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1. Introduction

Assuming the Riemann hypothesis, the prime number theorem refines to

π(x) = li(x) + O(
√
x log x) (1.1)

for x ≥ 2, where π(x) is the number of primes that are ≤ x and

li(x) =
x∫

2

dt

log t .

It is not possible to obtain directly from (1.1) that there are primes in short intervals of 
the form

(x, x + c
√
x log x]

for an absolute positive constant c. Despite this drawback, Cramér [5] was still able to 
show that

pn+1 − pn = O(p1/2
n log pn)

under the Riemann hypothesis, where {pn} is the sequence of primes. For interesting 
connections between correlation of zeros and gaps in primes, the reader is referred to the 
work of Languasco, Perelli and Zaccagnini [11]. Cramér actually had the stronger result

π(x + c
√
x log x) − π(x) >

√
x (1.2)

for some absolute constant c > 0 as a consequence of the Riemann hypothesis. By 
providing a new proof of (1.2), Dudek [7] showed that for any ε > 0, one may take c = 3 +ε

for all sufficiently large x. However, the optimal value of c for all sufficiently large x is 
still unknown. In the same paper, Cramér [5] suggested a convenient probabilistic model 
which predicted that the distribution of primes in short intervals is Poissonian. This was 
nicely confirmed by Gallagher [9] who assumed a uniform version of the k-tuple conjecture 
on primes. Recently, Tsai and Zaharescu [17] went along this direction and discovered 
that the Poissonian behavior of prime elements over small regions persists in number 
fields by assuming a general form of the k-tuple conjecture adapted to finite extensions 
of Q. With this motivation, we are curious to see how far (1.2) could be extended to the 
number field case. It turns out that one can provide a satisfactory answer (see Theorem 1
below) by establishing a uniform version of (1.2) for all cyclotomic extensions of Q. To 
be precise, let K be a number field over Q of degree n with Ok denoting the ring of 
integers in K. For any integral ideal a of Ok, let N(a) = |Ok : a| = |Ok/a| be the norm 
of a. Then the Dedekind zeta function of K is given by

ζK(s) =
∑ 1

N(a)s =
∏(

1 − 1
N(p)s

)−1
a p
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for �(s) > 1, where the summation and the Euler product are over the integral and prime 
ideals of Ok, respectively. ζK(s) has an analytic continuation to the whole complex plane 
with the exception of a simple pole at s = 1 and has a functional equation relating ζK(s)
to ζK(1 − s) (see p. 467 of [14]). By a critical zero of ζK(s), a zero s with 0 < �(s) < 1
is understood. Then the Riemann hypothesis for ζK(s) claims that any critical zero of 
ζK(s) has real part 1/2. The statement of the main result is now as follows.

Theorem 1. Assume that all of the nonreal critical zeros of Dedekind zeta functions 
corresponding to cyclotomic extensions of Q have real part 1/2. Let Kq = Q(ζq) be a 
cyclotomic extension with ζq being a primitive qth root of unity. Further let πKq

(x) be 
the number of prime ideals of the ring of integers in Kq whose norm is ≤ x. Given 
any number A > 0, there exists an effective absolute constant c > 0 such that for all 
sufficiently large x with q ≤ (log x)A, we have the inequality

πKq
(x + c ϕ(q)

√
x log x) − πKq

(x) > ϕ(q)
√
x,

where ϕ(q) is Euler’s function. The inequality also holds with an ineffective constant cA
in place of c for all x with q ≤ (log x)A. Finally, assuming the Riemann hypothesis for all 
Dedekind zeta functions of cyclotomic extensions, there exist effective positive constants 
c and λ such that the same inequality holds for all x with q ≤ xλ.

An interesting feature of Theorem 1 is its uniformity over the order of primitive roots, 
hence over the degree of cyclotomic extensions. Concerning this uniformity, Ledoan, Roy 
and Zaharescu [12] gave asymptotic formulas for the number of nonreal zeros (in the 
upper half plane with imaginary part ≤ T ) of partial sums converging to ζK(s) when 
K = Q(ζq) with a fixed q ≥ 2. Their asymptotic formulas turn out to be sharper than 
the classical case of the Riemann zeta function. It remains to be seen whether analogs 
of their results with more uniformity in q, such as varying q with T , can be studied. One 
could also speculate that Theorem 1 holds for any number field K over Q in a way that 
the degree of the extension, namely [K : Q], plays the role of ϕ(q) and [K : Q] ≤ f(x)
for a suitable increasing function f(x) tending to infinity. Clearly the only additive input 
for counting prime numbers is the number of positive integers that are ≤ x and this is 
x +O(1). The situation significantly changes in the case of a number field K over Q with 
[K : Q] ≥ 2 since the count of prime ideals depends ultimately on the number of integral 
ideals with norm ≤ x which is known to be

cKx + OK

(
x1− 1

[K:Q]

)
, (1.3)

where cK > 0 is the residue of ζK(s) at s = 1, also called the ideal density of K. Although 
the error term in (1.3) gets progressively worse with increasing [K : Q], we still have, 
subject to the Riemann hypothesis for ζK(s), that

πK(x) = li(x) + OK(
√
x log x).
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Unconditionally, Landau’s prime ideal theorem (see [10]) gives that

πK(x) = li(x) + OK

(
xe−c

√
log x

)
for some c > 0 depending only on K. Moreover, it is possible to further relax the 
assumptions in Theorem 1. Indeed assuming a quasi-Riemann hypothesis for Dedekind 
zeta functions of cyclotomic extensions by requiring that �(s) ≤ 1

2 + δ for a small δ > 0
and for any critical zero s (such an assumption is not unreasonable as by a celebrated 
result of Bohr and Landau, see section 9.6 of [8], all but an infinitesimal proportion of 
the critical zeros of the Riemann zeta function lie within δ of the critical line for any 
given δ > 0), one can show by modifying our approach that

πKq
(x + c ϕ(q)x 1

2+δ log x) − πKq
(x) > ϕ(q)x 1

2+δ

with uniformity in q. We have simply selected to present our results in terms of the 
shortest possible intervals. Besides finding numerical values of c for all sufficiently large x
(as in [7]) in Theorem 1 is an interesting problem. Referring to the general theory, it is 
known that (see p. 466 of [14]) the completed zeta function

ZK(s) = |dK |s/2π−ns/22(1−s)r2Γ(s/2)r1Γ(s)r2ζK(s)

satisfies the functional equation

ZK(s) = ZK(1 − s),

where dK is the discriminant of K, r1 and, respectively, 2r2 denote the number of real 
and complex embeddings of K with r1 + 2r2 = [K : Q] and Γ(s) is the gamma function. 
Consequently ζK(s) belongs to the Selberg class and by a result of Selberg [16]

NK(T ) ∼ [K : Q]
2π T log T

follows, NK(T ) being the number of critical zeros with imaginary part in (0, T ). It is 
the specific structure and arithmetic of cyclotomic fields that we exploit in the course 
of proving Theorem 1. However, we also make use of the following result on the number 
of primes over progressions in short intervals assuming a slightly weaker form of the 
Riemann hypothesis for Dirichlet L-functions by allowing Siegel zeros.

Theorem 2. Assume that all of the nonreal critical zeros of Dirichlet L-functions have 
real part 1/2. Let π(x, q, a) be the number of primes p ≤ x satisfying p ≡ a (mod q), 
where 1 ≤ a ≤ q and (a, q) = 1. Given any positive number A, there exists an effective 
absolute constant c > 0 such that for all sufficiently large x and for all a, q with 1 ≤ a ≤
q ≤ (log x)A and (a, q) = 1, we have

π(x + c ϕ(q)
√
x log x, q, a) − π(x, q, a) >

√
x.
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The inequality also holds with an ineffective constant cA in place of c for all x with 
q ≤ (log x)A. Finally, assuming the Riemann hypothesis for all Dirichlet L-functions, 
there exist effective positive constants c and λ such that the same inequality holds for all 
x with q ≤ xλ.

As will be clear from the proof of Theorem 2, λ < 1/4. Besides being flexible in 
the modulus aspect, the conclusion of Theorem 2 is partially influenced by the presence 
of exceptional real zeros of Dirichlet L-functions. Another instance of this influence is 
clearly seen in the classical asymptotic formula (see p. 123 of [6])

π(x, q, a) = li(x)
ϕ(q) − χ1(a)li(xβ1)

ϕ(q) + O
(
xe−c1

√
log x

)

which holds in the range q ≤ ec
√

log x, where χ1 is the exceptional real character modulo q, 
β1 is the Siegel zero of the corresponding Dirichlet L-function

L(s, χ1) =
∞∑

n=1

χ1(n)
ns

for �(s) > 1 and c1 > 0 depends only on the arbitrary constant c > 0. As a final remark 
on Theorem 2, note that q < c ϕ(q)

√
x log x holds for all q ≤ x, x ≥ 2 and for a suitable 

constant c > 0. Then the Brun–Titchmarsh theorem gives that

π(x + c ϕ(q)
√
x log x, q, a) − π(x, q, a) = O

⎛
⎝ √

x log x
log

(
c ϕ(q)

√
x log x

q

)
⎞
⎠ = O(

√
x).

Therefore, the lower bound in Theorem 2 is best possible apart from constants. In light 
of this observation, it is natural to expect more uniformity over q in Theorem 2 (and in 
Theorem 1) such as q ≤ x. Although we are far from confirming uniformity for all q ≤ x, 
some heuristics are worth mentioning in an almost all q sense. A number θ > 0 is called 
admissible if there exists a positive constant C(θ) such that

π(x, q, a) ≥ C(θ)x
ϕ(q) log x (1.4)

holds for almost all q ≤ xθ = Q, allowing Q
(log x)K exceptions for some K > 0. In-

equality (1.4) can be viewed as a lower bound version of the Brun–Titchmarsh theorem 
adapted to the case of almost all moduli. Bombieri–Vinogradov theorem shows that any 
θ < 1/2 is admissible. Rousselet [15] was the first to go beyond 1/2 and obtained that 
any θ ≤ 1

2 + 1
10100 is admissible. Let us assume that

√
x ≤ q ≤ xθ (1.5)
log log x
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for some 1/2 ≤ θ < 1. By the Brun–Titchmarsh theorem, we easily get from (1.5) that

π(x, q, a) � x

ϕ(q) log
(

x
q

) �
√
x(log log x)2

log x = o(
√
x). (1.6)

Heuristically, as x = o(ϕ(q)
√
x log x), (1.4) suggests that

π(x + c ϕ(q)
√
x log x, q, a) ≥ C(θ)(x + c ϕ(q)

√
x log x)

ϕ(q) log(x + c ϕ(q)
√
x log x)

> 2
√
x (1.7)

for many values of q if c is large enough. Thus we would expect from (1.6) and (1.7) that

π(x + c ϕ(q)
√
x log x, q, a) − π(x, q, a) >

√
x

still holds for many values of q subject to (1.5) (actually we require also the condition 
q � (ϕ(q)

√
x log x)θ). This ends our digression on the uniformity of q in an almost 

all sense. For research on other types of denser sequences such as the B-free numbers 
and application to the size of gaps between consecutive nonzero Fourier coefficients of 
modular forms via sieve methods, see [1,2,13].

2. Proof of Theorem 1 assuming Theorem 2

First of all the ring of integers in Kq = Q(ζq) is (see p. 60 of [14])

Z[ζq] = Z + Zζq + · · · + Zζϕ(q)−1
q .

We will use an elegant decomposition law of primes into prime ideals of the Dedekind 
domain Z[ζq] (see p. 61 of [14]). To state this decomposition law, let

q =
∏
p

pνp

be the prime factorization of q, where the product is over all primes with the convention 
that νp = 0 if p does not divide q. For every prime p, let fp be the smallest positive 
integer satisfying

pfp ≡ 1 (mod q/pνp). (2.1)

Then the factorization

(p) = pZ[ζq] = (p1 . . . prp)ϕ(pνp ) (2.2)

holds for the principal ideal generated by p, where p1, . . . , prp are distinct prime ideals of 
Z[ζq] lying above p with N(pj) = pfp for all j. Since Kq is a Galois extension, we know 
that for each prime p,
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efr = ϕ(pνp)fprp = ϕ(q) (2.3)

holds. Now consider a prime p with p ≡ 1 (mod q). Since p does not divide q, νp = 0
and (2.1)–(2.3) give that fp = 1 so that there are exactly ϕ(q) distinct prime ideals lying 
above p each having norm p. As Kq is a cyclotomic extension, the factorization of the 
Dedekind zeta function of Kq (see p. 468 of [14]) in the form

ζKq
(s) =

∏
p|q

(
1 − 1

N(p)s

)−1 ∏
χ

L(s, χ) (2.4)

is valid over the complex plane, where the first product in (2.4) is over the prime ideals 
lying above the prime divisors of q and the second product in (2.4) is over all Dirichlet 
characters modulo q. Since we are assuming that all of the nonreal critical zeros of ζKq

(s)
have real part 1/2, it follows from (2.4) that all of the nonreal critical zeros of L(s, χ) have 
real part 1/2. Thus Theorem 2 applies and gives the existence of an effective absolute 
constant c > 0 satisfying

π(x + c ϕ(q)
√
x log x, q, 1) − π(x, q, 1) >

√
x (2.5)

for all sufficiently large x with q ≤ (log x)A. As we have seen above, for each prime p ≡
1 (mod q) belonging to the interval (x, x + c ϕ(q)

√
x log x], there are ϕ(q) distinct prime 

ideals lying above p with norm p. Consequently the norms of these prime ideals also 
belong to the same interval. Note that for different primes, the set of prime ideals lying 
above them are disjoint as their norms are different. Using (2.5), this contributes more 
than ϕ(q)

√
x prime ideals of Z[ζq] with norms in (x, x + c ϕ(q)

√
x log x] and

πKq
(x + c ϕ(q)

√
x log x) − πKq

(x) > ϕ(q)
√
x

follows for all sufficiently large x with q ≤ (log x)A and some absolute constant c > 0. 
The remaining claims in Theorem 1 can be shown in the same way using Theorem 2. 
This completes the proof of Theorem 1 assuming Theorem 2. The rest of the paper will 
be devoted to the proof of Theorem 2.

As the proof of Theorem 2 is rather long, it would be worthwhile to give an outline of 
the argument. Our approach is mainly based on obtaining explicit formulas representing 
certain exponential sums over the critical zeros of the Riemann zeta function in the case 
of the principal character (see (3.86) below) and over the critical zeros of L-functions 
in the case of nonprincipal characters (see (3.129) below). For the principal character, 
our explicit formula differs from Cramér’s explicit formula [5] in the respect that addi-
tional sums over the divisors of the modulus appear and these create further technical 
complications. The verification of such formulas proceeds by complex integration. To 
overcome difficulties arising from accumulated zeros of finite Euler products, we resort 
to strong lower bounds for the linear forms in logarithms. At the same time, one has to 
keep track of the argument change resulting from logarithms of L-functions. Moreover, 
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some detailed analysis based on zero-free regions is needed to justify the interchange of 
the summation with the integral in (3.82). For the fusion of (3.86) and (3.129), the influ-
ence of a possible Siegel zero has to be taken into account and this is the most delicate 
part of the proof. Here finding the exact value of the argument (see (3.167) below) is 
indispensable. Using a consequence of the fusion of explicit formulas (see (3.172) below), 
we then pass to the arithmetic setting (see (3.183) below) with the help of asymptotic 
formulas for the number of critical zeros with ordinates in (−T, T ) as T tends to infinity, 
where L(s, χ) and L(s, χ) are grouped for the count of their critical zeros. The proof is 
then completed by deducing lower bounds for suitable weighted sums over prime powers 
in a progression, where the main contribution comes from the primes, by employing the 
Brun–Titchmarsh theorem.

3. Proof of Theorem 2

Let χ0 be the principal character modulo q. Consider

L(s, χ0) = ζ(s)
∏
p|q

(
1 − 1

ps

)
(3.1)

which holds for all s ∈ C, ζ(s) denoting the Riemann zeta function. Two obvious con-
sequences of (3.1) are the facts that L(s, χ0) has a simple pole at s = 1 with residue 
ϕ(q)/q and all of the critical zeros of L(s, χ0) coincide with the critical zeros of ζ(s) as 
the zeros of the finite product in (3.1) are purely imaginary. For any complex number 
z = x + iy with x, y > 0, define

V (z) :=
∑
γ>0

eρz, (3.2)

where the sum in (3.2) is over the critical zeros ρ = σ + iγ of L(s, χ0) (hence of the 
Riemann zeta function) with positive imaginary part. The convergence issue in (3.2) can 
be settled easily as by partial integration, we see that

∣∣∣∣∣∣
∑

0<γ<T

eρz

∣∣∣∣∣∣ ≤ ex
∑

0<γ<T

e−γy = ex
T∫

0

e−ty dN(t) = exN(T )
eTy

+ exy

T∫
0

N(t)
ety

dt (3.3)

with N(T ) denoting the number of critical zeros of the Riemann zeta function with 
imaginary part in (0, T ). Since N(t) = O(t log t) for t ≥ 2 (see p. 98 of [6]) and y > 0, 
we have

T∫
N(t)
ety

dt = O

⎛
⎝ T∫

t log t
ety

dt

⎞
⎠ = O(1). (3.4)
0 2
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Thus (3.3) and (3.4) give that V (z) in (3.2) is a well-defined function. Let us now work 
towards relating V (z) to certain explicit formulas involving primes. To this end, let S
be the set of all purely imaginary zeros of L(s, χ0) with nonnegative imaginary part. 
Precisely, we may write

S =
{

2πik
log p : p | q, k ∈ Z, k ≥ 0

}
. (3.5)

Clearly, (3.5) shows that S is a countable set and may be represented as the sequence 
{zn}n≥1 with 0 = 
(z1) < 
(z2) < . . . . Let δS = inf |zn+1 − zn|. If q is a prime power, 
then S is a discrete set of equally spaced points. On the other hand, if ω(q) ≥ 2, ω(q)
denoting the number of distinct prime divisors of q, then let us see that S is not discrete. 
Assume that r and p are distinct primes dividing q. Then log r/ log p is irrational and by 
Dirichlet’s theorem, there are infinitely many l/k ∈ Q satisfying

∣∣∣∣ log r
log p − l

k

∣∣∣∣ < 1
k2 and

∣∣∣∣ 2πk
log p − 2πl

log r

∣∣∣∣ < 2π
k log r . (3.6)

As k can be arbitrarily large, (3.6) gives that δS = 0 and S is therefore not discrete in 
this case. Next for a positive parameter T , let CT be an almost rectangular path with 
positive orientation having vertices at 0, 1, 1 + iT and iT , where in addition there are 
half circular indentations of radius εn > 0 directed to the right of the imaginary axis with 
center at zn for n ≥ 2. Moreover, CT has quarter circle indentations of radius ε > 0 both 
at 0 and 1, where at 0, the direction of the indentation is to the right of the imaginary 
axis and at 1, it is to the left of the axis �(s) = 1. ε and εn are chosen small enough 
so that the indentations do not intersect with each other and all the critical zeros with 
imaginary part in (0, T ) lie in the region enclosed by CT . The choice of T is delicate, 
especially when S is not discrete, and demands further consideration. In particular, as 
a first step, one may take T in such a way that (see p. 108 of [6]) the interval

(
T − c0

log T , T + c0
log T

)
(3.7)

does not contain the imaginary parts of critical zeros for some constant c0 > 0 and all 
large T . With this choice of T , the estimates (see p. 108 and p. 116 of [6])

ζ ′(σ + iT )
ζ(σ + iT ) = O(log2 T ), L′(σ ± iT, χ)

L(σ ± iT, χ) = O(log2 qT ) (3.8)

hold uniformly for −1 ≤ σ ≤ 2 and any primitive character χ modulo q. We will 
need (3.8) repeatedly in the sequel. Observe that there is a unique integer n ≥ 1 such 
that 
(zn) ≤ T < 
(zn+1). If S is discrete, then


(zn+1) −
(zn) = 2π

log p
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is fixed, where p is the unique prime divisor of q. Otherwise, we may assume without 
loss of generality that


(zn) = 2πk
log v and 
(zn+1) = 2πl

log r ,

where v �= r are prime divisors of q ≥ 6 and l, k are positive integers. Let us find a 
positive lower bound for


(zn+1) −
(zn) = 2π
log r log v (l log v − k log r). (3.9)

For this purpose we shall use an estimate of Waldschmidt that complements the seminal 
work of Baker [3,4] on the transcendentality of linear forms in logarithms (see [18]). 
Given an algebraic number α with minimal polynomial

a0

d∏
j=1

(x− αj)

over Z, define the Mahler measure of α by

M(α) = a0

d∏
j=1

max(1, |αj |),

and the absolute logarithmic height by

h(α) = 1
d

logM(α).

Then the precise formulation of the result we need is as follows.

Lemma 1. Let m ≥ 1 and let K be a number field of degree d over Q. Let α1, . . . , αm be 
nonzero elements of K and β0, β1, . . . , βm ∈ K. Consider

κ = β0 + β1 logα1 + . . . + βm logαm.

Assume that the numbers V1, . . . , Vm, W are subject to the conditions

1
d
≤ V1 ≤ . . . ≤ Vm, Vm−1 ≥ 1,

Vj ≥ max(h(αj), | logαj |/d) for 1 ≤ j ≤ m,

W ≥ max
1≤j≤m

h(βj).

If κ �= 0, then

|κ| ≥ exp
(
−28m+51m2mdm+2V1 . . . Vm(W + log(edVm)) log(edVm−1)

)
.
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Noting that l log v − k log r > 0, we may apply Lemma 1 to κ = l log v − k log r. In 
this case, m = 2 and d = 1. Taking V1 = 2 log v, V2 = 2 log r and W = max(log l, log k), 
one obtains that

l log v − k log r ≥ exp
(
−273 log v log r(max(log l, log k) + log(2e log r)) log(2e log v)

)
.

Consequently, as log v, log r ≤ log q, the lower bound

l log v − k log r ≥ e−C1(log q)2(log log q)2

(max(l, k))C2(log q)2 log log q
(3.10)

follows for some positive constants C1, C2 independent of q. Since only arbitrarily large 
values of T are under consideration, one may also suppose that 
(zn+1) ≤ 2
(zn). Hence 
T log q � max(l, k) and (3.10) becomes

l log v − k log r ≥ C(q)T−C(log q)2 log log q (3.11)

for some positive constant C(q) depending on q and C. Assembling (3.9) and (3.11), one 
deduces that


(zn+1) −
(zn) �q T−C(log q)2 log log q. (3.12)

As a result of (3.12), we may vary T by an amount which is a constant multiple of 
T−C(log q)2 log log q. When doing this, it is possible to stay in the interval of (3.7) as

T−C(log q)2 log log q = o((log T )−1).

In this way one may ensure that for any prime p | q, if T log p = 2πj± τp holds with 2πj
being the closest integer multiple of 2π to T log p and 0 ≤ τp ≤ π, then

τp �q T−C(log q)2 log log q. (3.13)

As a consequence of (3.13), we now have

|piT − 1| = |eiT log p − 1| = | sin(τp/2)| �q T−C(log q)2 log log q. (3.14)

Once T is chosen with the above restrictions, εn and εn+1 are taken to be small enough so 
that the indentations at zn and zn+1 do not intersect the horizontal line passing through 
iT . This completes our digression on the choice of T and the construction of CT . As ζ(s)
has no zeros in [0, 1] and on the lines �(s) = 0, �(s) = 1, by the residue theorem applied 
to CT , one obtains

∫
esz

L′(s, χ0)
L(s, χ0)

ds = 2πi
∑

0<γ<T

eρz (3.15)

CT
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for all z = x + iy with x, y > 0. Next let us show that

iT∫
1+iT

esz
L′(s, χ0)
L(s, χ0)

ds → 0 (3.16)

as T tends to infinity subject to the conditions above. First we have
∣∣∣∣∣∣

iT∫
1+iT

esz
L′(s, χ0)
L(s, χ0)

ds

∣∣∣∣∣∣ ≤ ex−Ty

1∫
0

⎛
⎝∣∣∣∣ζ ′(σ + iT )

ζ(σ + iT )

∣∣∣∣ +
∑
p|q

log p
|pσ+iT − 1|

⎞
⎠ dσ. (3.17)

Using (3.8), (3.14) and the elementary inequality |pσ+iT − 1| ≥ |piT − 1| for all primes p
dividing q, one gets

∣∣∣∣∣∣
iT∫

1+iT

esz
L′(s, χ0)
L(s, χ0)

ds

∣∣∣∣∣∣ = Oq

(
ex−Ty(log2 T + TC(log q)2 log log q)

)
. (3.18)

Thus (3.16) follows from (3.18). Let C×
T be the remaining part of CT with the same 

orientation after deleting the open segment from 1 + iT to iT . Integrating by parts, we 
see that ∫

C×
T

esz
L′(s, χ0)
L(s, χ0)

ds = e(1+iT )z logL(1 + iT, χ0) − eiTz logL(iT, χ0)

− z

∫
C×

T

esz logL(s, χ0) ds. (3.19)

Gathering (3.15) and (3.19),

2πi
∑

0<γ<T

eρz =
iT∫

1+iT

esz
L′(s, χ0)
L(s, χ0)

ds− z

∫
C×

T

esz logL(s, χ0) ds

+ e(1+iT )z logL(1 + iT, χ0) − eiTz logL(iT, χ0) (3.20)

follows. Let us remark that in (3.19) and (3.20), logL(s, χ0) is the unique branch of the 
complex logarithm defined on the simply connected region

C− (−∞, 1] −
[
1
2 + iγ0,

1
2 + i∞

)
−

[
1
2 − iγ0,

1
2 − i∞

)
−

⋃
p|q,k �=0

(
−∞ + 2πik

log p ,
2πik
log p

]

(assuming the Riemann hypothesis with 1
2 + iγ0 denoting the critical zero of ζ(s) with 

least positive ordinate) and satisfies



442 E. Alkan, T. Mehreliyev / Journal of Number Theory 167 (2016) 430–480
logL(σ, χ0) =
∞∑

n=1

Λ(n)χ0(n)
nσ log n → 0

as σ → ∞, where Λ(n) is the von Mangoldt function. Note that this branch is analytic 
on C×

T and differs from the classical branch defined on the region

C− (−∞, 1] −
⋃
γ

(
−∞ + iγ,

1
2 + iγ

]
−

⋃
p|q,k �=0

(
−∞ + 2πik

log p ,
2πik
log p

]

(with 1
2 + iγ denoting the critical zeros of ζ(s)) by an amount in the argument which is 

easily seen to be O(t log t) at points of the form σ ± it with 0 ≤ σ ≤ 1/2 and t ≥ γ0. 
For other points of the form σ + it with σ ≥ 0, the two branches coincide. Therefore, 
one can still carry out calculations with respect to the classical branch but then add the 
difference in the argument which is O(t log t) whenever necessary. We have to show that 
both of the terms e(1+iT )z logL(1 + iT, χ0) and eiTz logL(iT, χ0) in (3.20) tend to zero 
as T tends to infinity. To begin with, note that

logL(1 + iT, χ0) = log |L(1 + iT, χ0)| + i argL(1 + iT, χ0). (3.21)

Here argL(σ+ it, χ0) = 
 logL(1 + it, χ0) is defined by continuous variation from ∞ + it

to σ + it, namely that

argL(σ + it, χ0) =
σ∫

∞


ζ ′

ζ
(α + it) dα.

If σ + it is a zero, then we set

argL(σ + it, χ0) = 1
2
(
argL(σ + it+, χ0) + argL(σ + it−, χ0)

)
in the case of a horizontal branch cut at σ + it and

argL(σ + it, χ0) = 1
2
(
argL(σ+ + it, χ0) + argL(σ− + it, χ0)

)
in the case of a vertical branch cut at σ + it. Let us write from (3.1) that

log |L(1 + iT, χ0)| = log |ζ(1 + iT )| +
∑
p|q

log
∣∣∣∣1 − 1

p1+iT

∣∣∣∣ . (3.22)

Using log |ζ(2 + iT )| = O(1) and (3.8), we have

log |ζ(1 + iT )| = log |ζ(2 + iT )| + �
1+iT∫

ζ ′(s)
ζ(s) ds � log2 T. (3.23)
2+iT
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Observing that

log
∣∣∣∣1 − 1

p1+iT

∣∣∣∣ ≤ max
(

log
(

1 + 1
p

)
,− log

(
1 − 1

p

))
= − log

(
1 − 1

p

)
,

one obtains

∑
p|q

log
∣∣∣∣1 − 1

p1+iT

∣∣∣∣ ≤ log q

ϕ(q) � log log log q. (3.24)

Thus from (3.22)–(3.24),

log |L(1 + iT, χ0)| = O(log2 T + log log log q) (3.25)

follows. Moreover, we may write

argL(1 + iT, χ0) = argL(2 + iT, χ0) + 

1+iT∫

2+iT

L′(s, χ0)
L(s, χ0)

ds. (3.26)

First of all since argL(2, χ0) = 0,

argL(2 + iT, χ0) = 

2+iT∫
2

L′(s, χ0)
L(s, χ0)

ds

holds. By uniform convergence, one gets

2+iT∫
2

L′(s, χ0)
L(s, χ0)

ds = −i

T∫
0

∞∑
n=1

Λ(n)χ0(n)
n2+it

dt =
∞∑

n=1

Λ(n)χ0(n)
n2 log n (e−iT log n − 1).

This implies that

argL(2 + iT, χ0) = −
∞∑

n=1

Λ(n)χ0(n)
n2 log n sin(T logn) = O(1). (3.27)

It remains to consider



1+iT∫

L′(s, χ0)
L(s, χ0)

ds = 

1+iT∫

ζ ′(s)
ζ(s) ds + 


∑
p|q

log p
1+iT∫ 1

ps − 1 ds. (3.28)

2+iT 2+iT 2+iT
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Noticing



1+iT∫

2+iT

ζ ′(s)
ζ(s) ds = arg ζ(1 + iT ) − arg ζ(2 + iT ) � log T,



∑
p|q

log p
1+iT∫

2+iT

1
ps − 1 ds � ω(q)

and gathering (3.26)–(3.28), we see that

argL(1 + iT, χ0) = O(log T + ω(q)). (3.29)

Therefore, from (3.21), (3.25) and (3.29), one has

logL(1 + iT, χ0) = O(log2 T + log log log q + ω(q)) (3.30)

and (3.30) gives that

|e(1+iT )z logL(1 + iT, χ0)| = ex−Ty| logL(1 + iT, χ0)| → 0

as T → ∞. Next consider

logL(iT, χ0) = log |L(iT, χ0)| + i argL(iT, χ0). (3.31)

Similarly as above, we have

log |L(iT, χ0)| = log |ζ(iT )| +
∑
p|q

log
∣∣∣∣1 − 1

piT

∣∣∣∣ . (3.32)

Using (3.8) and (3.14), one obtains that

log |ζ(iT )| = log |ζ(2 + iT )| + �
iT∫

2+iT

ζ ′(s)
ζ(s) ds � log2 T, (3.33)

∑
p|q

log
∣∣∣∣1 − 1

piT

∣∣∣∣ �q log T. (3.34)

Hence by (3.32)–(3.34), we may write

log |L(iT, χ0)| = Oq(log2 T ). (3.35)
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Finally observing that

argL(iT, χ0) = O(1) + 

iT∫

2+iT

ζ ′(s)
ζ(s) ds + 


∑
p|q

log p
iT∫

2+iT

1
ps − 1 ds, (3.36)

using



iT∫

2+iT

ζ ′(s)
ζ(s) ds � log T, 


∑
p|q

log p
iT∫

2+iT

1
ps − 1 ds �q TC(log q)2 log log q,

and the argument difference between the branches which is � T log T , we deduce 
from (3.36) that

argL(iT, χ0) = Oq(TC(log q)2 log log q). (3.37)

Combining (3.31), (3.35) and (3.37), one easily infers that

|eiTz logL(iT, χ0)| = ex−Ty| logL(iT, χ0)| → 0

as T → ∞. Next for n ≥ 2, let

In =
∫

Cεn

esz logL(s, χ0) ds, (3.38)

where Cεn is the half circular indentation of radius εn at zn. Let us decompose the right 
hand side of (3.38) as

∫
Cεn

esz log |L(s, χ0)| ds + i

∫
Cεn

esz argL(s, χ0) ds. (3.39)

First note that
∫

Cεn

esz log |L(s, χ0)| ds =
∫

Cεn

esz log |ζ(s)| ds +
∑
p|q

∫
Cεn

esz log
∣∣∣∣1 − 1

ps

∣∣∣∣ ds. (3.40)

As log |ζ(s)| is continuous and uniformly bounded on Cεn when εn → 0, we see that

lim
εn→0

∫
Cεn

esz log |ζ(s)| ds = 0. (3.41)

Assuming zn = 2πik for some prime p | q and k ≥ 1, we also have
log p
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lim
εn→0

∑
r|q
r �=p

∫
Cεn

esz log
∣∣∣∣1 − 1

rs

∣∣∣∣ = 0. (3.42)

Moreover, when εn is small enough, one may write

1 − 1
ps

= (s− zn)F (s).

Here F (s) is a bounded analytic function as εn → 0, satisfying

lim
s→zn

F (s) = log p.

Therefore,

log
∣∣∣∣1 − 1

ps

∣∣∣∣ = log |s− zn| + log |F (s)| = log |s− zn| + O(1)

holds when s → zn and

lim
εn→0

∫
Cεn

esz log
∣∣∣∣1 − 1

ps

∣∣∣∣ ds = lim
εn→0

O(εn| log εn|) = 0 (3.43)

follows. Combining (3.40)–(3.43), one gets

lim
εn→0

∫
Cεn

esz log |L(s, χ0)| ds = 0. (3.44)

For all s = σ + it ∈ Cεn , we know that

argL(s, χ0) = O(1) + 

σ+it∫

2+it

ζ ′(s)
ζ(s) ds +

∑
p|q



σ+it∫

2+it

log p
ps − 1 ds. (3.45)

Next we have



σ+it∫

2+it

ζ ′(s)
ζ(s) ds = O(log(|t| + 4)) = O(log(|zn| + 4)). (3.46)

On the other hand, over the strip region defined by 
(s) ∈ (|zn| − 2εn, |zn| + 2εn) and 
�(s) ≥ 0, one may write for all small εn that

log p
s

= 1 + G(s),

p − 1 s− zn
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where G(s) is analytic and bounded as s → zn in this strip. Consequently we obtain 
that



σ+it∫

2+it

log r
rs − 1 ds = O(1) (3.47)

for all primes r | q with r �= p and



σ+it∫

2+it

log p
ps − 1 ds = 


σ+it∫
2+it

(
1

s− zn
+ G(s)

)
ds = O(1). (3.48)

Assembling (3.45)–(3.48) and taking into account the argument difference between the 
branches, one infers that

argL(s, χ0) = Oq((|zn| + 4) log(|zn| + 4))

is uniformly bounded on Cεn for all small εn and

lim
εn→0

∫
Cεn

esz argL(s, χ0) ds = 0. (3.49)

Thus from (3.38), (3.39), (3.44) and (3.49),

lim
εn→0

In = 0 (3.50)

is justified for n ≥ 2. Similarly, we can show that

lim
ε→0

∫
C0,ε

esz logL(s, χ0) ds = 0, (3.51)

where C0,ε is the quarter circle centered at z1 = 0 with radius ε > 0, by taking into 
account the singularities of log(1 − p−s) at s = 0 for all p | q. On the other hand, if C1,ε
is the quarter circle centered at 1 with radius ε > 0, then by writing

L(s, χ0) = f(s)
s− 1 ,

where f(s) is an analytic function bounded in a neighborhood of 1 with

lim f(s) = ϕ(q)
,

s→1 q
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one can easily obtain

lim
ε→0

∫
C1,ε

esz log |L(s, χ0)| ds = 0. (3.52)

Moreover, on C1,ε, we have argL(s, χ0) = Oq(1) uniformly for all small ε > 0 and this 
implies that

lim
ε→0

∫
C1,ε

esz argL(s, χ0) ds = 0. (3.53)

From (3.52) and (3.53), it follows that

lim
ε→0

∫
C1,ε

esz logL(s, χ0) ds = 0. (3.54)

Now letting T → ∞ in (3.20), we get

2πi
∑
γ>0

eρz = z

∫
CBA

esz logL(s, χ0) ds− z

∫
CD

esz logL(s, χ0) ds

− z

∫
DEF

esz logL(s, χ0) ds, (3.55)

where

A = +i∞, B = +iε, C = ε

D = 1 − ε, E = 1 + iε, F = 1 + i∞.

Using (3.1) and the functional equation for ζ(s), one has

L(s, χ0) = 2sπs−1 sin
(sπ

2

)
Γ(1 − s)L(1 − s, χ0)

∏
p|q

(
1 − 1

ps

)(
1 − 1

p1−s

)−1

. (3.56)

Our goal is now to exploit some symmetry on the path of integration by relating 
logL(s, χ0) to logL(1 − s, χ0) through (3.56). Thus it will be necessary to keep track of 
the initial difference between the arguments of the relevant logarithmic terms. Precisely, 
let us show that as s traverses from C to B, then argL(s, χ0) = −π at s = C, whereas 
1 − s traverses from D to 1 − iε = E with argL(1 − s, χ0) = π at 1 − s = D. This results 
in a 2π initial difference in the arguments and by continuous variation of the argument, 
the same holds on the path CBA. To verify our claim, for 0 < s < 1, let C = C1 ∪C2 be 
the circle of radius 1 − s centered at 1, positively oriented, where C1 is the upper half 
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and C2 is the lower half. As L(s, χ0) has no zeros in C and a simple pole at s = 1, it 
follows that ∫

C1

L′

L
(s, χ0) ds +

∫
C2

L′

L
(s, χ0) ds = −2πi. (3.57)

Using

L′

L
(s̄, χ0) = L′

L
(s, χ0),

one sees that ∫
C1

L′

L
(s, χ0) ds = −

∫
C2

L′

L
(s, χ0) ds.

Now as argL(2 − s, χ0) = 0, by continuous variation on C1 and using (3.57), we have

argL(s, χ0) = argL(s, χ0) − argL(2 − s, χ0) = 

∫
C1

L′

L
(s, χ0) ds = −π. (3.58)

Similarly, by continuous variation on C2, we get

− argL(s, χ0) = argL(2 − s, χ0) − argL(s, χ0) = 

∫
C2

L′

L
(s, χ0) ds = −π, (3.59)

which implies that argL(s, χ0) = π. From (3.58) and (3.59), one concludes that the 
argument of logL(s, χ0) is sensitive to the direction of the path. It is −π if we traverse 
the path from right to left indenting around 1 in the positive direction and it is π if 
we traverse from left to right indenting around 1 in the positive direction. In addition 
the arguments of the logarithms of all the other terms appearing on the right hand side 
of (3.56) are 0 for 0 < s < 1. Consequently, the following equation is justified via (3.56)
by formally taking logarithms of both sides.

z

∫
CBA

esz logL(s, χ0) ds

= z

∫
CBA

esz
(
s log 2 + (s− 1) log π + log sin

(sπ
2

)
+ log Γ(1 − s) + logL(1 − s, χ0)

+
∑
p|q

log
(

1 − 1
ps

)
−

∑
p|q

log
(

1 − 1
p1−s

)
− 2πi

)
ds. (3.60)

Letting ε → 0 and εn → 0 for all n ≥ 1, (3.50), (3.51) and (3.54) give that the path 
of integration in (3.55) and (3.60) can be assumed to be unions of straight lines. Hence 
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CBA becomes the straight line from 0 to i∞, DEF becomes the straight line from 1 to 
1 + i∞ and CD becomes the straight line from 0 to 1. To analyze the right hand side 
of (3.60) further, let us consider

i∞∫
0

esz log
(

1 − 1
ps

)
ds. (3.61)

Note that for any k ≥ 0,

2πi(k+1)
log p∫

2πik
log p

∣∣∣∣log
(

1 − 1
ps

)∣∣∣∣ ds =

2π
log p∫
0

∣∣∣∣log
(

2 sin t log p
2

)∣∣∣∣ dt + O

(
1

log p

)
= O(1).

Using this, (3.61) becomes

i∞∫
0

esz log
(

1 − 1
ps

)
ds =

iT∫
0

esz log
(

1 − 1
ps

)
ds + O(e−yT ) (3.62)

(here the parameter T has nothing to do with the earlier uses of it in the proof). But

log
(

1 − 1
ps

)
= −

∞∑
m=1

1
mpms

= −
∞∑

m=1

e−ms log p

m
, (3.63)

for all s = it, t �= 2πk
log p , where both

� log
(

1 − 1
ps

)
= −

∑
m≥1

cos(mt log p)
m

and


 log
(

1 − 1
ps

)
=

∑
m≥1

sin(mt log p)
m

are boundedly convergent except at finitely many points (so almost everywhere on [0, T ]). 
Thus interchange is permissible in (3.62) and by (3.63), we obtain

iT∫
0

esz log
(

1 − 1
ps

)
ds = −

∑
m≥1

1
m

iT∫
0

es(z−m log p) ds

=
∑
m≥1

(
1

m(z −m log p) − eiT (z−m log p)

m(z −m log p)

)
.
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As eiT (z−m log p) = O(e−yT ), letting T → ∞ termwise in the above equation,

z

i∞∫
0

esz log
(

1 − 1
ps

)
ds =

∞∑
m=1

z

m(z − log pm) (3.64)

follows. Similarly, one shows that

z

i∞∫
0

esz log
(

1 − 1
p1−s

)
ds =

∞∑
m=1

z

mpm(z + log pm) . (3.65)

Gathering (3.55), (3.60), (3.64) and (3.65), the following formula is verified.

2πiV (z) = −z

1+i∞∫
1

esz logL(s, χ0) ds + z

i∞∫
0

esz logL(1 − s, χ0) ds

− z(log π + 2πi)
i∞∫
0

esz ds + z log 2π
i∞∫
0

sesz ds− z

1∫
0

esz logL(s, χ0) ds

+ z

i∞∫
0

esz log sin
(sπ

2

)
ds + z

i∞∫
0

esz log Γ(1 − s) ds

+
∑
p|q

∞∑
m=1

z

m(z − log pm) −
∑
p|q

∞∑
m=1

z

mpm(z + log pm) . (3.66)

Next some terms on the right hand side of (3.66) are to be estimated. To begin with, 
note that

z

i∞∫
0

esz log sin
(sπ

2

)
ds = log 2 − πi

2 + πi

2z + iz

∞∫
0

eitz log t dt + iz

∞∫
0

eitz log eπt − 1
t

dt

= U + log 2 − πi + πi

2z + log z − log π −
∞∫
0

(
1

et − 1 − 1
t

+ 1
)
e−

zt
πi dt

= U + log 2 + πi

2

(
1
z
− 1

)
+ Ψ

( z

πi

)
, (3.67)

where U = − 
∫∞
0 e−t log t dt is Euler’s constant and

Ψ(s) = Γ′(s)
Γ(s) = −U +

∞∫
e−t − e−ts

1 − e−t
dt (3.68)
0
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is the digamma function. By Stirling’s asymptotic formula for the gamma function, we 
have

|esz log Γ(1 − s)| = eσx−ty| log Γ(1 − s)| = O(e−k|s||s| log |s|) (3.69)

for some positive constant k when s is in the second quadrant. Therefore, residue theorem, 
(3.68) and (3.69) give

z

i∞∫
0

esz log Γ(1 − s) ds = z

−∞∫
0

esz log Γ(1 − s) ds

= −zez
∞∫
1

e−sz log Γ(s) ds = −ez
∞∫
1

Ψ(s)e−sz ds. (3.70)

From (3.68) and (3.70),

z

i∞∫
0

esz log Γ(1 − s) ds = U

z
− ez

∞∫
0

dt

1 − e−t

∞∫
1

(
e−t−sz − e−(t+z)s

)
ds

= U

z
− 1

z

∞∫
0

t

et − 1 · dt

t + z
(3.71)

follows. For any character χ modulo q, consider the Dirichlet series

∞∑
n=2

Λ(n)χ(n)
ns log n (3.72)

which represents logL(s, χ) for �(s) > 1. Assume that s = 1 + it with 0 < ε0 ≤ t ≤ M , 
where ε0 and M are fixed but arbitrary. Let us see that (3.72) converges uniformly to 
logL(s, χ) for all such s. If x is half an odd integer (which we may assume without loss 
of generality), then by Perron’s formula, we have

∑
2≤n≤x

Λ(n)χ(n)
ns logn = 1

2πi

c+iT∫
c−iT

xw

w
logL(s + w,χ) dw + O

(
log x
T

)
, (3.73)

where in (3.73), c = 1/ log x and T is a parameter that can be taken to be arbitrarily 
large and will be chosen as an increasing function of x later (here the parameter T has 
nothing to do with the earlier uses of it in the proof). Note that |
(s + w)| ≤ T + M

and �(s + w) = 1 + �(w). Let us recall that L(s + w, χ) has no zeros when

1 + �(w) ≥ 1 − c1

log(q(|
(s + w)| + 4))
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for some absolute constant c1 > 0 with the possible exception of a single simple real zero 
satisfying

1 + �(w) < 1 − c2√
q log2 q

for some absolute constant c2 > 0. We may choose δ > 0 small enough so that L(s +w, χ)
has no zeros for �(w) ≥ −δ and |
(s + w)| ≤ T + M . Indeed it suffices to take

δ = A

log T , (3.74)

where A > 0 is a constant depending only on q and M . Hence we see that if χ is a 
nonprincipal character modulo q, then L(s +w, χ) has no poles or zeros in the rectangular 
region with vertices at c − iT , c + iT , −δ + iT , −δ − iT . Then by the residue theorem, 
one has

1
2πi

c+iT∫
c−iT

xw

w
logL(s + w,χ) dw

= logL(s, χ) + 1
2πi

⎛
⎝ c+iT∫

−δ+iT

+
−δ+iT∫

−δ−iT

+
−δ−iT∫
c−iT

⎞
⎠ . (3.75)

In the above zero-free region, we know that

| logL(s + w,χ)| �M,q log log T

for all large T . Thus

−δ+iT∫
−δ−iT

xw

w
logL(s + w,χ) dw = OM,q

⎛
⎝x−δ log log T

T∫
−T

dt√
δ2 + t2

⎞
⎠

= OM,q

(
x−δ log T log log T

)
. (3.76)

Moreover, we have

c+iT∫
−δ+iT

xw

w
logL(s + w,χ) dw = OM,q

⎛
⎝ log log T

T

c∫
−δ

xu du

⎞
⎠

= OM,q

(
xc log log T

)
= OM,q

(
log log T

)
(3.77)
T T
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and similarly

−δ−iT∫
c−iT

xw

w
logL(s + w,χ) dw = OM,q

(
log log T

T

)
(3.78)

follows. Assembling (3.73), (3.75)–(3.78), one infers that

∑
2≤n≤x

Λ(n)χ(n)
ns logn

= logL(s, χ) + O

(
log x
T

)
+ OM,q

(
x−δ log T log log T

)
+ OM,q

(
log log T

T

)
. (3.79)

Taking for example T = log2 x in (3.79), we deduce that the convergence is uniform for 
all s = 1 + it with 0 < ε0 ≤ t ≤ M . If χ = χ0 is the principal character modulo q, then 
a minor modification of the argument is required as L(s + w, χ0) has a simple pole at 
w = −it. Precisely, by the residue theorem

1
2πi

c+iT∫
c−iT

xw

w
logL(s + w,χ0) dw

= logL(s, χ0) + 1
2πi

⎛
⎝ c+iT∫
−δ+iT

+
−δ+iT∫

−δ−iT

+
−δ−iT∫
c−iT

⎞
⎠ + 1

2πi

∫
C

, (3.80)

where C in (3.80) is a loop starting and finishing at −δ− it encircling −it in the positive 
direction. In particular, C consists of two oppositely oriented straight lines joining −δ−it

to − c
2 − it and a circle of radius c/2 positively oriented with center −it. We also have

∫
C

xw

w
logL(s + w,χ0) dw = Oε0,q (xc log(1/c)(c + δ))

= Oε0,q

(
log log x

(
1

log T + 1
log x

))
. (3.81)

As a result of (3.76)–(3.78), taking T = (log x)log log x in (3.79)–(3.81), the uniform 
convergence of

∞∑
n=2

Λ(n)χ0(n)
ns logn

to logL(s, χ0) is obtained for all s = 1 + it with 0 < ε0 ≤ t ≤ M . Observe that
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−z

1+i∞∫
1

esz logL(s, χ0) ds = −z lim
ε0→0
M→∞

1+iM∫
1+iε0

esz logL(s, χ0) ds

= −z lim
ε0→0
M→∞

1+iM∫
1+iε0

esz

(∑
m,p

χ0(pm)
mpms

)
ds

= −z lim
ε0→0
M→∞

∑
m,p

χ0(pm)
m

1+iM∫
1+iε0

es(z−m log p) ds, (3.82)

where the change of order of sum and integral in (3.82) is possible by the uniform 
convergence of the series on the range of integration. (3.82) further gives

−z

1+i∞∫
1

esz logL(s, χ0) ds

= −zez lim
ε0→0
M→∞

∑
m,p

χ0(pm)
mpm(z −m log p)

(
eiM(z−m log p) − eiε0(z−m log p)

)
. (3.83)

As
∣∣∣eiM(z−m log p) − eiε0(z−m log p)

∣∣∣ = O(1)

and the series

∑
m,p

χ0(pm)
mpm(z −m log p)

is convergent by comparison with 
∑

p
1

p log p , one may let ε0 → 0 and M → ∞ termwise 
on the right hand side of (3.83) to get

−z

1+i∞∫
1

esz logL(s, χ0) ds = zez
∑
m,p

χ0(pm)
mpm(z − log pm) . (3.84)

Similarly, we have

z

i∞∫
0

esz logL(1 − s, χ0) ds = −z
∑
m,p

χ0(pm)
mpm(z + log pm) . (3.85)

Feeding (3.71), (3.84) and (3.85) into (3.66), one derives the following explicit formula 
over primes:
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2πiV (z) = zez
∑
m,p

χ0(pm)
mpm(z − log pm) − z

∑
m,p

χ0(pm)
mpm(z + log pm)

+
∑
p|q

∞∑
m=1

z

m(z − log pm) −
∑
p|q

∞∑
m=1

z

mpm(z + log pm)

− z

1∫
0

esz logL(s, χ0) ds + z

i∞∫
0

esz log sin
(sπ

2

)
ds

+ log π + 1
z

(U + log 2π) + 2πi− 1
z

∞∫
0

t

et − 1 · dt

t + z
. (3.86)

The case of the principal character settled, we may now proceed to the case of a nonprin-
cipal character χ modulo q and arrive at an analog of (3.86). Assume that χ is induced 
by the primitive character χ1 modulo q1 (so that q1 divides q). First we have the identity

L(s, χ) = L(s, χ1)
∏
p|q

(
1 − χ1(p)

ps

)
(3.87)

for all complex s. Let us define for any z = x + iy with x, y > 0

V (z, χ) :=
∑
γ>0

eρχz, (3.88)

where the sum in (3.88) is over the critical zeros of L(s, χ) with positive imaginary part. 
The convergence in (3.88) can be checked easily as before since the number of critical 
zeros of L(s, χ) with imaginary part in (0, T ) coincide with that of L(s, χ1) by (3.87)
and this number is O(T log qT ). Let Sχ be the set of purely imaginary zeros of L(s, χ)
with nonnegative imaginary part. Clearly each χ1(p) is a qth root of unity and we write 
χ1(p) = e2πirp with rp = ap/q, 0 ≤ ap < q. Then Sχ can be described precisely as

Sχ =
{

2πi
log p (k + rp) : p | q, k ≥ 0

}
. (3.89)

In general Sχ is not a discrete set but can be represented as a sequence {zn}n≥1 with 0 ≤

(z1) < 
(z2) < . . . . For a positive parameter T , let CT,χ be an almost rectangular path 
with positive orientation having vertices at 0, 1, 1 + iT , iT and half circular indentations 
of radius εn > 0 directed to the right of the imaginary axis with center at zn for n ≥ 2
(for n ≥ 1 if 0 < 
(z1)). In addition, CT,χ has a quarter circle indentation of radius 
ε > 0 at 0, where the direction of the indentation is to the right of the imaginary axis 
(the indentation at 0 might be necessary when 0 is a member of Sχ or when χ is even 
so that L(0, χ) = 0). In the case of a pair of Siegel zeros in (0, 1), say at β and 1 − β, we 
make half circular indentations of radius ε at β and 1 − β, where the indentations are 
above the real axis. Here ε and εn are chosen small enough so that the indentations do 
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not interfere with each other and all the critical zeros with imaginary part in (0, T ) lie 
in the region enclosed by CT,χ. The choice of T is again delicate and is subject to (3.7)
and (3.8). We may assume that 
(zn) ≤ T < 
(zn+1),


(zn) = 2π
log v (k + rv) and 
(zn+1) = 2π

log u (l + ru),

where v �= u are prime divisors of q. As log v and log u are linearly independent over Q, 
it follows that (l+ ru) log v− (k+ rv) log u > 0. It remains to find a positive lower bound 
for this combination in terms of T and q. This can be done by applying Lemma 1. Only 
the choice W changes and becomes

W = max(log(ql + au), log(qk + av)).

Thus similarly as in (3.10) and (3.11), one obtains

(l + ru) log v − (k + rv) log u ≥ e−C1(log q)2(log log q)2

(max(ql + au, qk + av))C2(log q)2 log log q
. (3.90)

As 0 ≤ au, av < q, it follows from (3.90) that


(zn+1) −
(zn) �q T−C(log q)2 log log q. (3.91)

Compared to (3.12), only the constant depending on q worsens in (3.91). Nevertheless, 
varying T subject to (3.7), we may guarantee that for any prime p | q, if T log p −2πrp =
2πj ± τp holds with 2πj being the closest integer multiple of 2π to T log p − 2πrp and 
0 ≤ τp ≤ π, then

τp �q T−C(log q)2 log log q. (3.92)

Consequently from (3.92),

|piT − χ1(p)| = |eiT log p − e2πirp | �q T−C(log q)2 log log q (3.93)

follows for all p | q. After choosing T with these conditions, we take εn and εn+1 small 
enough so that the indentations at zn and zn+1 do not intersect the horizontal line 
passing through iT . This completes the construction of CT,χ and gives

∫
CT,χ

esz
L′(s, χ)
L(s, χ) ds = 2πi

∑
0<γ<T

eρχz (3.94)

since L(s, χ1) has no zeros on the lines �(s) = 0, �(s) = 1 except possibly at s = 0. 
From (3.87), one gets



458 E. Alkan, T. Mehreliyev / Journal of Number Theory 167 (2016) 430–480
L′(s, χ)
L(s, χ) = L′(s, χ1)

L(s, χ1)
+

∑
p|q

χ1(p) log p
ps − χ1(p)

. (3.95)

Using (3.8), (3.93), (3.95) and |pσ+iT − χ1(p)| ≥ |piT − χ1(p)| for σ ≥ 0, we easily see 
that ∣∣∣∣∣∣

iT∫
1+iT

esz
L′(s, χ)
L(s, χ) ds

∣∣∣∣∣∣ = Oq

(
ex−Ty(log2 T + TC(log q)2 log log q)

)
. (3.96)

Let C×
T,χ be the remaining part of CT,χ with the same orientation after deleting the open 

segment from 1 + iT to iT . Integrating by parts, we see that
∫

C×
T,χ

esz
L′(s, χ)
L(s, χ) ds

= e(1+iT )z logL(1 + iT, χ) − eiTz logL(iT, χ) − z

∫
C×

T,χ

esz logL(s, χ) ds. (3.97)

Thus by (3.94) and (3.97),

2πi
∑

0<γ<T

eρχz =
iT∫

1+iT

esz
L′(s, χ)
L(s, χ) ds− z

∫
C×

T,χ

esz logL(s, χ) ds

+ e(1+iT )z logL(1 + iT, χ) − eiTz logL(iT, χ) (3.98)

follows. Here logL(s, χ) is the unique branch of the complex logarithm defined on the 
simply connected region

C− (−∞, β] −
[
1
2 + iγ0,χ,

1
2 + i∞

)
−

[
1
2 − iγ1,χ,

1
2 − i∞

)

−
⋃

p|q,k∈Z

(
−∞ + 2πi

log p (k + rp),
2πi
log p (k + rp)

]

(where β is the largest real zero of L(s, χ), possibly a Siegel zero and 1
2 + iγ0,χ, 1

2 − iγ1,χ
are the first critical zeros above and below the real axis, respectively) and satisfies

logL(σ, χ) =
∞∑

n=1

Λ(n)χ(n)
nσ logn → 0

as σ → ∞. If σ+ it is a zero, then the limiting conventions for argL(σ+ it, χ) in the case 
of a vertical or a horizontal branch cut are defined similarly as in argL(σ+ it, χ0). Again 
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the classical branch requires horizontal cuts at each critical zero. But for all points of 
the form σ + it with 0 ≤ σ ≤ 1/2 and t ≥ γ0,χ, we have to take into account a change 
in the argument between the two branches which is O((t + 4) log q(t + 4)). This being 
said, we can still use the classical branch of logL(s, χ) in the rest of the argument. Let 
us write

logL(iT, χ) = log |L(iT, χ)| + i argL(iT, χ). (3.99)

We also have

log |L(iT, χ)| = log |L(iT, χ1)| +
∑
p|q

log
∣∣∣∣1 − χ1(p)

piT

∣∣∣∣ . (3.100)

Since χ1 is primitive, using (3.8) and (3.93), one obtains that

log |L(iT, χ1)| = log |L(2 + iT, χ1)| + �
iT∫

2+iT

L′(s, χ1)
L(s, χ1)

ds � log2 qT, (3.101)

∑
p|q

log
∣∣∣∣1 − χ1(p)

piT

∣∣∣∣ �q log T. (3.102)

Collecting (3.100)–(3.102),

log |L(iT, χ)| = Oq(log2 T ) (3.103)

follows. Moreover, we have

argL(iT, χ) = O(1) + 

iT∫

2+iT

L′(s, χ1)
L(s, χ1)

ds + 

∑
p|q

log p
iT∫

2+iT

χ1(p)
ps − χ1(p)

ds (3.104)

and using



iT∫

2+iT

L′(s, χ1)
L(s, χ1)

ds �q log T, 

∑
p|q

log p
iT∫

2+iT

χ1(p)
ps − χ1(p)

ds �q TC(log q)2 log log q,

together with the O((T + 4) log q(T + 4)) change in the argument between the two 
branches, one infers from (3.104) that

argL(iT, χ) = Oq(TC(log q)2 log log q). (3.105)

From (3.99), (3.103) and (3.105), one sees that

|eiTz logL(iT, χ)| = ex−Ty| logL(iT, χ)| → 0
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as T → ∞. Similarly

|e(1+iT )z logL(1 + iT, χ)| → 0

as T → ∞. Let C× be any of the indentations on the path of integration. Consider

∫
C×

esz logL(s, χ) ds =
∫
C×

esz log |L(s, χ)| ds + i

∫
C×

esz argL(s, χ) ds (3.106)

and

∫
C×

esz log |L(s, χ)| ds =
∫
C×

esz log |L(s, χ1)| ds +
∑
p|q

∫
C×

esz log
∣∣∣∣1 − χ1(p)

ps

∣∣∣∣ ds. (3.107)

The center of C× is either a zn = 2πi
log p (k+rp) or one of 0, β, 1 −β. Note that log |L(s, χ1)|

is continuous and uniformly bounded near zn (and also near 0, if L(0, χ1) �= 0). Other-
wise, 0, β, 1 − β are simple zeros of L(s, χ1) and one may write

L(s, χ1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sF1(s)

(s− β)F2(s)

(s− (1 − β))F3(s),

where Fj(s) are analytic functions with F1(0) �= 0, F2(β) �= 0, F3(1 − β) �= 0. It follows 
that

log |L(s, χ1)| =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log |s| + O(1) if s is close to 0

log |s− β| + O(1) if s is close to β

log |s− (1 − β)| + O(1) if s is close to 1 − β.

In all cases, we see that

∫
C×

esz log |L(s, χ1)| ds → 0

as radius of C× tends to 0. Similarly, each of 1 − χ1(p)p−s is either continuous and 
uniformly bounded near the center of C× or has a simple zero at zn so that

∑
p|q

∫
esz log

∣∣∣∣1 − χ1(p)
ps

∣∣∣∣ ds → 0

C×
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as radius of C× tends to 0. Hence by (3.107),
∫
C×

esz log |L(s, χ)| ds → 0 (3.108)

as radius of C× tends to 0. If s = σ + it ∈ C×, then

argL(s, χ) = O(1) + 

σ+it∫

2+it

L′(s, χ1)
L(s, χ1)

ds +
∑
p|q



σ+it∫

2+it

χ1(p) log p
ps − χ1(p)

ds.

As χ1 is primitive, we have



σ+it∫

2+it

L′(s, χ1)
L(s, χ1)

ds = O(log q(|t| + 4)) = Oq(log(|z| + 4)),

where z is the center of C× and the radius of C× is small enough. Writing

χ1(p) log p
ps − χ1(p)

= 1
s− zn

+ F (s)

if necessary, where F (s) is analytic and bounded near zn, one easily obtains that 
argL(s, χ) = Oq((|z| + 4) log(|z| + 4)) and

∫
C×

esz argL(s, χ) ds → 0 (3.109)

as radius of C× tends to 0. Gathering (3.106), (3.108) and (3.109), one is justified to 
assume that the path of integration consists of straight lines. Letting T → ∞,

2πi
∑
γ>0

eρχz = z

∫
CBA

esz logL(s, χ) ds− z

∫
CD

esz logL(s, χ) ds

− z

∫
DE

esz logL(s, χ) ds, (3.110)

where

A = +i∞, B = +iε, C = ε

D = 1, E = 1 + i∞.

To make use of symmetry for L(s, χ), especially for the integral over CBA appearing on 
the right hand side of (3.110), let us note that by the functional equation for L(s, χ1),
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L(s, χ) = ε(χ1)2sπs−1q
1
2−s
1 sin (s + a)π

2 Γ(1 − s)L(1 − s, χ)

×
∏
p|q

(
1 − χ1(p)

ps

)(
1 − χ1(p)

p1−s

)−1

(3.111)

holds for all s, where |ε(χ1)| = 1 and a = 0 or a = 1 in (3.111) according to χ1 is even 
or odd, respectively. As we will take the logarithm of both sides of (3.111), the initial 
difference between the arguments has to be taken into account. For 0 < s < 1, we know 
that

argL(s, χ1) = O(log q), argL(1 − s, χ1) = O(log q). (3.112)

If χ1(p) = 1, then

arg
(

1 − χ1(p)
ps

)
= 0 (3.113)

for 0 < s < 1 and if χ1(p) �= 1, then

arg
(

1 − χ1(p)
ps

)
= O(1) (3.114)

for 0 < s < 1. As a result of (3.113) and (3.114),

arg
∏
p|q

(
1 − χ1(p)

ps

)(
1 − χ1(p)

p1−s

)−1

= O(ω(q)) = O

(
log q

log log q

)
(3.115)

follows for 0 < s < 1. Since arg ε(χ1) = O(1) and the arguments of all the other terms on 
the right hand side of (3.111) are 0 for 0 < s < 1, we see from (3.111), (3.112) and (3.115)
that

z

∫
CBA

esz logL(s, χ) ds = z

∫
CBA

esz
(
log ε(χ1) + s log(2π/q1)

+ log(√q1/π) + log sin (s + a)π
2 + log Γ(1 − s) + logL(1 − s, χ)

+
∑
p|q

log
(

1 − χ1(p)
ps

)
−

∑
p|q

log
(

1 − χ1(p)
p1−s

)
+ iA(q, χ)

)
ds, (3.116)

where A(q, χ) = O(log q) is the initial difference in the arguments of the logarithms of 
both sides of (3.111) when s = ε. Letting ε → 0 in (3.110) and (3.116), one has
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z (log ε(χ1) + log(√q1/π) + iA(q, χ))
i∞∫
0

esz ds

= − (log ε(χ1) + log(√q1/π) + iA(q, χ)) (3.117)

and

z log(2π/q1)
i∞∫
0

sesz ds = 1
z

log(2π/q1). (3.118)

Moreover, when a = 1

i∞∫
0

esz log sin (s + 1)π
2 ds = e−z

1+i∞∫
1

esz log sin
(sπ

2

)
ds. (3.119)

For any positive parameter M , one obtains that

1+iM∫
1

esz log sin
(sπ

2

)
ds =

1+iM∫
iM

esz log sin
(sπ

2

)
ds

+
iM∫
0

esz log sin
(sπ

2

)
ds−

1∫
0

esz log sin
(sπ

2

)
ds. (3.120)

But when s = σ + iM with 0 ≤ σ ≤ 1, the estimate

∣∣∣log sin
(sπ

2

)∣∣∣ =
∣∣∣∣log

(
e

π
2 (−M+iσ) − e

π
2 (M−iσ)

2i

)∣∣∣∣ = O(M) (3.121)

holds for all large M . Letting M → ∞ in (3.120) and using (3.121), we see from (3.119)
that

i∞∫
0

esz log sin (s + 1)π
2 ds =

i∞∫
0

e(s−1)z log sin
(sπ

2

)
ds

−
1∫

0

e(s−1)z log sin
(sπ

2

)
ds. (3.122)

Next consider

i∞∫
esz log

(
1 − χ1(p)

ps

)
ds =

iT∫
esz log

(
1 − χ1(p)

ps

)
ds + O(e−yT ). (3.123)
0 0
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Using

log
(

1 − χ1(p)
ps

)
= −

∑
m≥1

χ1(pm)
mpms

for all s = it with t �= 2πi
log p (k + rp) and the facts that

� log
(

1 − χ1(p)
ps

)
= −

∑
m≥1

cosm(t log p− 2πrp)
m

,


 log
(

1 − χ1(p)
ps

)
=

∑
m≥1

sinm(t log p− 2πrp)
m

are both boundedly convergent almost everywhere on [0, T ], one justifies that interchange 
is permissible and

iT∫
0

esz log
(

1 − χ1(p)
ps

)
ds =

∑
m≥1

(
χ1(pm)

m(z − log pm) − χ1(pm)eiT (z−log pm)

m(z − log pm)

)
(3.124)

holds. Letting T → ∞ in (3.124), one obtains from (3.123) that

i∞∫
0

esz log
(

1 − χ1(p)
ps

)
ds =

∞∑
m=1

χ1(pm)
m(z − log pm) . (3.125)

Similarly,

i∞∫
0

esz log
(

1 − χ1(p)
p1−s

)
ds =

∞∑
m=1

χ1(pm)
mpm(z + log pm) (3.126)

follows. Finally, as interchange was shown to be valid above for all characters, one easily 
derives that

−z

1+i∞∫
1

esz logL(s, χ) = zez
∑
m,p

χ(pm)
mpm(z − log pm) (3.127)

and

z

i∞∫
0

esz logL(1 − s, χ) = −z
∑
m,p

χ(pm)
mpm(z + log pm) . (3.128)

Therefore, assembling (3.116), (3.117), (3.118), (3.125)–(3.128), the following formula 
which is analogous to (3.86) is verified.
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2πiV (z, χ) = zez
∑
m,p

χ(pm)
mpm(z − log pm) − z

∑
m,p

χ(pm)
mpm(z + log pm)

+ z
∑
p|q

∞∑
m=1

χ1(pm)
m(z − log pm) − z

∑
p|q

∞∑
m=1

χ1(pm)
mpm(z + log pm)

− z

1∫
0

esz logL(s, χ) ds + z

i∞∫
0

esz log sin (s + a)π
2 ds

+ 1
z

(
U + log 2π

q1

)
−

(
log ε(χ1) + log

√
q1

π
+ iA(q, χ)

)

− 1
z

∞∫
0

t

et − 1 · dt

t + z
. (3.129)

For the fusion of (3.86) and (3.129), some preliminary estimations are necessary. First 
note that

∣∣∣∣∣∣
1
ez

∑
p|q

∞∑
m=1

χ1(pm)
m(z − log pm)

∣∣∣∣∣∣ ≤ e−x
∑
p|q

∞∑
m=1

1
m
√

(x− log pm)2 + y2
. (3.130)

To estimate the right hand side of (3.130) further, let mp be the closest integer to x/ log p
for each p | q. Then the contribution of mp for p | q is

e−x
∑
p|q

1
mp

√
(x− log pm)2 + y2

� e−x

xy

∑
p|q

log p � e−x log q
xy

. (3.131)

Moreover, we have

e−x
∑
p|q

∑
m< x

log p

m�=mp

1
m
√

(x− log pm)2 + y2

≤ e−x
∑
p|q

log p
∑

m< x
log p

m�=mp

1
m log p(x− log pm)

= e−x

x

∑
p|q

log p
∑

m< x
log p

m�=mp

(
1

m log p + 1
x−m log p

)

� e−x log q log x
x

. (3.132)

Similarly,
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e−x
∑
p|q

∑
m> x

− 1
2+log p

m�=mp

1
m
√

(x− log pm)2 + y2
� e−x log q (3.133)

follows as |x −m log p| > 1
2m in the range of summation over m. Lastly, we consider

e−x
∑
p|q

∑
x

log p<m< x

− 1
2+log p

m�=mp

1
m
√

(x− log pm)2 + y2

≤ e−x

x

∑
p|q

log p
∑

x
log p<m< x

− 1
2 +log p

m�=mp

(
1

m log p− x
− 1

m log p

)

� e−x log q log x
x

. (3.134)

As y will be taken as a very small function of x later, it is safe to infer from (3.130)–(3.134)
that

∣∣∣∣∣∣
1
ez

∑
p|q

∞∑
m=1

χ1(pm)
m(z − log pm)

∣∣∣∣∣∣ �
e−x log q

xy
. (3.135)

Clearly,

∣∣∣∣∣ 1
ez

∑
m,p

χ(pm)
mpm(z + log pm)

∣∣∣∣∣ � e−x (3.136)

and
∣∣∣∣∣∣

1
ez

∑
p|q

∞∑
m=1

χ1(pm)
mpm(z + log pm)

∣∣∣∣∣∣ � e−x log q (3.137)

hold with absolute implied constants. Using the well known estimate for the digamma 
function in the form

Ψ(z) � log |z|

when z is in the first quadrant and |z| tends to infinity, one gets from (3.67) that

∣∣∣∣∣∣
1
ez

i∞∫
esz log sin

(sπ
2

)
ds

∣∣∣∣∣∣ � e−x log |z| � e−x log x. (3.138)

0
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Since
∣∣∣∣∣∣

1∫
0

e(s−1)z log sin
(sπ

2

)
ds

∣∣∣∣∣∣ �
1∫

0

| log s| ds � 1,

(3.122) gives that

∣∣∣∣∣∣
1
ez

i∞∫
0

esz log sin (s + 1)π
2 ds

∣∣∣∣∣∣ � e−x. (3.139)

It is also clear that

∣∣∣ 1
z2ez

(
U + log 2π

q1

)
− 1

zez

(
log ε(χ1) + log

√
q1

π
+ iA(q, χ)

)

− 1
z2ez

∞∫
0

t

et − 1 · dt

t + z

∣∣∣ � e−x log q. (3.140)

Corresponding terms on the right hand side of (3.86) can be estimated similarly. Com-
bining (3.86), (3.129) and (3.135)–(3.140), one gets

∑
m,p

χ(pm)
mpm(z − log pm) = 2πi

zez

∑
γ>0

eρχz + 1
ez

1∫
0

esz logL(s, χ) ds + R(z, q, χ) (3.141)

for any character χ modulo q, where

R(z, q, χ) = O

(
e−x log q

xy

)
. (3.142)

Using the orthogonality of characters, (3.141) and (3.142) give that

∑
m,p

pm≡a (mod q)

ϕ(q)
mpm(z − log pm)

= 2πi
zez

∑
χ

χ(a)
∑
γ>0

eρχz + 1
ez

1∫
0

esz
∑
χ

χ(a) logL(s, χ) ds + R(z, q), (3.143)

with

R(z, q) = O

(
e−xϕ(q) log q

)
. (3.144)
xy
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Comparing imaginary parts of both sides of (3.143), the formula

−
∑
m,p

pm≡a (mod q)

ϕ(q)y
mpm[(x− log pm)2 + y2]

= � 2π
zez

∑
χ

χ(a)
∑
γ>0

eρχz + 
 1
ez

1∫
0

esz
∑
χ

χ(a) logL(s, χ) ds + 
R(z, q) (3.145)

holds with


R(z, q) = O

(
e−xϕ(q) log q

xy

)
(3.146)

by (3.144). Let us consider the function

F (s, a) =
∏
χ

L(s, χ)χ(a).

In particular, F (s, a) can be recovered by the unique branch of its logarithm which is 
given as

logF (s, a) =
∑
χ

χ(a) logL(s, χ) = ϕ(q)
∑
n≥2

n≡a (mod q)

Λ(n)
ns log n (3.147)

for �(s) > 1. Thus F (s, a) is analytic in a maximal simply connected open subset of C
and it follows from (3.147) that

F ′

F
(s, a) = F ′

F
(s, a) (3.148)

for all possible s. Our task is then to get a useful estimate for the quantity


 1
ez

1∫
0

esz(log |F (s, a)| + i argF (s, a)) ds.

To begin with, we have

log |F (s, a)| =
∑
χ

(�(χ(a)) log |L(s, χ)| − 
(χ(a)) argL(s, χ)) . (3.149)

Using (3.149), one sees that
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 1
ez

1∫
0

esz log |F (s, a)| ds =
∑
χ

�(χ(a))

1∫

0

e(s−1)z log |L(s, χ)| ds

−
∑
χ


(χ(a))

1∫

0

e(s−1)z argL(s, χ) ds. (3.150)

Recalling that z = x + iy with x, y > 0, one obtains

∣∣∣∣∣∣

1∫

0

e(s−1)z log |L(s, χ)| ds

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
cos y
ex

1∫
0

esx sin(sy) log |L(s, χ)| ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
sin y

ex

1∫
0

esx cos(sy) log |L(s, χ)| ds

∣∣∣∣∣∣ . (3.151)

Let us temporarily assume that χ is primitive. For all δ1 > 0 small enough, there are 
no critical zeros of L(s, χ) with ordinate δ1 and the set of (finitely many) critical zeros 
with ordinates in (δ1 − 1, δ1 + 1) is the same as the set of critical zeros with ordinates in 
(−1, 1). Suppose now that 0 ≤ s ≤ 1. As χ is primitive, using a well known result (see 
p. 102 of [6]), we may write

L′(s + iδ1, χ)
L(s + iδ1, χ) =

∑
ρ

1
s + iδ1 − ρ

+ O(log q), (3.152)

where the finite sum in (3.152) is over the critical zeros with ordinates in (−1, 1). Con-
sequently, we see from (3.152) that

log |L(s + iδ1, χ)| = log |L(1 + iδ1, χ)| + �
s∫

1

L′(t + iδ1, χ)
L(t + iδ1, χ) dt

= log |L(1 + iδ1, χ)| +
∑
ρ

log |s + iδ1 − ρ|

−
∑
ρ

log |1 + iδ1 − ρ| + O(log q). (3.153)

Letting δ1 → 0 in (3.153), one obtains

log |L(s, χ)| = log |L(1, χ)| +
∑
ρ

log |s− ρ| −
∑
ρ

log |1 − ρ| + O(log q) (3.154)

for all 0 ≤ s ≤ 1 not coinciding with a real zero of L(s, χ). Armed with (3.154), let us 
revisit the terms on the right hand side of (3.151). Precisely, one has
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cos y
ex

1∫
0

esx sin(sy) log |L(s, χ)| ds

= cos y
ex

1∫
0

esx sin(sy)
∑
ρ

(log |s− ρ| − log |1 − ρ|) ds

+ cos y
ex

1∫
0

esx sin(sy)(log |L(1, χ)| + O(log q)) ds. (3.155)

To control the right hand side of (3.155), note that if ρ = β is a Siegel zero, then

1 − β >
c1√

q log2 q

for some constant c1 > 0 and for other zeros ρ = σ + it with t ∈ (−1, 1), we have

1 − σ >
c2

log q

for some constant c2 > 0. In any case we see that log |1 − ρ| � log q for all critical zeros 
with ordinates in (−1, 1). As the number of zeros with t ∈ (−1, 1) is � log q, one easily 
obtains

cos y
ex

∑
ρ

log |1 − ρ|
1∫

0

esx sin(sy) ds � y log2 q

x
. (3.156)

We know that

1
√
q
� |L(1, χ)| � log q. (3.157)

Using (3.157),

cos y
ex

1∫
0

esx sin(sy) log |L(1, χ)| ds � y log q
x

(3.158)

follows. Clearly, we have

cos y
ex

1∫
0

esx sin(sy) log q ds � y log q
x

. (3.159)

Finally let us observe that
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cos y
ex

∑
ρ

1∫
0

esx sin(sy) log |s− ρ| ds � y

ex

∑
ρ

1∫
0

esx| log |s− σ|| ds

� y
∑
ρ

1∫
0

| log |s− σ|| ds � y log q. (3.160)

Gathering (3.155)–(3.160), one gets

cos y
ex

1∫
0

esx sin(sy) log |L(s, χ)| ds � y log q + y log2 q

x
. (3.161)

We can show similarly that

sin y

ex

1∫
0

esx cos(sy) log |L(s, χ)| ds � y log q + y log2 q

x
. (3.162)

Thus (3.151), (3.161) and (3.162) give that
∣∣∣∣∣∣


1∫
0

e(s−1)z log |L(s, χ)| ds

∣∣∣∣∣∣ � y log q + y log2 q

x
. (3.163)

Moreover writing
∣∣∣∣∣∣


1∫
0

e(s−1)z argL(s, χ) ds

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
cos y
ex

1∫
0

esx sin(sy) argL(s, χ) ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
sin y

ex

1∫
0

esx cos(sy) argL(s, χ) ds

∣∣∣∣∣∣ (3.164)

and using the fact that argL(s, χ) � log q when χ is primitive, we deduce from (3.164)
that ∣∣∣∣∣∣


1∫
0

e(s−1)z argL(s, χ) ds

∣∣∣∣∣∣ �
y log q

x
. (3.165)

On the other hand, if χ is not a primitive character modulo q, then using (3.87), (3.113)
and (3.114), we can easily see that (3.165) holds for all nonprincipal characters modulo q. 
Note that for any p | q,

lim log(1 − p−s) = 1.

s→0 log s
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Then we see that

cos y
ex

1∫
0

esx sin(sy) log
∣∣∣∣1 − χ1(p)

ps

∣∣∣∣ ds � y

1∫
0

log
(

1 − 1
ps

)
ds � y

and

sin y

ex

1∫
0

esx cos(sy) log
∣∣∣∣1 − χ1(p)

ps

∣∣∣∣ ds � y,

where χ1 is the primitive character inducing χ. Therefore, (3.163) holds for all nonprinci-
pal characters modulo q as well. In case when χ = χ0 is the principal character modulo q, 
one can similarly show that (3.163) and (3.165) continue to hold (which is even easier 
as no Siegel zeros enter into the argument) by considering logarithmic singularities of 
L(s, χ0) at s = 0 and s = 1 arising from the finite product over p | q and from the 
Riemann zeta function, respectively. Assembling (3.150), (3.163) and (3.165), one infers 
that


 1
ez

1∫
0

esz log |F (s, a)| ds � ϕ(q)
(
y log q + y log2 q

x

)
. (3.166)

If β > 1/2 is a Siegel zero, then it is easy to see by a calculation as in (3.58) and (3.59)
that

argF (s, a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−π if β < s < 1

0 if 1 − β < s < β

π if 0 < s < 1 − β.

(3.167)

Consequently from (3.167), we see that


 i

ez

1∫
0

esz argF (s, a) ds = � 1
ez

1∫
0

esz argF (s, a) ds

= �π

z
(−1 − e−z + e−βz + e−(1−β)z)

= −�
(π
z

)
+ O

(
e−x/2

x

)
+ O

(
e−(1−β)x

x

)
. (3.168)

By Siegel’s estimate (see p. 127 of [6]), we know for θ > 0 that

C(θ)
θ

< 1 − β,

q
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where C(θ) > 0 is an ineffective constant. In this way (3.168) becomes


 i

ez

1∫
0

esz argF (s, a) ds = − πx

x2 + y2 + O

⎛
⎝e

−C(θ)x
qθ

x

⎞
⎠ + O

(
e−x/2

x

)
(3.169)

for all θ > 0. Furthermore, if we assume that critical zeros of all Dirichlet L-functions 
have real part 1/2, then


 i

ez

1∫
0

esz argF (s, a) ds = − πx

x2 + y2 + O

(
e−x/2

x

)
(3.170)

follows. Collecting (3.145), (3.166), (3.169) and (3.170), one justifies the formula

∑
m,p

pm≡a (mod q)

ϕ(q)y
mpm[(x− log pm)2 + y2]

= −� 2π
zez

∑
χ

χ(a)
∑
γ>0

eρχz + πx

x2 + y2 + O

⎛
⎝e

−C(θ)x
qθ

x

⎞
⎠ + O

(
e−x/2

x

)

+ O

(
ϕ(q)

(
y log q + y log2 q

x

))
+ O

(
e−xϕ(q) log q

xy

)
. (3.171)

But writing ρχ = 1/2 + iγχ with γχ > 0 and noting that

πx

x2 + y2 = π

x
+ O

(
y2

x3

)
,

the following relation is immediate from (3.171).

∣∣∣∣∣∣∣
∑
m,p

pm≡a (mod q)

y

mpm[(x− log pm)2 + y2] −
π

ϕ(q)x

∣∣∣∣∣∣∣
≤ 2πe−x/2

ϕ(q)
√

x2 + y2

∑
χ

∑
γχ>0

e−γχy + O

(
y2

ϕ(q)x3

)
+ O

⎛
⎝e

−C(θ)x
qθ

ϕ(q)x

⎞
⎠ + O

(
e−x/2

ϕ(q)x

)

+ O

(
y log q + y log2 q

x

)
+ O

(
e−x log q

xy

)
. (3.172)

The O-term involving θ in (3.172) has to be discarded if no Siegel zeros exist. To 
make (3.172) manageable, it suffices to study the behavior of
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∑
χ

∑
γχ>0

e−γχy

in terms of y. Then a judicious choice of y as a small function of q and x will prepare 
us for the minimization of the right hand side of (3.172). Let N(T, χ) be the number of 
nonreal critical zeros of L(s, χ) with ordinates in (−T, T ). It is known that (see p. 101 
of [6])

N(T, χ) =

⎧⎨
⎩

T
π log T + O(T log q) if T ≥ 2

O(log q) if 0 ≤ T ≤ 2.

In particular when χ is a real character, then the number of critical zeros with ordinates 
in (0, T ) is 1

2N(T, χ). If χ is not a real character, then using the correspondence between 
the critical zeros of L(s, χ) and L(s, χ), we see that the total number of critical zeros of 
L(s, χ) and L(s, χ) with ordinates in (0, T ) is N(T, χ). Therefore, if χ is real, then we 
have

∑
0<γχ<T

e−γχy = 1
2

T∫
0

e−tyd(N(t, χ))

= 1
2e

−TyN(T, χ) + y

2

T∫
0

e−tyN(t, χ) dt. (3.173)

As e−TyN(T, χ) → 0 when T → ∞, one sees from (3.173) that

∑
γχ>0

e−γχy = y

2

2∫
0

e−tyN(t, χ) dt + y

2

∞∫
2

e−tyN(t, χ) dt. (3.174)

To proceed, we need to study the right hand side of (3.174). First we have

y

2

2∫
0

e−tyN(t, χ) dt � log q(1 − e−2y) � y log q. (3.175)

Second we observe that

y

2

∞∫
2

e−tyN(t, χ) dt = y

2π

∞∫
2

te−ty log t dt + O

⎛
⎝y log q

∞∫
2

te−ty dt

⎞
⎠ . (3.176)

One easily calculates that
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y

2π

∞∫
2

te−ty log t dt =
log

(
1
y

)
2πy

⎛
⎝ 1

log
(

1
y

) ∞∫
2y

te−t log t dt +
∞∫

2y

te−t dt

⎞
⎠ . (3.177)

Obviously,

1
log

(
1
y

) ∞∫
2y

te−t log t dt → 0 and
∞∫

2y

te−t dt → 1

as y → 0. It follows from (3.174)–(3.177) that

∑
γχ>0

e−γχy = (1 + o(1))
log

(
1
y

)
2πy + O

(
log q
y

)
(3.178)

as y → 0. Similarly,

∑
γχ>0

e−γχy +
∑
γχ>0

e−γχy = (1 + o(1))
log

(
1
y

)
πy

+ O

(
log q
y

)
(3.179)

is obtained for each pair of complex characters χ �= χ. Collecting (3.178) and (3.179), 
one gets

∑
χ

∑
γχ>0

e−γχy = (1 + o(1))ϕ(q)
2πy log

(
1
y

)
+ O

(
ϕ(q) log q

y

)
(3.180)

as y → 0. For the judicious choice of y that was alluded to above, we take y = ϕ(q)xe−x
2 . 

In the presence of Siegel zeros, let us assume that q ≤ xA for any given number A > 0. 
Then using a small enough θ > 0 (in terms of A), one can satisfy

O

⎛
⎝e

−C(θ)x
qθ

ϕ(q)x

⎞
⎠ = o

(
1

ϕ(q)x

)
as x → ∞. (3.181)

Moreover, we have

O

(
y2

ϕ(q)x3

)
, O

(
e−x/2

ϕ(q)x

)
,

O

(
y log q + y log2 q

x

)
, O

(
e−x log q

xy

)
= o

(
1

ϕ(q)x

)
as x → ∞ (3.182)

whenever

q = o

(
e

x
4

3

)
.

x 2
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Since log q
log(1/y) → 0 as x → ∞ when q ≤ xA, one obtains from (3.172), (3.180)–(3.182)

that

∑
m,p

pm≡a (mod q)

y

mpm[(x− log pm)2 + y2] = π + Θ(x)
ϕ(q)x , (3.183)

where Θ(x) is a function satisfying |Θ(x)| < 1 for all sufficiently large values of x. On 
the other hand, if no Siegel zeros exist, then (3.183) still holds when q ≤ eλx for some 
sufficiently small number λ > 0 (so that log q

log(1/y) is small enough for all sufficiently 
large values of x). Let us remark that λ is an effective constant. It is now immediate 
from (3.183) that

∑
m,p

pm≡a (mod q)

y

mpm[(x− log pm)2 + y2] >
2

ϕ(q)x (3.184)

for all sufficiently large values of x. Let us estimate the contribution of terms with 
|x − log pm| ≥ 1 on the left hand side of (3.184). Precisely, consider

∑
m,p

pm≡a (mod q)
|x−log pm|≥1

y

mpm[(x− log pm)2 + y2] ≤ y
∑
m,p

pm≡a (mod q)
|x−log pm|≥1

1
mpm|x− log pm| . (3.185)

Clearly, we have

∑
m,p
m≥2

pm≡a (mod q)
|x−log pm|≥1

1
mpm|x− log pm| = O(1). (3.186)

Hence it suffices to look at
∑
p

|x−log p|≥1

1
p|x− log p| (3.187)

as a function of all large x. When |x − log p| ≥ 1, it is easy to see that

1
|x− log p| �

x

log p .

Consequently, (3.187) is � x and one obtains from (3.185), (3.186) that

∑
m,p

pm≡a (mod q)
m

y

mpm[(x− log pm)2 + y2] � yx. (3.188)
|x−log p |≥1
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Since q ≤ eλx for some sufficiently small number λ > 0, one gets yx = o(1/ϕ(q)x)
and (3.184), (3.188) give that

∑
m,p

pm≡a (mod q)
|x−log pm|<1

y

mpm[(x− log pm)2 + y2] >
1.9

ϕ(q)x (3.189)

for all sufficiently large x. To analyze the left hand side of (3.189) further, we decompose 
the interval (x − 1, x + 1) to tiny subintervals of length y starting from the point x (the 
rightmost and the leftmost subintervals being possibly of length < y). We then look at 
the contribution of each such subinterval. For a nonnegative integer ν with νy < 1, let 
us first study sums of the type

∑
m,p

pm≡a (mod q)
νy≤|x−log pm|≤(ν+1)y

1
m

=
∑

p≡a (mod q)
ex+νy≤p≤ex+(ν+1)y

1 +
∑

p≡a (mod q)
ex−(ν+1)y≤p≤ex−νy

1

+
∑
m≥2

1
m

⎛
⎜⎜⎜⎜⎝

∑
pm≡a (mod q)

e
x+νy

m ≤p≤e
x+(ν+1)y

m

1 +
∑

pm≡a (mod q)

e
x−(ν+1)y

m ≤p≤e
x−νy

m

1

⎞
⎟⎟⎟⎟⎠ ,

(3.190)

where the sum over m in (3.190) is actually finite with m � x. Estimating trivially,

∑
m≥2

1
m

⎛
⎜⎜⎜⎜⎝

∑
pm≡a (mod q)

e
x+νy

m ≤p≤e
x+(ν+1)y

m

1 +
∑

pm≡a (mod q)

e
x−(ν+1)y

m ≤p≤e
x−νy

m

1

⎞
⎟⎟⎟⎟⎠ � e

x
2 (3.191)

holds. Moreover, by the Brun–Titchmarsh theorem, one has

∑
p≡a (mod q)

ex+νy≤p≤ex+(ν+1)y

1 ≤ 3 ex+νy(ey − 1)
ϕ(q) log

(
ex+νy(ey−1)

q

) � e
x
2 (3.192)

for all sufficiently large x. Similarly,
∑

p≡a (mod q)
ex−(ν+1)y≤p≤ex−νy

1 � e
x
2 (3.193)

follows for all sufficiently large x. Gathering (3.190)–(3.193), one infers that
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∑
m,p

pm≡a (mod q)
νy≤|x−log pm|≤(ν+1)y

1
m

� e
x
2 (3.194)

with an absolute and computable implied constant. Using now (3.194), it is easy to see 
that

∑
m,p

pm≡a (mod q)
νy≤|x−log pm|<1

y

mpm[(x− log pm)2 + y2] �
1

ϕ(q)x

(
1
ν2 + 1

(ν + 1)2 + . . .

)
, (3.195)

where the implied constant is absolute. Therefore, fixing a large enough value of ν
in (3.195), we obtain from (3.189) that

∑
m,p

pm≡a (mod q)
|x−log pm|<νy

y

mpm[(x− log pm)2 + y2] >
1.8

ϕ(q)x (3.196)

for all sufficiently large x. As a result of (3.196),

∑
m,p

pm≡a (mod q)
|x−log pm|<νy

1
m

> 1.8
(
yex−νy

ϕ(q)x

)
> 1.7e x

2 (3.197)

follows for all sufficiently large x. Let us define the function

f(x, q, a) :=
∑
m,p

pm≡a (mod q)
pm≤x

1
m
.

Then (3.197) can be reformulated as

f(ex+νy, q, a) − f(ex−νy, q, a) > 1.7ex
2 (3.198)

for all sufficiently large x. Let us rewrite (3.198) in terms of a more customary way of 
representing short intervals. To this end, it is enough to replace x by log x in (3.198). 
Note that the conditions on q should be scaled in the same way. Namely, if there are 
Siegel zeros, then q ≤ (log x)A for any given A > 0 and otherwise q ≤ xλ for some small 
enough λ > 0. In this way the interval (ex−νy, ex+νy] is mapped to the interval

(
xe−

νϕ(q) log x√
x , xe

νϕ(q) log x√
x

]
. (3.199)

Next we show that the interval in (3.199) is a subset of the interval
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(x− 2νϕ(q)
√
x log x, x + 2νϕ(q)

√
x log x]

for all sufficiently large x. For the right end points of the intervals, this amounts to 
checking the inequality

e
νϕ(q) log x√

x < 1 + 2νϕ(q) log x√
x

which is obviously true since νϕ(q) log x√
x

→ 0 as x → ∞. The verification for the left end 
points of the intervals can be done in the same way. Therefore, (3.198) becomes

f(x + 2νϕ(q)
√
x log x, q, a) − f(x− 2νϕ(q)

√
x log x, q, a) > 1.7

√
x (3.200)

for all sufficiently large x. Using (3.200), we can find an absolute constant c > 0 (in 
terms of ν) such that

f(x + c ϕ(q)
√
x log x, q, a) − f(x, q, a) > 1.7

√
x.

Finally observing

f(x, q, a) − π(x, q, a) �
√
x

log x,

one easily obtains

π(x + c ϕ(q)
√
x log x, q, a) − π(x, q, a) >

√
x (3.201)

for all sufficiently large x. It is possible to arrange an effective constant c that works 
for all x and q subject to q ≤ xλ but in the presence of Siegel zeros and q ≤ (log x)A, 
the choice of cA in place of c is ineffective since we can not know precisely how large x
should be to have (3.201). This completes the proof of Theorem 2.
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