
Journal of Number Theory 218 (2021) 311–333
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

General Section

A generic effective Oppenheim theorem for systems 

of forms ✩

Prasuna Bandi a, Anish Ghosh a, Jiyoung Han b,∗

a School of Mathematics, Tata Institute of Fundamental Research, Mumbai, 
400005, India
b Research Institute of Mathematics, Seoul National University, Seoul, 08826, 
South Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 April 2020
Received in revised form 20 July 
2020
Accepted 21 July 2020
Available online 13 August 2020
Communicated by S.J. Miller

Keywords:
Effective Oppenheim conjecture
Systems of quadratic and linear 
forms
Geometry of numbers
Rogers’ second moment theorem

We prove a uniform effective density theorem as well as an 
effective counting result for a generic system comprising a 
polynomial with a mild homogeneous condition and several 
linear forms using Rogers’ second moment formula for the 
Siegel transform on the space of unimodular lattices.

© 2020 Elsevier Inc. All rights reserved.

✩ AG was supported by a Government of India, Department of Science and Technology, Swarnajayanti 
fellowship DST/SJF/MSA-01/2016-17, a grant from the Infosys Foundation, a CEFIPRA grant and a 
Matrics grant. PB and AG acknowledge support of the Department of Atomic Energy, Government of 
India, under project 12-R&D-TFR-5.01-0500. JY is supported by the Samsung Science and Technology 
Foundation under project No. SSTF-BA1601-03 and the National Research Foundation of Korea (NRF) 
grant funded by the Korea government under project No. 0409-20200150.
* Corresponding author.

E-mail addresses: prasuna@math.tifr.res.in (P. Bandi), ghosh@math.tifr.res.in (A. Ghosh), 
jiyoung.han.math@snu.ac.kr (J. Han).
https://doi.org/10.1016/j.jnt.2020.07.002
0022-314X/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jnt.2020.07.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2020.07.002&domain=pdf
mailto:prasuna@math.tifr.res.in
mailto:ghosh@math.tifr.res.in
mailto:jiyoung.han.math@snu.ac.kr
https://doi.org/10.1016/j.jnt.2020.07.002


312 P. Bandi et al. / Journal of Number Theory 218 (2021) 311–333
1. Introduction

In this paper, we investigate the effective density of values of a system of forms at 
integer points. We recall Margulis’s famous result [21], resolving an old conjecture of 
Oppenheim: if Q is an indefinite nondegenerate quadratic form in at least 3 variables 
which is not proportional to a form with integer coefficients, then {Q(x) : x ∈ Zn} is 
dense in R. Recently, there has been a surge of interest in effective versions of Margulis’s 
result. The basic question in this area is: given ξ ∈ R and ε > 0, how large must x ∈ Zn

be so that

|Q(x) − ξ| < ε?

Margulis’s proof of his theorem is based on dynamics on the space of unimodular lattices, 
and does not easily lend to effectivising. Indeed, effective results constitute one of the 
main current challenges in homogeneous dynamics. In [20], Lindenstrauss and Margulis 
investigated this problem for ternary quadratic forms and found a logarithmic in ε bound 
for x as above, for a large class of quadratic forms satisfying an explicit Diophantine 
condition. In [15], Ghosh, Gorodnik and Nevo showed that one can do much better for a 
generic form. Namely, for any given ε > 0, it was shown that for almost every quadratic 
form in 3 variables, and for every η > 1,

|Q(x) − ξ| < ε and ‖x‖ ≤ 1
εη

(1.1)

admits a solution. Here, ‖ · ‖ is the maximum norm. It can be shown that the exponent 1
in (1.1) is sharp. The method of proof in [15] involves effective mean ergodic theorems 
and duality techniques and applies to a wide variety of Diophantine problems. However 
as far as the classical Oppenheim problem is concerned, while this technique applies 
to quadratic forms in any number of variables, it gives the best possible result only 
in dimension 3; the quality of the exponent deteriorates as the dimension increases. In 
[1], Athreya and Margulis used a different approach; they used Rogers second moment 
formula in the space of lattices to obtain the right exponent in (1.1) in all dimensions 
for the special case ξ = 0.

Another natural problem in this setting is the quantitative form of the Oppenheim 
conjecture. Namely, given a quadratic form Q and an interval I, one seeks to study the 
counting function

NQ,I(t) = #{x ∈ Zn : Q(x) ∈ I, ‖x‖ ≤ t}. (1.2)
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Explicit asymptotics for the counting function have been obtained in [8] (lower 
bounds) and [9,10] (upper bounds) for every nondegenerate, indefinite, irrational 
quadratic form. Namely, it is known that1

NQ,I(t) ≈Q |I|tn−2.

In [1], this quantitative result was sharpened to obtain an error term for generic forms. 
Namely, it was shown that there exists ν > 0 such that for every interval I and for almost 
every quadratic form Q,

NQ,I(t) = cQ|I|tn−2 + OQ,I(tn−2−ν).

Here, cQ > 0 is a constant depending only on the quadratic form Q (for details, see the 
remark below Lemma 3.8 in [9]).

The results in [1] were generalised by Kelmer and Yu [18] in three different regimes: 
they allowed the intervals in (1.2) to shrink; they considered more general homogeneous 
polynomials and confirmed a prediction of Ghosh, Gorodnik and Nevo [15]; and they 
considered uniform versions of these results, in other words, they considered the situation 
where a single random quadratic form approximates all the points ξ. Such uniform results 
were first considered by Bourgain [3] for diagonal ternary forms and then by Ghosh and 
Kelmer in [12] for general ternary forms. The method of proof in [18] also relies on 
Rogers’ second moment formula. We refer the reader to [4,11,13,14,19] for other recent 
works on effective versions of the Oppenheim conjecture in various contexts.

1.1. Systems of forms

Much less is known when one considers the natural generalization of Oppenheim type 
problems to systems of forms. This problem was first considered by Dani and Margulis 
in [7] who gave sufficient conditions for the density of a pair (Q, L) of a quadratic form 
and a linear form in 3 variables. This was generalised by Gorodnik [16] to pairs (Q, L)
in four or more variables. Further work on systems of forms has been done by Gorodnik 
[17] for systems of quadratic forms, by Dani [5,6] for systems comprising a quadratic 
form and a linear form, by Müller [22,23] for certain systems of quadratic forms, and by 
the first and second authors for systems of inhomogeneous forms and linear forms in 3 
variables [2]. Other than the papers of Müller which use the circle method and therefore 
get quantitative results, the other works use homogeneous dynamics and establish qual-
itative statements. In particular, the general problem of establishing quantitative and 
effective versions of Oppenheim type conjectures for systems of forms seems wide open. 
In this paper, we will prove counting results with error term, as well as effective theo-
rems for a generic system comprising a quadratic form (more generally, a homogeneous 

1 The upper bounds are more complicated for forms of signature (2, 1) and (2, 2); we refer the reader to 
[10].
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polynomial) and a system of linear forms. Following [1,18] we will use Rogers’ formula; 
in fact we follow the strategy of Kelmer and Yu [18] closely. The main new ingredient 
in this present paper is a volume calculation, Theorem 2.2. We note that the problems 
considered in this paper do not seem to be amenable to the ergodic approach of [15], 
which requires semisimple stabilizers. However, a similar problem, that of the effective 
density of linear maps taking values on rational quadratic surfaces can be addressed 
using ergodic methods, see Theorem 1.5 in [15]. Previously density and counting results 
in this setting were proved by Sargent [25,26].

1.2. Main results

In order to state our main results, we need to recall a classification of the systems of 
forms from [25].

1.2.1. Classification
Consider the space of systems (Q, M) of a nondegenerate quadratic form Q on Rn

and a linear map M : Rn → Rr of rank r, for some given r < n.
We define an equivalence relation on the space of systems (Q, M) as follows: 

(Q1, M1) ∼ (Q2, M2) if there exist (g1, g2) ∈ SLn(R) × GLr(R) and 0 �= λ ∈ R such 
that (Q2, M2) = (λQg1

1 , g1M1g2). Here, Qg(v) := Q(vg).
Define

Y(p,q,u,v)

:=
{

(Q,M) :
Q is a nondegenerate quadratic form on Rn with sign(Q) = (u, v),

M : Rn → Rr is a linear map of rank r, andsign(Q|ker(M)) = (p, q).

}

According to [25], which in turn is adapted from [16], (Q, M) ∈ Y(p,q,u,v) is equivalent 
to (Q0, M0), where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Q0(x1, . . . , xp+q, y1, . . . , y2t, z1, . . . , zs)
= (x2

1 + · · · + x2
p − x2

p+1 − · · · − x2
p+q) + (2y1yt+1 + · · · + 2yty2t)

+ Q′(z1, . . . , zs);
M0(x1, . . . , xp+q, y1, . . . , y2t, z1, . . . , zs) = (yt+1, . . . , y2t, z1, . . . , zs),

and Q′(z1, . . . , zs) = z2
1 + · · · + z2

p′ − z2
p′+1 − · · · − z2

p′+q′ . Here t = n − r − (p + q), p′ =
u − t − p, q′ = v − t − q and s = p′ + q′.

Hence one can identify Y(p,q,u,v) with (R − {0}) × SLn(R) × GLr(R)/SO(Q0, M0), 
where SO(Q0, M0) is the isotropy subgroup of (Q0, M0) in (R −{0}) ×SLn(R) ×GLr(R). 
Let us assign the measure on Y(p,q,u,v) induced from the Haar measure on (R − {0}) ×
SLn(R) ×GLr(R), which is the product of the Lebesgue measure on R and Haar measures 
on SLn(R) and GLr(R), respectively.
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1.2.2. The homogeneous space Y(F0,M0)

More generally, let (F0, M0) be a system of a polynomial in n variables and a linear 
map M0 : Rn → Rr of the form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F0(x1, . . . , xp+q, y1, . . . , y2t, z1, . . . , zs)
= (xd

1 + · · · + xd
p − xd

p+1 − · · · − xd
p+q) + P1(y1, . . . , y2t)

+ P2(z1, . . . , zs);
M0(x1, . . . , xp+q, y1, . . . , y2t, z1, . . . , zs) = (yt+1, . . . , y2t, z1, . . . , zs),

(1.3)

where d ≥ 2 is even, P1(y1, . . . , y2t) is a polynomial such that there is a positive integer 
d′ < d for which P1(Ty1, . . . , Tyt, yt+1, . . . , y2t) = O(T d′) as T goes to infinity, and 
P2(z1, . . . , zs) is any polynomial in the variables z1, . . . , zs.

Define Y(F0,M0) by

Y(F0,M0) := {(F,M) = (λF g1
0 , g1M0g2) : (λ, g1, g2) ∈ (R− {0}) × SLn(R)× ∈ GLr(R)}

so that as in Section 1.2.1, we can identify Y(F0,M0) with the symmetric space (R −
{0}) × SLn(R) × GLr(R)/I(F0,M0), where I(F0,M0) is the isotropy subgroup. Using this 
identification, we will assign the (R − {0}) × SLn(R) × GLr(R)-invariant measure on 
Y(F0,M0).

We will not specify the norm ‖ · ‖ on Rn at present. If we need to fix a norm, we will 
specify it in the relevant statement.

Our first theorem proves effective counting for generic forms with values in possibly 
shrinking sets. It is an analogue, for systems of forms, of Theorem 1 in [18].

Theorem 1.1. Let p ≥ 1, q ≥ 1 with d + 1 ≤ p + q ≤ n − r and let 0 ≤ κ < n − r− d. Let 
{It}t>0 be a non-increasing family of bounded measurable subsets of Rr+1 with |It| = ct−κ

for some c > 0. Then there is ν > 0 such that for almost every (F, M) ∈ F (F0,M0), there 
exists cF,M > 0 such that

#{v ∈ Zn : (F,M)(v) ∈ It, ‖v‖ ≤ t} = cF,M |It|tn−r−d + OF,M (tn−r−d−κ−ν).

Here, |I| is the Lebesgue measure of a subset I ⊂ Rr+1.

In particular, we obtain the following corollary which constitutes an effective version 
of Oppenheim’s conjecture for systems of forms.

Corollary 1.2. Let p ≥ 1, q ≥ 1 with d + 1 ≤ p + q ≤ n − r and 0 ≤ κ < n − r − d. 
Let (κ0, κ1, . . . , κr) ∈ Rr+1

>0 be such that κ0 + κ1 + · · · + κr = κ. Then for any ξ =
(ξ0, ξ1, . . . , ξr) ∈ Rr+1 and for almost every (F, M) ∈ F (F0,M0), the system of inequalities
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⎧⎪⎨
⎪⎩

|F (v) − ξ0| < t−κ0 ;
|li(v) − ξi| < t−κi , 1 ≤ i ≤ r;
‖v‖ ≤ t,

where M = (l1, . . . , lr), has integer solutions for sufficiently large t.

Our second main theorem is a ‘uniform’ effective counting result.

Theorem 1.3. Let p ≥ 1, q ≥ 1 with d + 1 ≤ p + q ≤ n − r. Let 0 ≤ η <

min{1, n−r−d
(r+1)(1+r(r+2))} and 0 ≤ κ < n−r−d−(r+1)η−r(r+1)(r+2)η

(r+1)(r+2) . For 0 ≤ j ≤ r, let 
κj > 0 be such that 

∑r
j=0 κj = κ. Let N(t) be a non-decreasing function such that 

N(t) = O(tη). Then there exists ν > 0 such that for almost every (F, M) ∈ F (F0,M0) and 
for all I ⊂ [−N(t), N(t)]r+1 of the form I = I0 × I1 × · · · × Ir with |Ij | ≥ t−κj ,

#{v ∈ Zn : (F,M)(v) ∈ I, ‖v‖ ≤ t} = cF,M |I|tn−r−d + OF,M (|I|tn−r−d−ν).

This theorem implies Corollary 1.4, which is precisely the uniform version of effective 
Oppenheim studied in [3] and [11].

Corollary 1.4. Let d < n − r and 0 ≤ η < min{1, n−r−d
(r+1)(1+r(r+2))}. Let N(t) be a 

non-decreasing function such that N(t) = O(tη) and δ(t) be a non-increasing func-
tion satisfying tη(r+1)(1+r(r+2))−a

δ(t)(r+1)2(r+2) → 0 for some a < n − r − d. Then for almost every 

(F, M) ∈ Y(F0,M0) and for sufficiently large t,

sup
‖ξ‖≤N(t)

min
v∈Zn,‖v‖≤t

‖(F,M)(v) − ξ‖ < δ(t),

where ‖ · ‖ denotes the supremum norm on Rn.

Note that by replacing (F0, M0) with (Q0, M0) and taking d = 2, one can deduce that 
the above stated theorems hold for almost every (Q, M) ∈ Y(p,q,u,v).

2. Volume estimation

Following [18], we estimate the volume of the region given as the preimage of a system 
of a polynomial F0 and a linear map M0 defined as in (1.3). For simplicity, let us denote 
Y1 = (y1, . . . , yt), Y2 = (yt+1, . . . , y2t) and Z = (z1, . . . , zs).

Recall that for two functions f(T ) and f ′(T ), we denote that f(T ) � f ′(T ) if there 
is some constant c > 0 such that f(T ) < cf ′(T ) for all (sufficiently large) T > 0. We will 
use the notation �a when we want to specify that a constant c depends on a variable a.

Lemma 2.1. Let (F0, M0) be as in (1.3). Let p ≥ 1, q ≥ 1 with d + 1 ≤ p + q ≤ n −
r and let h : Rn → R be a compactly supported smooth function such that supph ⊆
Ba(0) ⊂ Rn for some a > 1, where Ba(0) is the ball of radius a centered at the origin 
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with respect to an arbitrary norm on Rn. Let I ⊆ [−1, 1]r+1 ⊂ Rr+1 be a measurable set. 
For α ∈ (0, d−d′

d ), there is T0 > 0 such that for T > T0,

Ih,I :=
∫
Rn

h
( v
T

)
χI(F0(v),M0(v))dv

= J(h)|I|Tn−r−d

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Oa

(
S1(h)|I|T p+q+t−d−1)

+ Oa

(
‖h‖∞|I|T (1−α)(p+q−d)+t

)
,

if p + q ≥ 2d + 1;

Oa

(
S1(h)|I|T d+t−1)+ Oa

(
‖h‖∞|I|T (1−α)d+t

)
if p + q = 2d;

Oa

(
S1(h)|I|T t+d′−1 log T

)
+ Oa

(
S1(h)|I|T d+t−2)

+ Oa

(
‖h‖∞|I|T (1−α)(d−1)+t

)
,

if p + q = 2d− 1;

Oa

(
S1(h)|I|T (1−α)(p+q−2d)+t+d′−α

)
+Oa

(
S1(h)|I|T p+q+t−d−1)+ Oa

(
‖h‖∞|I|T (1−α)(p+q−d)+t

)
,

if d + 1 ≤ p + q < 2d− 1,
(2.1)

where

J(h) = 1
d

∫
Rt

∞∫
0

∫
Sp−1×Sq−1

h((ω1 + ω2)r + Y ′
1)rp+q−d−1dω1dω2drdY

′
1

and S1(h) = max(‖h‖∞, ‖∂h/∂vi‖∞, i = 1, . . . , n). Here, ω1 and ω2 are spherical co-
ordinates of unit spheres Sp−1 ⊆ Rp and Sq−1 ⊆ Rq with respect to the Ld-norm, 
respectively.

Proof. Let (r1, ω1) and (r2, ω2) be spherical coordinates of Rp and Rq with respect to 
the Ld-norm, respectively so that

Ih,I =
∫
Rs

∫
Rt

∫
Rt

∞∫
0

∞∫
0

∫
Sp−1×Sq−1

h
(r1ω1 + r2ω2 + Y1 + Y2 + Z

T

)
×

χI(rd1 − rd2 + P1(Y1, Y2) + P2(Z), Y2, Z) rp−1
1 rq−1

2 dω1dω2dr1dr2dY1dY2dZ.

Let T > 1 and let us divide the region {(r1, r2) ∈ R2
≥0} into

{ r1 ≥ r2, 0 ≤ r2 ≤ T 1−α } ∪ { r2 ≥ r1, 0 ≤ r1 ≤ T 1−α } ∪ { r1, r2 ≥ T 1−α }.

We will divide Ih,I into the summation of three integrals with respect to the partition 
above.
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(i) r1 ≥ r2, 0 ≤ r2 ≤ T 1−α. Take

⎧⎪⎨
⎪⎩

ζ = rd1 − rd2 + P1(Y1, Y2) + P2(Z)
r = r2/T

Y ′
1 = Y1/T.

(2.2)

By change of variables,

E1
h,I :=

∫
Rs

∫
Rt

∫
Rt

T 1−α∫
0

∞∫
r2

∫
Sp−1×Sq−1

h
(r1ω1 + r2ω2 + Y1 + Y2 + Z

T

)
×

χI(rd1 − rd2 + P1(Y1, Y2) + P2(Z), Y2, Z) rp−1
1 rq−1

2 dω1dω2dr1dr2dY1dY2dZ

= T p+q+t−d

d

∫
Rs

∫
Rt

∫
Rt

∞∫
−∞

T−α∫
0

∫
Sp−1×Sq−1

h
(
ω1

(
rd + ζ − P1(TY ′

1 , Y2) − P2(Z)
T d

)1/d
+ ω2r + Y ′

1 + Y2 + Z

T

)
χI(ζ, Y2, Z)

×
(
rd + ζ − P1(TY ′

1 , Y2) − P2(Z)
T d

)(p−d)/d
rq−1dω1dω2drdζdY

′
1dY2dZ.

We remark that the domain of (ζ, r, Y ′
1) in the second integral above is

{
(ζ, r, Y ′

1) : ζ + (Tr)d − T (Y ′
1 · Y2) −Q(Z) ≥ T d(1−α)

}
.

Since one can find T0 > 0 such that this domain is contained in the intersection of 
supports of h and χI for T > T0, we will refrain from referring to the above domain here 
and hereafter.

Recall that (ζ, Y2, Z) ⊆ [−1, 1]r+1 and Y ′
1 ∈ Ba(0). Also note that α < (d − d′)/d, 

0 < r = r2
T ≤ 1

Tα and by the assumption on P1, 0 ≤ rd1−rd2
Td′ = ζ−P1(TY ′

1 ,Y2)−P2(Z)
Td′ � ad

′ . 
It follows that rd ≤ rd + ζ−P1(TY ′

1 ,Y2)−P2(Z)
Td � ad′

Tαd . Hence

(
rd + ζ − P1(TY ′

1 , Y2) − P2(Z)
T d

)(p−d)/d
�

⎧⎨
⎩

a(p−d) d′
d

Tα(p−d) , if p ≥ d;
rp−d, if p < d,

and we obtain that

E1
h,I � ‖h‖∞|I|T p+q+t−d · at ×

⎧⎨
⎩

a(p−d) d′
d

Tα(p−d)

∫ T−α

0 rq−1dr, if p ≥ d;∫ T−α

0 rp+q−d−1dr, if p < d;

� ‖h‖ |I|T (1−α)(p+q−d)+t.

(2.3)
a ∞
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(ii) r1 ≤ r2, 0 ≤ r1 ≤ T 1−α. The second error is

E2
h,I :=

∫
Rs

∫
Rt

∫
Rt

T 1−α∫
0

∞∫
r1

∫
Sp−1×Sq−1

h
(r1ω1 + r2ω2 + Y1 + Y2 + Z

T

)
×

χI(rd1 − rd2 + P1(Y1, Y2) + P2(Z), Y2, Z) rp−1
1 rq−1

2 dω1dω2dr2dr1dY1dY2dZ.

Similar to the case (i), by making the change of variables

⎧⎪⎨
⎪⎩

ζ = rd1 − rd2 + P1(Y1, Y2) + P2(Z)
r = r1/T

Y ′
1 = Y1/T,

it follows that

E2
h,I � ‖h‖∞|I|T p+q+t−d · at ×

⎧⎨
⎩

a(q−d) d′
d

Tα(q−d)

∫ T−α

0 rp−1dr, if q ≥ d;∫ T−α

0 rp+q−d−1dr, if q < d;

�a ‖h‖∞|I|T (1−α)(p+q−d)+t.

(2.4)

Using the reparametrization in (2.2) for the third range {r1, r2 ≥ T 1−α}, and by (2.3)
and (2.4), we have

Ih,I = T p+q+t−d

d

∫
Rs

∫
Rt

∫
Rt

∞∫
−∞

∞∫
1/Tα

∫
Sp−1×Sq−1

h
(
ω1

(
rd + ζ − P1(TY ′

1 , Y2) − P2(Z)
T d

)1/d
+ ω2r + Y ′

1 + Y2 + Z

T

)
χI(ζ, Y2, Z)

×
(
rd + ζ − P1(TY ′

1 , Y2) − P2(Z)
T d

)(p−d)/d
rq−1dω1dω2drdζdY

′
1dY2dZ

+ Oa

(
‖h‖∞|I|T (1−α)(p+q−d)+t

)
.

Now, note that since r ≥ 1
Tα , we have rdT d−d′ ≥ T (d−d′)−dα, where (d − d′) − dα > 0

by the assumption on α. Since (ζ−P1(TY ′
1 ,Y2)−P2(Z))
Td′ = O(ad′), there exists T0 such that 

for T > T0, 
∣∣∣ ζ−P1(TY ′

1 ,Y2)−P2(Z)
Td′

∣∣∣ < rdT d−d′ . Therefore for T > T0,

r
(
1 + ζ − P1(TY ′

1 , Y2) − P2(Z)
(rT )d

)1/d
= r + Oa

( 1
rd−1T d−d′

)

and hence
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h
(
ω1

(
rd + ζ − P1(TY ′

1 , Y2) − P2(Z)
T d

)1/d
+ ω2r + Y ′

1 + Y2 + Z

T

)

= h((ω1 + ω2)r + Y ′
1) + Oa

( S1(h)
rd−1T d−d′

)
+ O
(S1(h)

T

)
.

Since supph ⊆ Ba(0), and 
∥∥∥ω1

(
rd + ζ−P1(TY ′

1 ,Y2)−P2(Z)
Td

)1/d
+ω2r+ Y ′

1 + Y2+Z
T

∥∥∥ ≥ r, 
we obtain that

Ih,I =T p+q+t−d

d

∫
Rs

∫
Rt

∫
Rt

∞∫
−∞

∞∫
1/Tα

∫
Sp−1×Sq−1

h
(
(ω1 + ω2)r + Y ′

1

)
χI(ζ, Y2, Z)

×
(
1 + ζ − P1(TY ′

1 , Y2) − P2(Z)
(rT )d

)(p−d)/d
rp+q−d−1dω1dω2drdζdY

′
1dY2dZ

+ Oa

(
S1(h)|I|T p+q+t−2d+d′

a∫
1/Tα

rp+q−2ddr
)

+ Oa

(
S1(h)|I|T p+q+t−d−1

a∫
1/Tα

rp+q−d−1dr
)

+ Oa

(
‖h‖∞|I|T (1−α)(p+q−d)+t

)
.

Similar to the above argument, since 
(
1 + ζ−P1(TY ′

1 ,Y2)−P2(Z)
(rT )d

)(p−d)/d
= 1 +

O
(

ad′

rdTd−d′

)
for T > T0 and supph ⊆ Ba(0), we have

Ih,I =T p+q+t−d

d

∫
Rs

∫
Rt

∫
Rt

∞∫
−∞

∞∫
1/Tα

∫
Sp−1×Sq−1

h
(
(ω1 + ω2)r + Y ′

1

)
χI(ζ, Y2, Z)rp+q−d−1dω1dω2drdζdY

′
1dY2dZ

+ Oa

(
‖h‖∞|I|T p+q+t−2d+d′

a∫
1/Tα

rp+q−2d−1dr
)

+ Oa

(
S1(h)|I|T p+q+t−2d+d′

a∫
1/Tα

rp+q−2ddr
)

+ Oa

(
S1(h)|I|T p+q+t−d−1

a∫
1/Tα

rp+q−d−1dr
)

+ Oa

(
‖h‖∞|I|T (1−α)(p+q−d)+t

)
.
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Finally, since p + q + t = n − r and by definition of J(h),

T p+q+t−d

d

∫
Rs

∫
Rt

∫
Rt

∞∫
−∞

∞∫
1/Tα

∫
Sp−1×Sq−1

h
(
(ω1 + ω2)r + Y ′

1

)
χI(ζ, Y2, Z)rp+q−d−1dω1dω2drdζdY

′
1dY2dZ

= J(h)|I|Tn−r−d + Oa

(
‖h‖∞|I|T (1−α)(p+q−d)+t

)
.

One can obtain the equation (2.1) after simplifying the error bounds in each case as 
follows: (1) If p + q ≥ 2d + 1, using the fact that d − d′ ≥ 1 and S1(h) ≥ ‖h‖∞, we have

Ih,I = J(h)|I|Tn−r−d + Oa

(
S1(h)|I|T p+q+t−d−1)+ Oa

(
‖h‖∞|I|T (1−α)(p+q−d)+t

)
.

(2) If p + q = 2d, using the estimates d′ < (1 − α)d, d − d′ ≥ 1 and S1(h) ≥ ‖h‖∞, we 
have

Ih,I = J(h)|I|Tn−r−d + Oa

(
S1(h)|I|T d+t−1)+ Oa

(
‖h‖∞|I|T (1−α)d+t

)

(3) If p + q = 2d − 1, using α < 1 and S1(h) ≥ ‖h‖∞, we have

Ih,I = J(h)|I|Tn−r−d + Oa

(
S1(h)|I|T t+d′−1 log T

)
+ Oa

(
S1(h)|I|T d+t−2)

+ Oa

(
‖h‖∞|I|T (1−α)(d−1)+t

)
,

(4) If d + 1 ≤ p + q < 2d − 1, using d′ − d + αd < 0 and S1(h) ≥ ‖h‖∞, we have

Ih,I = J(h)|I|Tn−r−d + Oa

(
S1(h)|I|T (1−α)(p+q−2d)+t+d′−α

)
+ Oa

(
S1(h)|I|T p+q+t−d−1)

+ Oa

(
‖h‖∞|I|T (1−α)(p+q−d)+t

)
. �

Theorem 2.2. Let p ≥ 1, q ≥ 1 with d + 1 ≤ p + q ≤ n − r and let (F, M) ∈
Y(F0,M0). Fix N ≥ 1 and let I ⊆ [−N, N ]r+1 ⊆ Rr+1 be measurable. Let 0 < ξ <

min
{

(d−d′)(p+q−d) , 1
}
. Then there exist cF,M > 0 and T0 > 0 such that for T > T0N ,
p+q−1 2
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vol
(
(F,M)−1(I) ∩BT (0)

)
= cF,M |I|Tn−r−d

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

OF,M (|I|N1/2Tn−r−d−1/2), if [p + q > 2d− 1] or
[p + q = 2d− 1 and d− d′ > 1] ;

OF,M (|I|N1/2Tn−r−d−1/2 log T ), if p + q = 2d− 1 and
d− d′ = 1;

OF,M (|I|N ξTn−r−d−ξ), if d + 1 ≤ p + q < 2d− 1.

Proof. Let (F, M) = (λF g1
0 , g1M0g2), where (λ, g1, g2) ∈ (R − {0}) × SLn(R) ×GLr(R). 

By replacing I by 
(

λ 0
0 g2

)−1
I and N by max(λ−1, ‖g−1

2 ‖)N , we may assume that (λ, g2) =
(1, id). We first assume that N = 1.

Take h = χ
B1(0) the indicator function of the unit ball in Rn. For δ ∈ (0, 1), let h±

δ

be smooth functions on Rn such that h±
δ ∈ (0, 1) and

h+
δ (v) =

{
1, if ‖v‖ ≤ 1;
0, if ‖v‖ ≥ 1 + δ,

and h−
δ (v) =

{
1, if ‖v‖ ≤ 1 − δ;
0, if ‖v‖ ≥ 1.

We may further assume that S1(h±
δ ) � 1/δ.

Define h±
δ,g1

(v) = h±
δ (vg−1

1 ). Note that supp(h±
δ,g1

) ⊆ B2‖g1‖ and S1(h±
δ,g1

) =
O(‖g1‖δ−1). Applying Lemma 2.1 to functions h±

δ,g1
, there is T0 > 0 such that for 

T > T0,∫
Rn

h±
δ,g1

( v
T

)
χI(Q0(v),M0(v))dv = J(h±

δ,g1
)|I| Tn−r−d

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Og1

(
δ−1|I|T p+q+t−d−1)

+ Og1

(
|I|T (1−α)(p+q−d)+t

)
,

if p + q ≥ 2d + 1;

Og1

(
δ−1|I|T d+t−1)+ Og1

(
|I|T (1−α)d+t

)
if p + q = 2d;

Og1

(
δ−1|I|T t+d′−1 log T

)
+ Og1

(
δ−1|I|T d+t−2)

+ Og1

(
|I|T (1−α)(d−1)+t

)
,

if p + q = 2d− 1;

Og1

(
δ−1|I|T (1−α)(p+q−2d)+t+d′−α

)
+Og1

(
δ−1|I|T p+q+t−d−1)+ Og1

(
|I|T (1−α)(p+q−d)+t

)
,

if d + 1 ≤ p + q < 2d− 1.

(2.5)

It is obvious that

Ih−
δ,g1

, I ≤ vol((F,M)−1(I) ∩BT (0)) ≤ Ih+
δ,g1

, I (2.6)

and
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J(h+
δ,g1

) ≤ J(hg1) ≤ J(h−
δ,g1

),

where hg1(v) = h(vg−1
1 ), and Ih±

δ,g1
, I and J(h±

δ,g1
) are defined as in Lemma 2.1.

We claim that

J(hg1) − J(h±
δ,g1

) = Og1(δ) (2.7)

as δ goes to zero. Denote by (r3, ω3) the spherical coordinates of Rt with re-
spect to Ld-norm, so that dY ′

1 = rt−1
3 dr3dω3. Define the new coordinates (R, ω) of (

(Sp−1 × Sq−1) ×R>0
)
×Rt by

R = d

√
2rd + rd3 ;

ω = (ω1, ω2, ω3, θ1, θ2),

where (R, θ = (θ1, θ2)) is the spherical coordinates of {( d
√

2r, r3) ∈ R2
>0} with respect to 

Ld-norm. Note that ω is the coordinates of the compact set

S :=
{
(r, r3, ω1, ω2, ω3) ∈

(
(Sp−1 × Sq−1) ×R>0

)
×Rt : 2rd + rd3 = 1

}
.

For each ω ∈ S, J(hg1) − J(h±
δ,g1

) �= 0 only if ‖ ((ω1 + ω2)r + Y ′
1) g−1

1 ‖ = ‖Rω g−1
1 ‖ ∈

(1 − δ, 1 + δ), or equivalently,

J(hg1) − J(h±
δ,g1

) �= 0 only if (1 − δ)‖ωg−1
1 ‖−1 ≤ R ≤ (1 + δ)‖ωg−1

1 ‖−1.

Since drdr3 � R dRdθ, we have

|J(hg1) − J(h±
δ,g1

)| �
∫
S

(1+δ)‖ωg−1
1 ‖−1∫

(1−δ)‖ωg−1
1 ‖−1

Rp+q+t−d−1θp+q−d−1
1 θt−1

2 dRdω

�
∫
S

(1+δ)‖ωg−1
1 ‖−1∫

(1−δ)‖ωg−1
1 ‖−1

Rp+q+t−d−1dRdω

�
∫
S

‖ωg−1
1 ‖−(p+q+t−d)δdω � ‖g−1

1 ‖−(p+q+t−d)δ.

Here we use the fact that p + q > d. We consider several cases.

i) p + q ≥ 2d − 1 (p + q �= 3).
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Take δ = T−1/2 and choose any α in 
[

1
2(p+q−d) ,

d−d′

d

)
. Then by (2.5) and (2.7),

Ih±
δ,g1

, I =

⎧⎪⎨
⎪⎩

J(hg1)|I|Tn−r−d + Og1

(
|I|Tn−r−d−1/2 log T

)
,

if p + q = 2d− 1 and
d′ = d− 1;

J(hg1)|I|Tn−r−d + Og1

(
|I|Tn−r−d−1/2) , otherwise.

Hence the result follows from (2.6) and by putting cF,M = J(hg1).

ii) d + 1 ≤ p + q < 2d − 1.
For 0 < ξ < min

{
(d−d′)(p+q−d)

p+q−1 , 1
2

}
, take δ = T−ξ and pick any α in 

[
ξ

p+q−d ,

min
{

d−d′

d , d−d′−2ξ
2d−1−p−q

})
. Again, by (2.5), (2.7) and (2.6), we have

vol
(
(F,M)−1(I) ∩BT (0)

)
= cF,M |I|Tn−r−d + OF,M

(
|I|Tn−r−d−ξ

)
,

where cF,M = J(hg1).

Now consider the case when I ⊆ [−N, N ]r+1 for N ≥ 1. Define

I ′ =
{( a0

Nd
,
a1

N
, ...,

ar
N

)
: (a0, a1, ..., ar) ∈ I

}
.

Then I ′ ⊆ [−1, 1]r+1, |I ′| = N−(r+d)|I| and (F, M)(v) ∈ I if and only if 
(F, M)(N−1v) ∈ I ′. By taking w = N−1v, it follows that

(F,M)−1(I) ∩BT (0) =
{
Nw | (F,M)(w) ∈ I ′, ‖w‖ ≤ N−1T

}
= N

(
(F,M)−1(I ′) ∩BN−1T

)
.

Therefore, the theorem is deduced from the case of N = 1. �
Corollary 2.3. Let p ≥ 1, q ≥ 1 with d + 1 ≤ p + q ≤ n − r and let (F, M) ∈ Y(F0,M0). 
Fix N ≥ 1 and let I ⊆ [−N, N ]r+1 ⊆ Rr+1 be measurable. Let 0 < ξ < 1

2d−2 . Then there 
exist cF,M > 0 and T0 > 0 such that for T > T0N ,

vol
(
(F,M)−1(I) ∩BT (0)

)
= cF,M |I|Tn−r−d + OF,M

(
|I|N ξTn−r−d−ξ log T

)
,

where log T occurs only when p + q = 2d − 1 and d − d′ = 1.

Proof. It follows easily from Theorem 2.2. Note that for d + 1 ≤ p + q < 2d − 1, 
1 < (d−d′)(p+q−d) and for T > T0N , N1/2Tn−r−d−1/2 � N ξTn−r−d−ξ. �
2d−2 p+q−1
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In particular, taking ξ = 1
2d in the above corollary, we get that

vol
(
(F,M)−1(I) ∩BT (0)

)
= cF,M |I|Tn−r−d + OF,M

(
|I|N1/2dTn−r−d−1/2d log T

)
.

(2.8)
We will use this simplified version of volume form in subsequent theorems.

3. Discrepancy estimates

In this section, we prove Theorem 1.1 and Corollary 1.2. We continue to use the 
notations in Section 1.2.2. We will regard Y(F0,M0) as the union of SLn(R)-slices

Ygλ
2

:= {(λF g1
0 , g1M0g2) : g1 ∈ SLn(R)} ,

over all (λ, g2) ∈ (R − {0}) ×GLr(R). Since an (R − {0}) × SLn(R) ×GLr(R)-invariant 
measure on Y(F0,M0) is the push-forward measure of the product of Haar measures on 
R − {0}, SLn(R) and GLr(R), respectively, it suffices to show that for all (λ, g2) ∈
(R − {0}) ×GLr(R) and for almost every (F, M) ∈ Ygλ

2
, the statements of Theorem 1.1

and Corollary 1.2 holds.

Theorem 3.1. Let 0 ≤ κ < n − r − d. Let {It}t>0 be a non-increasing family of bounded 
measurable subsets of Rr+1 with |It| = ct−κ for some c > 0. Then there is ν > 0 such 
that for almost every (F, M) ∈ Ygλ

2
, there exists cF,M > 0 such that

#{v ∈ Zn : (F,M)(v) ∈ It, ‖v‖ ≤ t} = cF,M |It|tn−r−d + OF,M (tn−r−d−κ−ν).

Given a lattice Λ ⊂ Rn and a finite volume set A ⊆ Rn, we define the discrepancy of 
lattice points in A by

D(Λ, A) = |#(Λ ∩A) − vol(A)|. (3.1)

Lemma 3.2. Let 0 ≤ κ < n − r − d. Let {It}t>0 be a non-increasing family of bounded 
measurable subsets of Rr+1 with |It| = ct−κ for some c > 0. Then there exists some 
δ ∈ (0, 1) such that for almost every g ∈ SLn(R) there exists tg > 0 such that for all 
t ≥ tg,

D(Zng,Ag,It,t) < vol(Ag,It,t)δ, (3.2)

where Ag,It,t := (F0, M0)−1(It) ∩Bt(0)g with (F0, M0) as in (1.3).

Proof. Let K ⊂ SLn(R) be compact and consider a sequence {tk = kα}k∈N , where 

α > max
{

2d, dn+3
n−r−κ−d

}
with dn = 1

2 (n + 2)(n − 1). Let δ0 = 1 − 1
α(n−r−κ−d) . For t > 0

and δ ∈ (δ0, 1), define
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Bt := {g ∈ K : D(Zng,Ag,It,t) ≥ vol(Ag,It,t)δ}.

Then it suffices to show that limt→∞Bt is a null set.
For each k ∈ N, let εk = 1/k. By Lemma 2.1 in [18], there is a finite subset Ik ⊂ K

with #Ik = OK(kdn), dn = (n + 2)(n − 1)/2 such that K ⊂
⋃

h∈Ik
Uεkh. Here, Uεk is a 

εk-neighborhood of the identity in SLn(R), with respect to the operator norm (acting 
on Rn). For each k ∈ N and h ∈ Ik, set

Ak,h = (F0,M0)−1(Itk+1) ∩B(1−εk)tkh,

Ak,h = (F0,M0)−1(Itk) ∩B(1+εk)tk+1h.

Then for tk ≤ t < tk+1 and g ∈ Uεkh, we get Ak,h ⊆ Ag,It,t ⊆ Ah,k. Let

Tk,h = vol(Ak,h)δ − vol(Ak,h \Ak,h).

Define

MA,T := {g ∈ K : D(Zng,A) ≥ T}.

Then Theorem 2.2 of [18], which is deduced from Rogers’ second moment formula [24], 
says that

μ(MA,T ) �K
vol(A)
T 2 , (3.3)

where μ is the normalized SLn(R)-invariant measure on SLn(Z) \ SLn(R).
Moreover, as in the proof of Theorem 6 of [18], we have that

⋃
tk≤t<tk+1

Bt ⊂
⋃

h∈Ik

Ck,h,

where Ck,h = MAk,h,Tk,h
∪MAk,h,Tk,h

.
By equation (2.8), since |Itk | = ct−κ

k , (1 + εk)n−r−d =
(
1 + 1

k

)n−r−d = 1 +O
( 1
k

)
and 

tn−r−d
k+1 = (k + 1)α(n−r−d) = kα(n−r−d) (1 + Oκ

( 1
k

))
, we get that

vol(Ak,h) = chc k
α(n−r−κ−d) + OK,c,κ

(
kα(n−r−κ−d)−1 + kα(n−r−κ−d−1/2d) log(k + 1)

)
.

Since α > 2d, we have α(n − r − κ − d) − 1 > α(n − r − κ − d − 1/2d) and hence

vol(Ak,h) = chc k
α(n−r−κ−d) + OK,c,κ

(
kα(n−r−κ−d)−1

)
.

Similarly, for sufficiently large k,

vol(Ak,h) = chc k
α(n−r−κ−d) + OK,c,κ

(
kα(n−r−κ−d)−1

)
.
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Therefore,

vol(Ak,h)δ �K,c k
δα(n−r−κ−d) and vol(Ak,h \Ak,h) �K,c,κ kα(n−r−κ−d)−1.

Since δ > 1 − 1
α(n−r−κ−d) , we get

Tk,h = vol(Ak,h)δ − vol(Ak,h \Ak,h) �K,c,κ kδα(n−r−κ−d).

By using (3.3), we have

μ(Ck,h) �K
vol(Ak,h)

T 2
k,h

�K,c,κ kα(n−r−κ−d)(1−2δ).

Now since #Ik = O(kdn), we get

μ(
⋃

tk≤t<tk+1

Bt) ≤
∑
h∈Ik

μ(Ck,h) �K,c,κ
1

kα(n−r−κ−d)(2δ−1)−dn
.

Since α > max
{

2d, dn+3
n−r−κ−d

}
and δ > δ0 we have α(n − r − κ − d)(2δ − 1) − dn > 1

and hence

μ
(

lim
t→∞

Bt

)
≤ lim

m→∞

∞∑
k=m

μ
( ⋃

tk≤t<tk+1

Bt

)
≤ lim

m→∞

∞∑
k=m

1
kα(n−r−κ−d)(2δ−1)−dn

= 0.

Hence for given δ ∈ (δ0, 1), it follows that for almost every g ∈ SLn(R) and for 
sufficiently large t, D(Zng, Ag,It,t) < vol(Ag,It,t)δ. �

We are now ready for the proof of Theorem 3.1.

Proof of Theorem 3.1. For δ ∈ (δ0, 1), where δ0 is as in the proof of Lemma 3.2, let

0 < ν < (1 − δ)(n− r − κ− d).

By replacing {It} with {It(gλ2 )−1} in Lemma 3.2, we obtain that for almost every 
g1 ∈ SLn(R) and for sufficiently large t,

D(Zng1, Ag1,It(gλ
2 )−1,t) < vol(Ag1,It(gλ

2 )−1,t)δ. (3.4)

For (F, M) ∈ Ygλ
2
, denote

N(F,M)(It, t) := #{v ∈ Zn : (F,M)(v) ∈ It, ‖v‖ ≤ t}.
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Then,

N(F,M)(It, t) = #(Zn ∩ (F,M)−1(It) ∩Bt(0))

= #(Zng1 ∩ (F0,M0)−1(It(gλ2 )−1) ∩Bt(0)g1)

= #(Zng1 ∩Ag1,It(gλ
2 )−1,t).

Hence for almost every (F, M) ∈ Ygλ
2

and for sufficiently large t,

∣∣N(F,M)(It, t) − cF,M |It|tn−r−d
∣∣

≤ D(Zng1, Ag1,It(gλ
2 )−1,t) +

∣∣∣vol(Ag1,It(gλ
2 )−1,t) − cF,M |It|tn−r−d

∣∣∣
≤ vol(Ag1,It(gλ

2 )−1,t)δ + OF,M,c

(
tn−r−d−κ−1/2d log t

)
≤ (2cF,Mctn−r−d−κ)δ + OF,M,c

(
tn−r−d−κ−1/2d log t

)
≤ tn−r−d−κ−ν ,

thus proving the theorem. �
As an immediate corollary we have,

Corollary 3.3. Let 0 ≤ κ < n −r−d and (κ0, κ1, . . . , κr) ∈ Rr+1
≥0 be such that 

∑r
i=0 κi = κ. 

Then for any ξ = (ξ0, ξ1, . . . , ξr) ∈ Rr+1 and for almost every (F, M) ∈ Ygλ
2
, the system 

of inequalities
⎧⎪⎨
⎪⎩

|F (v) − ξ0| < t−κ0 ;
|li(v) − ξi| < t−κi , 1 ≤ i ≤ r;
‖v‖ ≤ t,

has integer solutions for sufficiently large t, where (l1, . . . , lr) = M .

4. Uniform approximation

As in Section 3, to show Theorem 1.3 and Corollary 1.4, it suffices to show the theorems 
for all (λ, g2) ∈ (R − {0}) × GLr(R) and for almost all (F, M) ∈ Ygλ

2
. Let us first show 

the following theorem.

Theorem 4.1. Let 0 ≤ η < min
{

1, n−r−d
r+1

}
and 0 ≤ κ < n−r−d−(r+1)η

r+2 . Let N(t) be a 

non-decreasing function such that N(t) = O(tη). Then there exists some δ ∈ (0, 1) such 
that for almost every (F, M) ∈ Ygλ

2
, there exists tF,M > 0 satisfying the following: for 

all t > tF,M and for all I ⊂ [−N(t), N(t)]r+1 of the form I = I0 × I1 × · · · × Ir with 
|Ij | = t−κj where κj ≥ 0 and 

∑r
j=0 κj = κ,
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∣∣NF,M (I, t) − cF,M tn−r−d−κ
∣∣ < tδ(n−r−d−κ). (4.1)

Proof. Let K ⊂ SLn(R) be compact and {tk = kα}k∈N be a sequence with

α > max
{

2d
1 − η

,
dn + 3

n− r − d− (r + 1)η − (r + 2)κ

}
,

where dn = (n+2)(n−1)
2 and let δ0 = 1 − 1

α(n−r−d−κ) . For t > 0 and δ ∈ (δ0, 1), define

Bt :=
{
g ∈ K :

∃ I = I0 × I1 × · · · × Ir ⊂ [−N(t), N(t)]r+1 with |Ij | = t−κj

such that D(Zng,Ag,I,t) ≥ vol(Ag,I,t)δ

}
,

where D(Zng, Ag,I,t) is as in (3.1) and in this time, we let Ag,I,t = (F0, M0)−1(I(gλ2 )−1) ∩
Bt(0)g so that the set of g ∈ K for which (4.1) does not hold is contained in limt→∞Bt.

Let β = max{κj}rj=0. For any tk ≤ t < tk+1, take a t−β
k+1-dense partition of the interval 

[−N(tk+1), N(tk+1)]:

−N(tk+1) = ξk,0 < ξk,1 < . . . < ξk,M(k) = N(tk+1).

For any subset I = I0×I1×· · ·×Ir ⊂ [−N(t), N(t)]r+1 with |Ij | = t−κj for 0 ≤ j ≤ r, 
its center point ξ = (ξ0, . . . , ξr) lies in [−N(tk+1), N(tk+1)]r+1. Therefore, there exists 
(i0, . . . , ir) with 0 ≤ ij < M(k) such that ξk,ij ≤ ξj < ξk,ij+1 for 0 ≤ j ≤ r.

Since Ij = (ξj − t−κj

2 , ξj + t−κj

2 ) and ξk,ij+1 − ξk,ij < t−β
k+1 ≤ t

−κj

k+1, it follows that

(
ξk,ij+1 −

t
−κj

k+1
2 , ξk,ij +

t
−κj

k+1
2

)
⊆ Ij ⊆

(
ξk,ij −

t
−κj

k

2 , ξk,ij+1 +
t
−κj

k

2

)
.

Let I1
j =

(
ξk,ij+1 −

t
−κj
k+1
2 , ξk,ij + t

−κj
k+1
2

)
and I2

j =
(
ξk,ij −

t
−κj
k

2 , ξk,ij+1 + t
−κj
k

2

)
, and 

denote I1
(i0,...,ir) =

∏r
j=0 I

1
j and I2

(i0,...,ir) =
∏r

j=0 I
2
j so that I1

(i0,...,ir) ⊆ I ⊆ I2
(i0,...,ir).

Similar to the proof of Lemma 3.2, we have

⋃
tk≤t<tk+1

Bt ⊆
⋃

h∈Ik

M(k)−1⋃
i0=0

. . .

M(k)−1⋃
ir=0

Ck,i0,...,ir,h,

where Ck,i0,...,ir,h = MAk,i0,...,ir,h,Tk,i0,...,ir,h
∪MAk,i0,...,ir,h,Tk,i0,...,ir,h

with

Ak,i0,...,ir,h
= (F0,M0)−1

(
I1
(i0,...,ir)(gλ2 )−1

)
∩B(1−εk)tkh,

Ak,i0,...,ir,h = (F0,M0)−1
(
I2
(i0,...,ir)(gλ2 )−1

)
∩B(1+εk)tk+1h,

Tk,i0,...,ir,h = vol(Ak,i ,...,i ,h)δ − vol(Ak,i0,...,ir,h \Ak,i ,...,i ,h),

0 r 0 r
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where Ik ⊆ K and MA,T are as in the proof of Lemma 3.2. For every 0 ≤ i0, . . . , ir <

M(k), I1
(i0,...,ir)(gλ2 )−1 and I2

(i0,...,ir)(gλ2 )−1 are contained in

[
(−N(tk+1) − 1)‖(gλ2 )−1‖, (N(tk+1) + 1)‖(gλ2 )−1‖

]r+1
.

Since η < 1, for sufficiently large k, we have that

(1 + εk)tk+1 > T0(N(tk+1) + 1)‖(gλ2 )−1‖

and

(1 − εk)tk > T0(N(tk+1) + 1)‖(gλ2 )−1‖.

Hence by (2.8), it follows that

vol(Ak,i0,...,ir,h) = ch|det(gλ2 )|−1
r∏

j=0

[
(ξk,ij+1 − ξk,ij ) + t

−κj

k

]
(1 + εk)n−r−d tn−r−d

k+1

+ OK

⎛
⎝ r∏

j=0

[
(ξk,ij+1 − ξk,ij ) + t

−κj

k

]
t
n−r−d−1/2d
k+1 N(tk+1)1/2d log(tk+1)

⎞
⎠ .

Since (1 +εk)n−r−d = 1 +O
( 1
k

)
, tn−r−d

k+1 = kα(n−r−d) (1 + Oκ,η

( 1
k

))
and N(t) = O(tη),

vol(Ak,i0,...,ir,h) = ch|det(gλ2 )|−1kα(n−r−d−κ)

+ OK,κ,η

(
kα(n−r−d−κ)−1 + kα(n−r−d−κ− 1

2d+ η
2d ) log k

)
.

Since α > 2d
1−η , we get for sufficiently large k,

vol(Ak,i0,...,ir,h) = ch|det(gλ2 )|−1kα(n−r−d−κ) + OK,κ,η

(
kα(n−r−d−κ)−1

)
.

By (3.3), μ(Ck,i0,...,ir,h) �K,κ,η k(1−2δ)α(n−r−d−κ). Therefore,

μ(
⋃

tk≤t<tk+1

Bt) ≤
∑
h∈Ik

M(k)−1∑
i0=0

. . .

M(k)−1∑
ir=0

μ(Ck,i0,...,ir,h) �K,κ,η
kdnM(k)r+1

kα(n−r−d−κ)(2δ−1) .

Since M(k) � N(tk+1)tβk+1≤ N(tk+1)tκk+1, we get

μ(
⋃

Bt) �K,κ,η
1

kα(n−r−d−κ)(2δ−1)−dn−α(r+1)(η+κ) .

tk≤t<tk+1
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. 
Since α > dn+3
n−r−d−(r+1)η−(r+2)κ and δ > 1 − 1

α(n−r−d−κ) , we have that α(n − r − d −
κ)(2δ−1) −dn−α(r+1)(η+κ) > 1, which implies that μ(limt→∞Bt) = 0, thus proving 
the theorem. �

We now present Theorem 4.2 which leads Theorem 1.3 directly.

Theorem 4.2. Let 0 ≤ η < min{1, n−r−d
(r+1)(1+r(r+2))} and 0 ≤ κ < n−r−d−(r+1)η−r(r+1)(r+2)η

(r+1)(r+2)
For 0 ≤ j ≤ r, let κj ≥ 0 be such that 

∑r
j=0 κj = κ. Let N(t) be a non-decreasing 

function such that N(t) = O(tη). Then there exists ν > 0 such that for almost every 
(F, M) ∈ Ygλ

2
and for all I ⊂ [−N(t), N(t)]r+1 of the form I = I0 × I1 × · · · × Ir with 

|Ij | ≥ t−κj

#{v ∈ Zn : (F,M)(v) ∈ I, ‖v‖ ≤ t} = cF,M |I|tn−r−d + OF,M

(
|I|tn−r−d−ν

)
.

Proof. Let κ ∈
[
0, n−r−d−(r+1)η−r(r+1)(r+2)η

(r+1)(r+2)

)
. Then κ + rη < n−r−d−(r+1)η

(r+1)(r+2) . Take a ∈(
κ + rη, n−r−d−(r+1)η

(r+1)(r+2)

)
and let κ′

j = a for 0 ≤ j ≤ r. Then

κ < κ′ :=
r∑

j=0
κ′
j = (r + 1)a <

n− r − d− (r + 1)η
r + 2 .

By Theorem 4.1, there is δ ∈ (0, 1) such that for almost every (F, M) ∈ Ygλ
2
, there 

exists t′F,M > 0 such that for t > t′F,M and for all I ′ ⊂ [−N(t), N(t)]r+1 of the form 

I ′ = I ′0 × I ′1 × · · · × I ′r with |I ′j | = t−κ′
j ,

∣∣NF,M (I ′, t) − cF,M |I ′|tn−r−d
∣∣ < |I ′|δtδ(n−r−d).

Let ν = 1
2 min{(1 − δ)(n − r − d − κ′), a − (κ + rη)}. We first consider the case that 

there are nj ∈ N, j = 0, . . . , r such that I = I0 × · · · × Ir ⊂ [−N(t), N(t)]r+1 for which 
|Ij | = njt

−κ′
j , 0 ≤ j ≤ r.

Divide Ij into nj subintervals each of length t−κ′
j , i.e. Ij = �nj

lj=1 I
lj
j , where I ljj ⊆ Ij

with |I ljj | = t−κ′
j . This gives a partition of I as I = �n0

l0=1 . . .�nr

lr=1 I
l0
0 × · · · × I lrr with 

|I l00 × · · · × I lrr | = t−κ′ . Then for t > t′F,M ,
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∣∣NF,M (I, t) − cF,M |I|tn−r−d
∣∣

=

∣∣∣∣∣
n0∑

l0=1

. . .

nr∑
lr=1

(
NF,M (I l00 × · · · × I lrr , t) − cF,M |I l00 × · · · × I lrr |tn−r−d

)∣∣∣∣∣
≤

n0∑
l0=1

. . .

nr∑
lr=1

∣∣∣NF,M (I l00 × · · · × I lrr , t) − cF,M |I l00 × · · · × I lrr |tn−r−d
∣∣∣

<

n0∑
l0=1

. . .

nr∑
lr=1

t−δκ′
tδ(n−r−d) = n0 · · ·nrt

−δκ′
tδ(n−r−d)

= |I|tκ′
t−δκ′

tδ(n−r−d) = |I|tn−r−d−(1−δ)(n−r−d−κ′)

≤ |I|tn−r−d−2ν ,

which shows the theorem.
Now, consider the general I ⊂ [−N(t), N(t)]r+1, which is of the form I = I0 × I1 ×

· · · × Ir with |Ij | ≥ t−κj for 0 ≤ j ≤ r. Then |Ij | > t−κ′
j and hence there exists mj ∈ N

such that mjt
−κ′

j < |Ij | ≤ (mj + 1)t−κ′
j . Let I1

j and I2
j be such that |I1

j | = mjt
−κ′

j , 
|I2

j | = (mj + 1)t−κ′
j and I1

j ⊂ Ij ⊂ I2
j . Take I =

∏r
j=0 I

1
j and I =

∏r
j=0 I

2
j . Then 

I ⊂ I ⊂ I. Since N(t) = O(tη), we get mj = O(tη+κ′
j ) and hence |I| − |I| ≤ ctrη−a for 

some constant c. Let tF,M = max{1, t′F,M , (1 + c + cF,Mc)1/ν}. By applying the previous 
result to I and I and using the estimate κ + rη − a < 0, we obtain that for t > tF,M ,

∣∣NF,M (I, t) − cF,M |I|tn−r−d
∣∣

≤ max
{∣∣NF,M (I, t) − cF,M |I|tn−r−d

∣∣ , ∣∣NF,M (I, t) − cF,M |I|tn−r−d
∣∣}

≤ max
{∣∣NF,M (I, t) − cF,M |I|tn−r−d

∣∣ , ∣∣NF,M (I, t) − cF,M |I|tn−r−d
∣∣}

+ cF,M (|I| − |I|)tn−r−d

≤ |I|tn−r−d−2ν + cF,M (|I| − |I|)tn−r−d

≤ |I|tn−r−d−2ν + c|I|tκ+rη−a tn−r−d−2ν + cF,Mc |I|tκ+rη−a tn−r−d

≤ |I|tn−r−d−ν . �
Corollary 4.3. Let d < n − r and 0 ≤ η < min{1, n−r−d

(r+1)(1+r(r+2))}. Let N(t) be a 
non-decreasing function such that N(t) = O(tη) and δ(t) be a non-increasing func-
tion satisfying tη(r+1)(1+r(r+2))−a

δ(t)(r+1)2(r+2) → 0 for some a < n − r − d. Then for almost every 

(F, M) ∈ Ygλ
2

and for sufficiently large t,

sup
‖ξ‖≤N(t)

min
v∈Zn,‖v‖≤t

‖(F,M)(v) − ξ‖ < δ(t),

where ‖ · ‖ denotes the supremum norm on Rn.
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