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Abstract

The principal thrust of this investigation is to provide families of quadratic polynomials
{Dr(X) =f2X? +2ex X + C}ion, Where e —f2C =n (for any given nonzero integer n)
satisfying the property that for any X €N, the period length /) = /(1/Di(X)) of the simple
continued fraction expansion of /D (X) is constant for fixed k& and limy_, oo /; = oo. This
generalizes, and completes, numerous results in the literature, where the primary focus was
upon |n| = 1, including the work of this author, and coauthors, in Mollin (Far East J. Math.
Sci. Special Vol. 1998, Part III, 257-293; Serdica Math. J. 27 (2001) 317-342) Mollin and
Cheng (Math. Rep. Acad. Sci. Canada 24 (2002) 102-108; Internat Math J 2 (2002) 951-956)
and Mollin et al. (JP J. Algebra Number Theory Appl. 2 (2002) 47-60).
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

One may find, in a perennial favorite reference Dickson [1, Chapter 12], that there
is an informative description of early investigations into infinite parametric families
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of nonsquare integers Dy such that a unit (often the fundamental unit) of the order
Z[\/Dy] can be explicitly (and easily) determined. This problem has a distinguished
and long history. One of the most informative and lucrative vehicles for such
investigations is the continued fraction approach. In particular, in the early 1960s,
Schinzel [9,10], studied simple continued fraction expansions of \/D(X) where D(X)
is an integral polynomial. Since our focus in this paper is upon the quadratic case, we
highlight what Schinzel found in that arena. In particular, for quadratic integral
polynomials, he showed that limy , ., #(1/D(X)) = oo when the leading coefficient
of D(X) is not a perfect square. He also examined some criteria for
limy ., ., /(y/D(X))< co. Some examples of the latter are those D(X) = A4>°X?> + E
where Ee{+ A4, +2A4, +4A}, called Extended Richaud—Degert types (see [2, Chapter
3] for a description of these well-studied objects). In earlier work [8], we looked at
D(X) = A>X? + 2BX + C, where

B —A’C=1 (1)
for nonsquare CeN. Therein, we showed that,
for any N eN;, there exist 4, B, CeN such that Z(y/D(X))>N. (2)
Moreover,
for fixed 4,B,CeN, /(y/D(X)) is constant for any X eN. (3)

For each family, we explicitly found the fundamental unit of the quadratic order
Z[\/D(X)], which turns out to be relatively small, and this implies large class number
hp(x) for the order (as a result of Siegel’s class number result—see [2, p. 173]).
In [5-7], we investigated more general types such as those of the form

D(X) = (B+1)’4’X*> +2(B+1)*X + C,

where Eq. (1) holds. Again, we were able to explicitly determine the fundamental
unit and proved (2) and (3) for this class of families as well.

In this paper, the goal is to generalize all of the above by substituting the value of 1
in Eq. (1) by any nonzero value ne Z. This yields a significant number of results, in
the literature on this topic, as immediate consequences.

2. Preliminaries
We will be dealing with quadratic irrationals o« = (Py+ v/D)/Q, where D

is a nonsquare positive integer. In this case, the complete quotients are given by
(P; +/D)/Q; where the P; and Q; are given by the recursive formulae as follows
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for any j>0:

q; A

@ _ |Pi+VD
o |

@ _ )@ o)
PiLi=q Q" —PF

and

_ pl)’ (@) (@)
D=P +0;70

The superscripts (o) are used to distinguish various values of Pj(“),

(6)

Qj@ etc. for

different quadratic irrationals o in a given argument. We will suppress the

superscripts when the context is clear. Thus, we may write
o= {qo; q1, -, Gics (Prs1 + VD) / Qi1 -

(7)

We will also use the following terminology. By a positive solution of x> — Dy = n,
DeN,; we mean that x,yeN. Moreover, if (x;,y;) and (x2,y2) are both positive
solutions of this equation, then the following are equivalent (1) x; <x3, (2) y1 <y2,

3) x; +y1\/5 <X +y2\/5. Hence, there exists a least positive solution, which we

call the fundamental solution of the equation.
Let CeN, not a perfect square, n' € Z nonzero, and let

' + 'V C
be the fundamental solution of
-2 C=n
(so ged(ey', fo') = 1). Also, let
To + UpV'C

be the fundamental solution of the Pell equation
XX —yc=1
and set
T + UV C = (Ty + UpVC)F
for any integer k>=0. Also, for ge N, set

er +1iV/C = gleo + £/ VC)(Ty + UpV O,

ex/fi = <q05q1, ... qr> = {qo; Ex >,
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with

—

Er=q,q,...,q

and where 7 is chosen to be odd when n>0, and / is chosen to be even when n<0.
(Recall that < qo; q1, .-.,q,> = <qo;q1, ---,qgs—1,9, — 1,1) when ¢, #1.) We also will
need the symbol

«—

Ec=qr,q9/-15 ..., q1.

Thus,
et —f2C=gn =n.
Also, set
Di(X) = f2X* + 2e1.X + C.

We will need the following.
Proposition 1. If oy = xo + yoV/D is a primitive solution of x* — Dy*> =n for a
radicand D, then there exists a unique primitive element o = x + y/D such that ooy =

Py + /D with —|n|/2< Py<|n|/2. Thus, if B = (Po + \/D)/|n| We say that « belongs
_ p®
to P() = PO .

Proof. See [4, Proposition 1. p. 269]. O

Lastly, the symbol ¢p will denote the fundamental unit of the real quadratic order

Z[\V/D].

3. Results

Theorem 1. With the setup in Section 2, we assume that |n||2(f2X +ex)" with
In|# (f2X + ex). Then

(@) If g*> = |n, (in other words |/| = 1), then

VDi(X) = <ka + QO;Ek72(f)cX+ 610)> 9)
and

((De(X)) =/ +1.

'Note that this implies g*|2¢;.



232 R.A. Mollin, B. Goddard | Journal of Number Theory 107 (2004) 228-240

(b) If g*>#n, then

VDi(X) = <ka + CIO;Ek,%, Ep, 2(fiX + 610)> (10)
and
((VDip(X)) =2¢0+2.
Here,

pWVDX) _ {P((f '+ VDX )J | — P

/+1 |I’l/| 0

with Péﬁ ) being the unique solution mandated by Proposition 1, which is
determined via

PP = —((fi/9)’X + ex/9)(fi)9) " (mod |n).

Furthermore, in either case, the fundamental solution of x* — Dy (X)y* = 1’ is given by

szX‘i‘ek fk)

(X, Yr) = ( IR (11)

Proof. For part (a), we assume that |n| = g>. We prove only the result for the case
n' = —1 since the case n' = 1 is similar. By [2, Theorem 3.2.1, p. 78],

szXJrek

_ Ji
KR E o R +5 Dy (X).

Moreover, if X;/Y; denotes the jth convergent of \/Dy(X) and 7 = /(\/Di(X)),
then by [3, Corollary 5.3.3, p. 249], there is an ie N such that X;;_, = (f2X +ex)/g
and Y;_, = fi/g9. However, by [3, Exercise 5.1.9, p. 227],

szXJrek
Ji

and there is no smaller value that yields this, so / =iZ — 1 and i = 1 is forced, so
/ = ¢ + 1. This establishes (9). It also shows that

X+ q0iq1, ) = fiX +e/fi) =

E4Dc(X) = 84(5/9) Di(x)

so (11) follows. We have secured part (a).
Now we establish part (b). Since (fi/g)*Di(X) = ((f2X +ex)/g)* — ', then
JEDi(X) is an ERD type. Since |n'|#1, then by [2, Theorem 3.2.1, p. 78], the



R.A. Mollin, B. Goddard | Journal of Number Theory 107 (2004) 228-240 233

fundamental unit of Z[/fZDi(X)] is

(X + e+ fi/De(X)) 202X +ex)” — n+ 2 (12X + ex)/Di(X)
|| B |

Thus, by [3, Corollary 5.3.3, p. 249], if we can show that

2(/2X + e) —n _ X
2 (f2X + ex) Yot

- D (X «—
e+ o3 B 2PY P ) By = (12)

we will have shown that the above is also the fundamental unit of Z[\/Dy(X)] and
that (10) and (11) are valid. To see this, let # = /(1/Dy(X)). Then if (12) holds, by [3,
Corollary 5.3.3, p. 249], there exists a jeN such that Xi7_1 = Xor and Y=
Y2,-1, where X;/Y; is the ith convergent in the simple continued fraction expansion
of \/Di(X). Thus, jZ —1=2/—1,s0j=1and 7 =2/ + 2 since no smaller value
than 27 4 1 yields (12), which we now seek to prove.

First, if |n|> /Dy (X), then Dy (X)/|n|<+/Dir(X), so by [2, Theorem 3.2.1, p. 78],
In| = f2X + ek, contradicting the hypothesis, so |n|<\/Di(X), which forces |n| =

Q](. VIO for some j >0 in the simple continued fraction expansion of /Dy (X) (see

[3, Remark 5.5.1, p. 267]). However, |n| [2(f2X + ex), so |n| |2Dx(X), and as above

X, szX'i‘ek

Z:<ka+6]o;611,~~,61/>=<ka+€k/fk>= 7

so |n| = Q; Y ID"(X)). For the balance of he proof, we will let Q.| = Q</ v ]Dk(X>) and
De(X
Py, — PV

/41
Now, by [3, Exercise 5.1.9, p. 227] we have

X +qoiq1s oq0, 2P /|0l g, - q1 )

= {fiX +qo;q1,...,q,,2Pr 1 [In| + Y, 1/ Yr ). (13)

However, 2P(+1/|I1| + Y/71/Y/ = (2P/+1 Y, + Qi1 Yffl)/(Q/+l Y/), and by [3, Ex-
ercise 5.3.10, p. 251], Py Y, + Qs Y, 1 = X,. Thus, if we set

M= (P Y+ X)) (Qr1Yy),
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then by [3, Theorem 5.1.2, p. 224] (13) equals

MX,+ X (Pra Y+ X)X+ X, 1001 Yy

MY, + Y, (P Yr+X)Yr+ Y0001 Y,
P X Y, + XP X100 Yy
P A XY+ 0 Y Y,

(14)

However, by [2, Exercise 2.1.13(g)(iii), p. 55, P X+ X/—10s11 = Di(X) Yy
Therefore, by [3, Theorem 5.3.4, p. 246], the numerator of (14) equals

X} + Di(X)Y} =2X7 — (X7 — Y/D(X)) =2X7 —n
and by [3, Exercise 5.3.10, p. 251], the denominator of (14) equals
Yi(Proa Y+ X, + Y, 00r1) = Y/(2X).
Hence, (14) equals

2X}—n_2(fk2X—|—ek)2—n
2X/Y/ o sz(szX“'ek) ’

v for]_l L.

It remains to show that |_( by Di(X)/ 17| ||| — = P;;y, but this is a
consequence of [4, Lemma 1 and Corollary 5, pp. 285- 286] O

which verifies (12) and conﬁrms that g =q""

Note that in Theorem 1, there need not be a j>0 such that |n| = Q; in the simple

continued fraction expansion of v/C as there did for us in earlier work such as [5-8].
Indeed in those works, |#| = 1. Thus, the above result substantially generalizes earlier
work and allows for any neZ to be considered (subject to the divisibility condition

cited above). For instance, we have the following illustration where v/C has only
0O; =1 for any j>0, yet any integer neZ may be considered.

Example 1. If C =5, n =4, then T + Uyv/C =9+ 4V/5 and ¢y + fo/C =3+ /5.
Thus, e; +£1vV/C =47 +214/5. Since e /fi = (2;4,4,1> and 4|2(f2X +21) pre-
cisely when X is odd, then we consider k = X =1 first,

Di(X)=21°X? 42 47X +5=441X> + 94X + 5,

SO

VDi(1) = V5340 = (23;4,4,1,10,1,4,4,46 > .



R.A. Mollin, B. Goddard | Journal of Number Theory 107 (2004) 228-240 235

Here, P = 0 via —(f2 +¢))f;"! = 0 (mod 4). Also, (X,, Y,) = (488,21) and
(488 + 211/540)(—2835 + 122/540) = /540,

Example 1 deals with the case where n>0 so 7 is necessarily odd. We now
illustrate the case where n<0, so / is even. To allow for economy of notation, we will
denote ¢q1, ¢, ...,q, in (8) by Ej.

Example 2. Let C =43, n=—19, for which e+ fo/C =72+ 11V/43, T, +
UpV/'C = 3482 + 531143, e; +f1v/C = 501867 + 765341/43, and

el/fi =<6;1,1,3,1,51,3,1,1,12,1,1,4,1> = {6, E} ),
where / = 14. Hence,
Di(X) =76534°X? + 2 x 501867X + 43
= 5857453156 X7 + 1003734 X + 43,

where |n| = 19](76534%>X + 501867) if and only if X = 14 (mod 19). Thus, for k = 1
and X = 14, we have,

/D1 (14) = V1148074870895 = { 1071482; E, 112786, E;, 2(1071482) .
Here, P = 0 and P{¥) = 1071467. Thus,
15 = qro1 = 2P [In] = 2P /|n| = 112786.

Notice as well that Q;m> #19 for any j>0 since 19>21/43. Also, the fundamental
solution of x2 — Dy(14)y* = —19 is

1412 4 e; + f11/D1(14) = 82004846051 + 76534+/1148074870895.

Examples 1 and 2 deal only with the case where g = 1. We now produce a result
that deals with the more general case and thereby simplifies a result we obtained
elsewhere.

Corollary 1 (Mollin [5, Theorem 4.1, p. 325]). Let Uy, Ty, C, be as above, and set
D(X) = UN(Ti = 1PX° + 2T — 1)’X + C

and
T —1
Uk

= {q0;q1, ---,q¢r > = <qo; Ex >.
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Then the fundamental solution of x* — Di(X)y* = 1 is
(x,3) = (Ti = DX +1)* + 1, UX + Up).

Ifg = ng(Tk — 1, Uk)7 and g2 = Z(Tk — 1),

Di(X) = <(Tk — ) UeX + qo; Ee, 2((Ti — 1)UkX+€m)>

and if ¢*#2(Ty — 1) and 2(Ty — 1) = g*n’, then

(v/Dr(X))
Di(X) = <Uk(Tk — 1)X+610;Ek,%, E,2(U(Tr — 1)X+qo)>,
where

(8)
Woex) | Py + v/ Dir(X) )
P/+1k = { : |n’| — |"/|*Po

with P(()ﬁ) being the unique solution given by Proposition 1, which is determined via
P{ = ~((U/9)*(Ti = DX + (T = 1)/9)(Ui/g)”' (mod |n)).
Proof. Let
D(Y)=UY* +2(Tx — )Y + C,

where Y = (T — 1)X. Then, we may apply Theorem 1 with f; = U, and ¢, =
T, — 1, whence

e; —f2C=-2(T — 1) = —2¢; = n.

Hence, ex/fi = {q0;q1,...,q,> where / is even. By hypothesis we have that g =
gcd(er, fi) = v2ex. Thus, n = —g?, and n’ = —1. By Theorem 1

DX = <<Tk C )UK + qo; Be,2(Ti — 1>ka+qo>>

2

and the fundamental solution of x> — Dy(X)y* = —1 is

UX(T— 1)+ T —1 Uy )
\/Zek ’\/26’1( '

Hence, the fundamental solution of x> — Dy (X)y? = 1 is given by

(X7, Yr) = (

(x,») = (Tx = DN(UX +1)> + 1, U} X + Up).

When g2 ##/, the result follows as above via Theorem 1. [
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In the above proof, we actually get more than the corollary mandates,

namely we get the fundamental unit of Z[\/Dr(X)], which we illustrate
as follows.

Example 3. Let C =85, e =T, — 1 = 285768, fi = U, = 30996, n— —2¢; —
—571536. Then g = 756 and ¢* = |n| with ' = —1, and

el/fl = <9a4a1a1a4> = <CI0§E1 >7

where / =4, and for ¥ = ¢ X,
D (Y) =30996°Y? + 2 x 285768 Y + 85,

sofor Y =¢;, X =1,

\/D1(285768) = /78458228140047944917 = {e; fiX + qo; El,Z(eLle +q0)>

= (8857664937;4, 1, 1,4, 2(8857664937) >.

Moreover, the fundamental unit of Z[\/D;(X)] is

flzel + e

(X4, Ya) = ( g ,%) = (363164262426,41),

with X7 — Y7Di(e;) = —1, whereas the value (X4 + Y4 Di(e))” yields the value
for the Pell equation in the Corollary.

In [5, Theorem 4.1, p. 325], numerous cases were involved that are simplified by
Corollary 1. We now illustrate with a couple of examples of those cases.

Example 4. Let C =21, T} = 55, Uy = 12. Then e, /f; = (T; — 1)/U; = {4;1,1) =

<q0;51 Y,50 4 =2.Also g=6,2(T; — 1)#¢?, and n' = 3. Thus, for

Di(Y)=122Y? +2 x 54Y + 21,

\/Di(er) =V425757 = {652;1,1,434,1,1,1304)

=<U(Ty — 1)X 4+ q0; E1,2P3 /3, E1, 2(U(Th — 1) X 4+ q0) ).
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Here P,y = 651 = | \/Di(e1)/3 |3, with P =0, 50 g/ 11 = ¢3 = 434 = 2P, /|n].
Moreover, the fundamental solution of x> — D;(e;)y? = 1 is given by

(x,y) = (T = DU + 1) + 1, U} + Uy) = (1135351, 1740).
Example 5. Let C =3, Ty =97, and Uy = 56. Then
eaffa=(Ts—1)/Us= (11,2, 1,15 = {qo; E4 ).

Hence, / =4, g = 3, and #/ = 3. Thus, for
Dy(Y) =56"Y* +2x96Y +3 =3136Y> + 1927 + 3,

V/Dales) = V28919811 = (5377;1,2,1,1,3584,1,1,2,1,10754 >

=< U4(T4 — l)X+q0;E4,2P5/3,E4,2(U4(T4 — 1)X+CIQ)>

Here P =0 and P/, = 5376 = | \/Da(es)/3 |3, 50 q/11 = g5 = 3584 = 2P, /3.
Other results in the literature are easily obtained from Theorem 1 as well.
Corollary 2 (Mollin et al. [8, Theorem 3.1]). With Ty, Uy, C as above, set
Di(X) = Ul X* + 2Ty X + C
and

Ty /Ui = {qo;q1s .- qr > = <QO;Ek>-

The fundamental unit of x*> — Di(X)y* =1 is
(x,y) = (UFX + Ty, Ux) (15)

and

VDR(X) = CURX + o3 Ee, 2(Ui X + o) > (16)

Proof. Set ¢, = Ty, fx = Uy in Theorem 1. Thus, n = 1, so (15)—(16) both hold. [J
The following is proved in a similar fashion to that of Corollary 1.

Corollary 3 (Mollin [5, Theorem 4.2, p. 337]). Suppose that Ty, Uy, C, are given as
above, (Te+1)/Uc = {qoiq1, .., qr> = {qo; Ex >, Di(X) = (T +1)°UZX +
2(Ty + 1)2X—|— C, and ay = (T + 1)Uy X + qo. Then if g=ged(Tx + 1,Uy) and
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g2 =2(Tx + 1),

VDi(X) = {ap; Ex,2a0 )
and the fundamental solution of x* — Di(X)y* = 1 is given by

5.5) = ((Tk+ D(UZX + 1)’%)

g g

If ?#2(Tp + 1), 2(Ti + 1) = g*n,

g Di(X <
VDi(X) = Cag; B, 2PN ) Ee 24,

where

p
(VD) _ {PE/) + ka(X)J »

with Péﬂ ) being the unique solution given by Proposition 1, which is determined via
Py = ~((Ue/9)* (T + DX + (Tic +1)/9) (Ui /g) ™" (mod |n').
Lastly, the fundamental solution of x* — Di(X)y* = 1 is given by
(x,2) = (T + DX +1)* = 1, UX + U).
Example 6. From Example 5, C=3,e4,=T4+1=98, f4 = Uy =56, 2(T4 + 1) =

9> =14, es/fa = {1;1,2,1) = {qo; E4 >, 50

D4(X) =30118144X2 + 19208X + 3

and

V/D4(1) = V30137355 = (5489;1,2,1,10978 ) = { (T4 + 1)Uy + q0;54,2a0>.

Also, the fundamental solution of x*> — Dy(1)y*> = 1 is given by

(x,») = ((T‘”L 1);U‘%+ U,%) — (21959, 4).
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Example 7. From Example 4, C =21, ¢g=T1+1=56, fi=U =12, g=4,
n' =7 and e /f; = {(4;1,1,1). Thus,

Dy (X) = 451584X% + 6272X + 21

and

(V/Di(1)
- 2P -
/Dy (1) = V457877 = <672;T,1,1,192,1,1,1,1352) = <a0;517$,51,2a0>,

where ay = (T) + 1)Uy + qo, and PV = PVPW) _ 670 — | /3578777 -7,

with P(()B) =0,80 ¢/ = ¢4 = 2P(/+1D](]))/n’ = 192. Also, the fundamental solution of
x? — Di(1)y* =1 is given by

(x,9) = (T + D)(U?X +1)* — 1, U} X + Uy) = (4677175, 3468).
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