 − 1) + 1 = 3m1 − 2. Since m1 ≤ k + 1, we get that 
m2 = 3m1 − 2 ≤ 3k+1. Further, m2 ≥ k+2. If m2 ∈ [k+2, 2k+2], then, by Example 1
(ii), we have

F (k)
m2

= 2m2−2 − (m2 − k)2m2−k−3 = x3 = 4x3
1 − 3εx1 = 4(2m1−2)3 − 3ε2m1−2,

so ε = 1, and (3m1 − k − 2)23m1−k−5 = 3 × 2m1−2. This gives

(3m1 − k − 2)22m1−k−3 = 3.

By unique factorisation, we get

3m1 − k − 2 = 3 × 2a and 2m1 − k − 3 = −a

for some integer a ≥ 0. Solving, we get

m1 = 3 × 2a + a− 1,

k = 3 × 2a+1 + 3a− 5,



JID:YJNTH AID:6337 /FLA [m1L; v1.260; Prn:29/08/2019; 12:51] P.26 (1-40)
26 M. Ddamulira, F. Luca / Journal of Number Theory ••• (••••) •••–•••
and then m2 = 3m1 − 2 = 9 × 2a + 3a − 5. The case a = 0 gives k = 1, which is not 
convenient so a ≥ 1. This is the parametric family (ii).

It can also be the case that m2 ∈ [2k + 3, 3k + 1]. By Example 1 (iii), we get

4(2m1−2)3−3ε2m1−2 = 2m2−2− (m2−k)2m2−k−3− (m2−2k+1)(m2−2k−2)2m2−2k−5.

This leads to

3ε2m1−2 = (3m1 − k − 2)23m1−k−5 − (3m1 − 2k − 1)(3m1 − 2k − 4)23m1−2k−7.

Simplifying 23m1−2k−7 from both sides of the above equation we get

3ε22k+5−2m1 = (3m1 − k − 2)2k+2 − (3m1 − 2k − 1)(3m1 − 2k − 4).

Since m2 = 3m1−2 ≥ 2k+3, it follows that m2 ≥ (2k+5)/3, so 2k+5 −2m1 ≤ (2k+5)/3. 
It thus follows, by the absolute value inequality, that

2k+2 < (3m1 − k − 2)2k+2 ≤ 3 · 22k+5−2m1 + (3m1 − 2k − 1)(3m1 − 2k − 4)

≤ 3 · 2(2k+5)/3 + (k + 2)(k − 1),

an inequality which fails for k ≥ 5. Thus, there are no other solutions in this range for 
n2 = 3 except for the ones indicated in (ii) of Theorem 1.

8.5. The case n2 = 4

In this case, we have m2 = 4(m1 − 1) + 1 = 4m1 − 3. Since m1 ≤ k + 1, we have 
m2 ≤ 4k + 1. Note that

x4 = 2x2
2 − 1 = 2(2x2

1 − ε)2 − 1 = 8x4
1 − 8εx2

1 + 1 = 8(2m1−2)4 − 8ε(2m1−2)2 + 1 (61)

is odd. Assume first that m2 ∈ [k + 2, 2k + 2]. We then have, by Example 1,

F (k)
m2

= 2m2−2 − (m2 − k)2m2−k−3 = 24m1−5 − (4m1 − k − 3)24m1−k−6. (62)

Comparing (62) with (61), we get

(4m1 − k − 3)24m1−k−6 = ε22m1−1 − 1.

First, ε = 1. Second, the right–hand side above is odd. This implies that the left–hand side 
is also odd. Thus, the left–hand side is in {1, 3}. This is impossible since the right–hand 
side is at least 2753. Thus, this instance does not give us any solution.
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Assume next that m2 ∈ [2k + 3, 3k + 3]. Then

F (k)
m2

= 2m2−2 − (m2 − k)2m2−k−3 + (m2 − 2k + 1)(m2 − 2k − 2)2m2−2k−5

= 8(2m1−2)4 − 8ε(2m1−2)2 + 1.

Identifying, we get

(4m1 − k − 3)24m1−k−6 − (4m1 − 2k − 2)(4m1 − 2k − 5)24m1−2k−8 = ε22m1−1 − 1.

Note that 4m1 − 2k− 8 is even. If 4m1 − 2k− 8 ≥ 0, then the left–hand side is even and 
the right–hand side is odd, a contradiction. Thus, we must have 4m1 − 2k − 8 = −2. 
This gives 4m1 = 2k + 6, so m1 = (k + 3)/2. We thus get

(k + 3)2k − 1 = ε2k+2 − 1.

This implies that ε = 1 and (k + 3)2k = 2k+2, which leads to k + 3 = 4, so k = 1, which 
is impossible. Thus, this instance does not give us a solution either.

Assume finally that m2 ∈ [3k+4, 4k+1]. Applying the Cooper-Howard formula from 
Lemma 2, we get

F (k)
m2

= 2m2−2 +
3∑

j=1
Cm2,j2m2−(k+1)j−2.

Eliminating the main term in the equality F (k)
m2 = x4 and changing signs in the remaining 

equation, we get

3∑
j=1

−Cm2,j2m2−(k+1)j−2 = ε22m1−1 − 1. (63)

At j = 3, the exponent of 2 is m2 − 3j − 5. If this is positive, the left hand side is even 
and the right–hand side is odd, a contradiction. Thus, m2 ∈ {3k + 4, 3k + 5}. In this 
case,

−Cm2,32m2−3k−5 =
((

m2 − 3k
3

)
−

(
m2 − 3k − 2

1

))
2m2−3k−5 ∈ {1, 7}.

For j ∈ {1, 2}, m2 − j(k + 1) − 2 ≥ m2 − 2k − 4 ≥ k > 500. Thus, the left–hand side 
in (63) is congruent to 1, 7 (mod 2500), while the right–hand side of (63) is congruent to 
−1 (mod 2500) because m1 > 500. We thus get 1, 7 ≡ −1 (mod 2500), a contradiction. 
Hence, there are no solutions with n2 = 4.
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8.6. The case n2 ≥ 5

The goal here is to prove the following result.

Lemma 16. If k > 500 and m1 > 376, then there is no solution with n2 ≥ 5.

We write again the two series for 2xn2 = 2F (k)
m2 :

2F (k)
m2

= 2m2−1
(

1 + k −m2

2k+1 + γm2

)
= 2n2(m1−1)

(
1 + −εn2

22(m1−1) + γ′
n2

)
,

where

|γm2 | <
1

24k/3 and |γ′
n2
| ≤

∑
i≥2

1
21.5m1i

(
1
2i

)
<

1
23m1

.

By Lemma 15, we have m2 − 1 = n2(m1 − 1) so the leading powers of 2 above cancel, 
and we get

k −m2

2k+1 + γm2 = −εn2

22(m1−1) + γ′
n2
.

We would like to derive that this implies that

k −m2

2k+1 = −εn2

22(m1−1) . (64)

Well, we distinguish two cases.
Case 1. Suppose that 2(m1 − 1) ≥ k + 1.
We then write∣∣∣∣k −m2

2k+1 + n2ε

22(m1−1)

∣∣∣∣ ≤ |γm2 | + |γ′
n2
| ≤ 1

24k/3 + 1
23m1

. (65)

Since 2m1 ≥ k + 3, we get 3m1 > 3k/2 > 4k/3. Thus,
∣∣∣∣k −m2

2k+1 + n2ε

22(m1−1)

∣∣∣∣ ≤ 2
24k/3 . (66)

Suppose further that m1 ≤ 2k/3. Multiplying inequality (66) across by 22(m1−1), we get

|22(m1−1)−(k+1)(k −m2) + εn2| ≤
22m1−1

24k/3 ≤ 1
2 ,

and since the left–hand side above is an integer, it must be the zero integer. This proves 
(64) in the current case assuming that m1 ≤ 2k/3. If m1 > 2k/3, we deduce from (66)
that
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m2 − k

2k+1 <
2

24k/3 + n2

22(m1−1) <
2 + 4n2

24k/3 <
5n2

24k/3 <
1

213k/12 ,

where in the right–above we used the fact that 8n2 < 2k/4 (see (54)). We thus get

2 ≤ m2 − k <
2k+1

213k/12 <
2

2k/12
< 1,

where the right–most inequality holds since k > 500. This is a contradiction, so the 
m1 > 2k/3 cannot occur in this case. This completes the proof of (64) in Case 1.

Case 2. Assume that 2(m1 − 1) < k + 1.
We then write

n2

22(m1−1) ≤ m2 − k

2k+1 + |γm2 | + |γ′
n2
|.

Since |γm2 | < 1/24k/3 < 1/2k+1 and |γ′
n2
| ≤ 1/23m1 < 1/22(m1−1), we get that

1
22(m1−1) <

∣∣∣∣ n2 − 1
22(m1−1)

∣∣∣∣ ≤ n2

22(m1−1) − |γ′
n2
| ≤ m2 − k

2k+1 + |γm2 | <
m2

2k+1 ,

where we also used that n2 > 1 and k ≥ 2. Thus,

2k+1−2(m1−1) < m2.

We now go back to (65) and write that
∣∣∣∣k −m2

2k+1 + n2ε

22(m1−1)

∣∣∣∣ < 2
2min{4k/3,3m1}

.

We multiply across by 2k+1 getting

|(k −m2) + 2k+1−2(m1−1)εn2| <
2k+2

2min{4k/3,3m1}
.

If the minimum on the right above is 4k/3, then the right–hand side above is smaller 
than 4/2k/3 < 1/2 since k is large, so the number on the left is zero. If the minimum is 
3m1, on the right above then

|(k −m2) + 2k+1−2(m1−1)εn2| <
1
2

(
2k+1−2(m1−1)

2m1

)
.

Since

2k+1−2(m1−1) < m2 = n2(m1 − 1) < kn2 ≤ max{k2, n2
2} < 2m1−6 < 2m1

(here, we used Lemma 14 for the inequality in the right–hand side above), it follows that
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|(k −m2) + 2k+1−2(m1−1)εn2| <
1
2 ,

so again the left–hand side is 0. Since m2 > k, this implies that ε = 1. We record what 
we just proved.

Lemma 17. If k > 500, m1 > 376 and n2 ≥ 5, then m1 ≤ k + 1, n1 = 1, ε = 1, 
m2 − 1 = n2(m1 − 1) and

m2 − k

2k+1 = n2

22(m1−1) .

We now get an extra relation. First, from Lemma 17, we get that

n2 =
{

22(m1−1)−(k+1)(m2 − k) if 2(m1 − 1) ≥ k + 1;
m2−k

2k+1−2(m1−1) if 2(m1 − 1) < k + 1. (67)

Since n2 ≥ 5, we can write more terms.

2F (k)
m2

= 2m2−1
(

1 + k −m2

2k+1 + δm2

(m2 − 2k + 1)(m2 − 2k − 2)
22k+2 + ηm2

)

2xn2 = 2n2(m1−1)
(

1 + −εn2

22(m1−1) + n2(n2 − 3)
24(m1−1)+1 + η′n2

)

In the formula for F (k)
m2 , we have δm2 = ζm2 = 0 if m2 ≤ 2k + 2. But m2 ≤ 2k + 2 is not 

possible since then the only terms in the first expansion of 2F (k)
m2 are the first two which 

already coincide with the first two terms of the expansion of 2xn2, but in the second 
expansion we have additional terms since n2 ≥ 5 while in the first we do not, which is a 
contradiction. Thus, m2 ≥ 2k + 3.

Assume that 2(m1 − 1) ≥ k + 1. In this case, from (67), we deduce that

n2 = 22(m1−1)−(k+1)(m2 − k) = m2 − 1
m1 − 1 .

So, m2 − k | m2 − 1. Thus, m2 − k | (m2 − 1) − (m2 − k) = k − 1. This shows that 
m2 − k ≤ k − 1, so m2 ≤ 2k − 1, a contradiction. Thus, k + 1 > 2(m1 − 1).

Simplifying again the power of 2 from the two representations of 2xn2 = 2F (k)
m2 and 

eliminating the first two terms we get

(m2 − 2k + 1)(m2 − 2k − 2)
22k+3 + ηm2 = n2(n2 − 3)

24(m1−1)+1 + η′n2
.

Here,

|ηm2 | <
4m3

2
23k+3 <

1
22k+4 and |η′n2

| ≤
∑ 1

21.5mi

(
1
2i

)
<

1
24.5m1+1 ,
i≥3
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by (47) and (60). Thus,
∣∣∣∣ (m2 − 2k + 1)(m2 − 2k − 2)

22k+3 − n2(n2 − 3)
24(m1−1)+1

∣∣∣∣ ≤ |ηm2 | + |η′n2
| < 2

min{22k+4, 24.5m1+1} .

(68)

Recall that 2(m1−1) < k+1. Then, by (67), we have n2 | m2−k. Since also n2 | m2−1, 
it follows that n2 | (m2−1) −(m2−k) = k−1. Thus, n2 < k, and since 2(k+1)−2(m1−1) is 
a divisor of n2, we conclude that 2(k+1)−2(m1−1) < k. We multiply (68) across by 22(k+1). 
We get
∣∣∣∣ (m2 − 2k + 1)(m2 − 2k − 2)

2 − 22(k+1)−4(m1−1)n2(n2 − 3)
2

∣∣∣∣ ≤ 22k+3

min{22k+4, 24.5m1+1} .

If the minimum above is 22k+4, then the right–hand side is < 1
2 < 1. The left–hand side 

is an integer, so it equals 0. If the minimum is 24.5m1+1, then we can rewrite it as

22k+3

24.5m1+1 = 22(k+1)−4(m1−1)

20.5m1+4 <
k2

20.5m1+5 < 1.

The right–most inequality holds because 2m1−6 > k4 by Lemma 14. Hence, the left–hand 
side above is again 0. We get that

(m2 − 2k + 1)(m2 − 2k − 2) = 22(k+1)−4(m1−1)n2(n2 − 3). (69)

So, let us record the equations we have:
⎧⎪⎨
⎪⎩

m2 − 1 = n2(m1 − 1);
b = (k + 1) − 2(m1 − 1);
n2 = m2−k

2b ;
(m2 − 2k + 1)(m2 − 2k − 2) = 22bn2(n2 − 3),

(70)

with b > 0. To finish, we need to prove the following lemma.

Lemma 18. There are no integer solutions (b, k, m1, m2, n1, n2) to system (70) with n2 ≥
5 in the range k > 500 and m1 > 376.

Now that we are seeing the light at the end of the tunnel, let’s prove Lemma 18. As 
we saw, n2 | (k − 1). The last equation in system (70) is

(
m2 − 1

n2
− 2(k − 1)

n2

)
(m2 − 2k − 2) = 22b(n2 − 3),

or, using the first equation in system (70),
(
m1 − 1 − 2(k − 1)

)
(m2 − 2k − 2) = n2 − 3.
n2
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Now n2 < k and m1 ≤ k + 1, so from the first equation m2 < k2. Since 2b | m2 − k, we 
get that 2b < k2, so b < 2(log k)/(log 2) < 3 log k. Since b = (k + 1) − 2(m1 − 1), we get 
that

m1 = k + 3 − b

2 ∈
(
k + 3 − 3 log k

2 ,
k + 3

2

)
.

In the last equation in the left, at most one of m1−1 −2(k−1)/n2 (divisor of m2−2k+1) 
and m2 − 2k − 2 is even. If the first one is even, then m2 − 2k − 2 is a divisor of n2 − 3. 
Thus,

n2 − 3 ≥ m2 − 2k − 2 = n2(m1 − 1) − 2k − 1 ≥ n2

(
k + 1 − 3 log k

2

)
− 2k − 1,

giving

2k − 2 ≥ n2

(
k + 1 − 3 log k

2 − 1
)

= n2

(
k − 1 − 3 log k

2

)
.

Since n2 ≥ 5, we get

4k − 4 ≥ 5(k − 1 − 3 log k), or k ≤ 15 log k + 1,

giving k ≤ 63, a contradiction. Thus, 22b | m2 − 2k − 2. Hence,
(
m1 − 1 − 2(k − 1)

n2

)(
m2 − 2k − 2

22b

)
= n2 − 3,

and all fractions above are in fact integers. The left–most integer is

m1 − 1 − 2(k − 1)
n2

≥ k + 1 − 3 log k
2 − 2(k − 1)

5 >
k − 1
12 − 3

since k > 500. Since this number is a divisor of (so, at most as large as) the number 
n2 − 3 = (k − 1)/D − 3 for some integer D, we get that D ∈ {1, 2, . . . , 11}. Thus, 
(k − 1)/D ∈ {1, . . . , 11}, so

m1 − 1 − 2(k − 1)
n2

≥ k + 1 − 3 log k
2 − 22 = k − 43 − 3 log k

2 .

Now let us look at the integer (m2 − 2k − 2)/22b. Assume that it is at least 3. We then 
get

3
(
k − 43 − 3 log k

2

)
≤ n2 − 3 ≤ k − 4, or k ≤ 121 + 9 log k,

and this is false for k ≥ 500. Thus, (m2 − 2k − 2)/22b ∈ {1, 2}.
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Assume that (m2 − 2k − 2)/22b = 1. Then

m1 − 1 − 2(k − 1)
n2

= n2 − 3.

The number in the left hand side is

m1 − 1 − 2(k − 1)
n2

≥ k + 1 − 3 log k
2 − 22 = k − 43 − 3 log k

2 >
k − 1

3 − 3

(since k > 500) and also

m1 − 1 − 2(k − 1)
n2

≤ m1 − 3 ≤ k − 3
2 < k − 4.

Thus, writing again n2 = (k − 1)/D, we get that

n1 − 3 = k − 1
D

− 3 ∈
(
k − 1

3 − 3, k − 1
1 − 3

)
,

showing that 1 < D < 3, so D = 2. Thus, n2 = (k − 1)/2, and we get that

k − 7
2 = k − 1

2 − 3 = n2 − 3 = m1 − 1 − 2(k − 1)
n2

= m1 − 1 − 4 = m1 − 5,

so

m1 = k + 3
2 , so b = 0,

which is impossible.
Assume next that (m2 − 2k − 2)/2b = 2. In this case, we get

n2 − 3 = 2
(
m1 − 1 − 2(k − 1)

n2

)
.

Proceeding as before, we have

k − 1
D

− 3 = n2 − 3 = 2
(
m1 − 1 − 2(k − 1)

n2

)
≥ 2

(
k + 1 − 3 log k

2 − 22
)

= k − 43 − 3 log k >
k − 1

2 − 3,

showing that D < 2. Thus, D = 1 and so n2 = k − 1. Hence,

k − 4 = n2 − 3 = 2
(
m1 − 1 − 2(k − 1)

n2

)
= 2(m1 − 1 − 2) = 2(m1 − 3),

so
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m1 = k + 2
2 , therefore b = 1.

Thus, m2 − 2k − 2 = 22b+1 = 8. Consequently,

8 = (m2 − 1) − 2k − 1 = n2(m1 − 1) − 2k − 1 = (k − 1)k
2 − 2k − 1 = k2 − 5k − 2

2 ,

giving k2 − 5k − 18 = 0, which is impossible.
So, indeed there are no solutions with k > 500 and m1 > 376 other than the ones 

from (i) and (ii) of Theorem 1. �
9. The computational part k ≤ 500 or m1 ≤ 376

Throughout this section, we make the following definition.

Definition 1. Assume that k ≥ 4, x1 ≥ 1, ε ∈ {±1} are given such that there exist 
n1 ≥ 1 and m1 ≥ 2 such that xn1 = F

(k)
m1 . We say that n1 is minimal if there are no 

positive integers n0 < n1 and m0 < m1 such that the equality xn0 = F
(k)
m0 also holds.

The aim of this section is to first show that in the range k ≤ 500 or m1 ≤ 376, all 
solutions of xn1 = F

(k)
m1 with n1 minimal have n1 = 1. Then we finish the calculations.

9.1. The case k ≤ 500

Here, we exploit inequality (33), which we consider convenient to remind:

|(n2 − n1) log(2fk(α)) − (n1m2 − n2m1 + n2 − n1) logα| < 6n2

αm1−1 . (71)

Thus, ∣∣∣∣χk − N

n2 − n1

∣∣∣∣ < 6n2

(n2 − n1)αm1−1 logα, χk := log(2fk(α))
logα , (72)

with N := n1m2 − n2m1 + n2 − n1. Lemma 10 shows that

n2 − n1 < n2 < 8.2 × 1014k4(log k)3 < 1029.

The right–hand side of (72) can be rewritten as

1
2(n2 − n1)2

(
αm1−1 logα

12n2(n2 − n1)

)−1

. (73)

Assume that

αm1−1
> 12(8.2 × 1014k4(log k)3)2. (74)
logα
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Using α > 1.927, inequality (74) holds with k ≤ 500 for all m1 ≥ 203. In this case, 
inequalities (73), (72) and Lemma 5 (i) show that N/(n1 − n1) = p

(k)
j /q

(k)
j for some 

j ≥ 0, where p(k)
j /q

(k)
j is the jth convergent of χk. Note that χk ∈ (0, 1) because by 

Lemma 1 (i), we have 1 < 2fk(α) < 1.5 < α.
We distinguish two cases.
Case 1. N �= 0.
In this case, j ≥ 1. Since

n2 − n1 ≤ 1029 < F150 ≤ q
(k)
150,

where F150 is the 150th member of the Fibonacci sequence, it follows that if we take

Q := max{a(k)
i : 2 ≤ i ≤ 150; 4 ≤ k ≤ 500},

then Lemma 5 (ii) implies that

1
(Q + 2)(q(k)

j )2
<

∣∣∣∣χk − N

n2 − n1

∣∣∣∣ < 6n2

(n2 − n1)αm1−1 logα.

A computer calculation shows that Q = 433576, so Q + 2 < 106. Hence,

αm1−1 logα < 6n2(Q + 2)(q(k)
j )2(n2 − n1) < 6 × 106n2

2

< 6 × 106(8.2 × 10145004(log 500)3)2,

and using α ≥ 1.927, we get m1 ≤ 221.
Case 2. N = 0.
In this case, inequality (72) gives

αm1−1 logα < 6n2χ
−1
k < 6 × (8.2 × 10145004(log 500)3)χ−1

k .

A computation with Mathematica reveals that χ−1
k < 10148 for k ≤ 500. Feeding this 

into the above inequality, we get m1 ≤ 720. Note that since N = 0, we also have 
n1(m2 − 1) = n2(m1 − 1). In particular, n1 = 1 is not possible in this case.

Let us record what we just proved.

Lemma 19. If k ≤ 500, then the following hold:

(i) m1 ≤ 221;
(ii) m1 ∈ [222, 720], but n1 > 1.

For reasons that will become clear later, we allow m ≤ 1049 (instead of just m ≤ 720). 
To continue, assume first that x1 ∈ {1, 2, 3, . . . , 20}. We then generate all values of 
δ = x1 +

√
x2

1 − ε for ε ∈ {±1}. We generate xn1 = (δn1 + ηn1)/2, where η is the Galois 
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conjugate of δ in the quadratic field Q(δ), for all 1 ≤ n ≤ m ≤ 1049 and we test for the 
equation

xn = F (k)
m 4 ≤ k ≤ 500, 2 ≤ m ≤ 1049.

The only solutions we find computationally have:

(i) n = 1 and x1 ∈ {1, 2, 4, 8, 15, 16};
(ii) n = 2 and x2 ∈ {31, 127, 511}. These are not minimal because x2 = 31 = F

(5)
7 has 

ε = 1 and for it x1 = 4 = F
(4)
7 , x2 = 127 = F

(7)
9 has ε = 1 and for it x1 = 8 = F

(5)
9 , 

while x2 = 511 = F
(9)
11 has ε = 1 and for it x1 = 16 = F

(6)
11 , as stated in (i) of 

Theorem 1 with k = 7, 9, and 11, respectively.
(iii) n = 3 and x3 = 16336 = F

(13)
19 . This is not minimal since x1 = 16 = F

(13)
6 , as stated 

in (ii) of Theorem 1 with a = 1.

Assume now that x1 ≥ 21. Then δ ≥ 21 +
√

440. Inequality (24) together with the fact 
that m1 ≤ 1050 gives

n1 ≤ (m1 + 1) logα
log δ ≤ 1051 log 2

log(21 +
√

440)
,

so n1 ≤ 194. Our next goal is to show that in our range k ≤ 500 and m ≤ 1049, we 
must have n ∈ {1, 2, 3}. For this, assume that n > 3. Every positive integer > 3 is either 
divisible by 4, 6, 9 or a prime p ≥ 5. Thus, we generate the set

B = {4, 6, 9, pk : 3 ≤ k ≤ 44},

a set with 45 elements, where pk is the kth prime. We use the fact that if a | b, then xb

is the ath solution of the Pell equation whose first (smallest) x-coordinate is xb/a (that 
is, δ gets replaced by δb/a). In particular, xn1 is xb for some b ∈ B and some value of 
x1. Further, say y = F

(k)
m for some m ∈ [2, 1049] and k ∈ [3, 500]. We then need to solve 

xb = y. Note that if z ≥ 1 and n ≥ 2, then

(zn + 1)1/n − z = z

((
1 + 1

zn

)1/n

− 1
)

<
1

nzn−1 ≤ 1
2 . (75)

Thus,

xb =
(
x1 +

√
x2

1 − ε

)b

+
(
x1 −

√
x2

1 − ε

)b

= 2y

implies

x1 +
√
x2

1 − 1 ∈ ((2y − 1/2)1/b, (2y + 1/2)1/b).
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Further, this leads to

2x1 ∈ ((2y − 1/2)1/n − 1/2, (2y + 1/2)1/n + 1/2).

The length of the interval on the right above is, by (75), at most 2, so it contains at 
most one even integer 2x1 and if it contains one, it must be such that

x1 =
⌊

1
2

((
2y + 1

2

)1/b

+ 1
2

)⌋
. (76)

So what we did was for each y = F
(k)
m and each b ∈ B, we calculated the last 10-digits of 

the integer shown at (76) (that is, we only calculated it modulo 1010). Then we picked 
ε ∈ {±1} and generated {xn}n≥0 as the sequence given by x0 := 1, x1 given by (76)
modulo 1010 and xn+1 = (2x1)xn−εxn−1 (mod 1010) for all n ≥ 1. In this way, we never 
kept more than last 10 digits of xn. And we checked whether indeed xb ≡ y (mod 1010). 
Unsurprisingly, no solution was found. We used the same program for n1 = 2, 3. For 
these we got that all solutions of (i) in our range were candidates for n1 = 2 and all 
solutions (ii) in our range were candidates for n1 = 3. By candidates we meant that 
we only checked out these equalities modulo 1010. They turn out to be actual solutions 
for ε = 1 (and they are not solutions with ε = −1 just because a number of the form 
22j+1 − 1 with j ≥ 2 cannot be also of the form 2z2 + 1 for some integer z, while a 
number of the form 4x3 − 3x for some integer x > 1 then it cannot be also of the form 
4z3 + 3z for some integer z). Finally, one word about “recognising” y as number of the 
form F (k)

m . It follows from a result of Bravo and Luca [5] that the equation F (k)
m = F

(�)
n

with m ≥ k+2, n ≥ 
 +2 and k > 
 ≥ 4 has no solutions (m, k, n, 
). Thus, if we already 
know a representation of a representation of y as F (k)

m for some m and k ≥ 4, then it is 
unique. In particular, for j ≥ 2, F (2j+1)

2j+3 is the only representation of 22j+1 − 1 as a F (k)
m

for some positive integers m and k ≥ 4.

9.2. The case m1 ≤ 376

We may assume that k > 500, otherwise we are in the preceding case. Thus, k > m1, 
so n1 = 1. Thus, δ = 2m1−2 +

√
22m1−2 − ε for all m1 ≥ 2 and ε ∈ {±1} (except for 

m1 = 2, case in which only ε = 1 is possible). We now go back to the proof of Lemma 14
to get that the inequality (55), recalled below

|n2 log δ − (m2 − 1) log 2| < 1
22k/3−2 (77)

implies (58), namely

2k/3 − 2 < 195(log δ) max {10.5, log(3m2)}2
.
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For us, log δ ≤ m1 log 2 ≤ 376 log 2. Using also the upper bound from Lemma 10 on m2, 
we get

2k/3 − 2 < 195 × 376(log 2) max
{
10.5, log(3 × 4.1 × 1022k7(log k)6)

}2
,

leading to k < 4 × 109. Thus, by Lemma 10 again,

n2 < 8.2 × 1014k4(log k)3 < 8.2 × 1014(4 × 109)4(log(4 × 109))3 < 1058.

Now (77) gives

∣∣∣∣ log δ
log 2 − m2 − 1

n2

∣∣∣∣ < 1
(log 2)22k/3−1n2

. (78)

In our range, the right–hand side above is smaller than 1/(2n2
2). Indeed, this is equivalent 

to n2 < 22k/3−3(log 2), which holds provided that

8.2 × 1014k4(log k)3 < 22k/3−3(log 2),

which indeed holds for all k > 500. Thus, (m2 − 1)/n2 = pj/qj is some convergent of 
log δ/ log 2. Since its denominator qj divides n2 and

qj ≤ n2 < 1058 < F299,

where F299 is the 299th term of the Fibonacci sequence, it follows that j ≤ 298. We 
generated the continued fractions of all log δ/ log 2 for all possibilities for m1 ≤ 376, 
ε ∈ {±1} and j ≤ 299 and collected together the obtained values of aj. The maximum 
value obtained was 1033566. Hence,

1
1.1 × 107n2

2
<

1
(aj+1 + 2)n2

2
<

∣∣∣∣ log δ
log 2 − m2 − 1

n2

∣∣∣∣ < 1
(log 2)22k/3−1n2

,

giving

22k/3−2 log 2 < 1.1 × 107n2 < 1.1 × 107 × (8.2 × 1014k4(log k)3),

giving k ≤ 166, a contradiction.
Thus, this case leads to no solution, and we must have k ≤ 500, n1 = 1 and m1 ≤ 221

by Lemma 19.
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9.3. The final computations

Now we go to inequality (29) for (n, m) = (n2, m2):

|n2 log δ − log(2fk(α)) − (m2 − 1) logα| < 3
αm2−1 . (79)

We divide both sides by logα and get

|n2τ − (m2 − 1) − μ| < A

Bm2−1 , (τ, μ,A,B) :=
(

log δ
logα,

log(2fk(α)
logα ,

3
log(1.92) , 1.92

)
.

We have

n2 ≤ 8.2 × 1014k4(log k)3 ≤ 8.2 × 1014(500)4(log 500)3 < 1.3 × 1028 := M.

Since 6M < 1030 < F150, we try qλ for some λ ≥ 150. A computer code ran through the 
range k ∈ [4, 500], m1 ∈ [2, 221] and ε ∈ {±1}, generated δ = 2m1−2 +

√
22(m1−2) − ε

(except for m1 = 2, when only ε = 1 is possible), and confirmed the following:

(i) For 4 ≤ k ≤ 500 and λ = 200, we have ε > 0 in all cases.
(ii) The maximal value of 1 + �log(Aqλ/ε)/ logB� in (i) above is 1049.

Applying Lemma 4, we got that in all cases m2 ≤ 1049 by using q200. By the calculations 
from Subsection 9.1 where in fact we treated the case m ≤ 1049, we get that (n2, m2)
is one of the solutions listed in (i) or (ii) of Theorem 1. This finishes the proof of the 
theorem.
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