
JID:YJNTH AID:5955 /FLA [m1L; v1.231; Prn:8/02/2018; 16:41] P.1 (1-14)
Journal of Number Theory ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Bilinear forms with exponential sums with 

binomials

Kui Liu a, Igor E. Shparlinski b, Tianping Zhang c,∗

a School of Mathematics and Statistics, Qingdao University, No. 308, Ningxia 
Road, Shinan, Qingdao, Shandong, 266071, PR China
b Department of Pure Mathematics, University of New South Wales, Sydney, NSW 
2052, Australia
c School of Mathematics and Information Science, Shaanxi Normal University, 
Xi’an 710019 Shaanxi, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 October 2017
Received in revised form 12 
December 2017
Accepted 19 December 2017
Available online xxxx
Communicated by S.J. Miller

MSC:
11D79
11L07

Keywords:
Binomial sums
Cancellation
Bilinear form

We obtain several estimates for bilinear forms with exponen-
tial sums with binomials mxk + nx�. In particular we show 
the existence of nontrivial cancellations between such sums 
when the coefficients m and n vary over rather sparse sets of 
general nature.

© 2018 Published by Elsevier Inc.

* Corresponding author.
E-mail addresses: liukui@qdu.edu.cn (K. Liu), igor.shparlinski@unsw.edu.au (I.E. Shparlinski), 

tpzhang@snnu.edu.cn (T.P. Zhang).
https://doi.org/10.1016/j.jnt.2017.12.011
0022-314X/© 2018 Published by Elsevier Inc.

https://doi.org/10.1016/j.jnt.2017.12.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:liukui@qdu.edu.cn
mailto:igor.shparlinski@unsw.edu.au
mailto:tpzhang@snnu.edu.cn
https://doi.org/10.1016/j.jnt.2017.12.011


JID:YJNTH AID:5955 /FLA [m1L; v1.231; Prn:8/02/2018; 16:41] P.2 (1-14)
2 K. Liu et al. / Journal of Number Theory ••• (••••) •••–•••
1. Introduction

1.1. Background and motivation

For a positive integer q , we denote by Zq the residue ring modulo q and also denote 
by Z∗

q the group of units of Zq .
For fixed integers k and � , we consider exponential sums with binomials

Sk,�,q(m,n) =
∑
x∈Z∗

q

eq
(
mxk + nx�

)
,

where for negative powers of x are computed modulo q and

eq(z) = exp(2πiz/q).

The case (k, �) = (1, −1) corresponds to the case of Kloosterman sums. We note that 
when both k and � are positive there is no reason to restrict the summation to Z∗

q . 
However, motivated by the choice (k, �) = (−2, 1) which is important for applications 
to square-free numbers in progressions, see [13] we only consider this case. It is also 
important for the validity of the bound (1.3) below.

Furthermore, given two sets M, N ⊆ Zq and two sequences of weights α = {αm}m∈M
and β = {βn}n∈N , we define the following bilinear forms with the binomial sums 
Sk,�,q(m, n):

Sk,�,q(α,β;M,N ) =
∑

m∈M

∑
n∈N

αmβnSk,�,q(m,n).

We also consider the following special cases

Sk,�,q(α;M,N ) = Sk,�,q (α, {1}n∈N ;M,N )

=
∑

m∈M

∑
n∈N

αmSk,�,q(m,n), (1.1)

and

Sk,�,q(M,N ) = Sk,�,q ({1}m∈M, {1}n∈N ;M,N )

=
∑

m∈M

∑
n∈N

Sk,�,q(m,n). (1.2)

For (k, �) = (1, −1), that is, for Kloosterman sums, such bilinear forms have been 
introduced by Fouvry, Kowalski and Michel [3] who have also demonstrated the impor-
tance of estimating them beyond of what follows immediately from the Weil bound of 
Kloosterman sums (see, for example, [7, Chapter 11]), that is, better than the bound (1.3)
below.
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More generally, for arbitrary modulus q and exponents (k, �) one can apply the general 
bound of [16, Theorem 1] on exponential sums with few nomials to derive

|Sk,�,q(α,β;M,N )| ≤ MNq1/2+o(1) max
m∈M

|αm|max
n∈N

|βn|, (1.3)

to which we refer as the trivial bound.
Further progress in the case (k, �) = (1, −1) has been achieved in [1,2,11,17,18]. 

In [22] this question has been studied on average over the moduli q . We also recall 
recent results of [10,12,21] when cancellations among Kloosterman sums are studied for 
moduli of special arithmetic structure. Furthermore, the case of a prime q = p and 
(k, �) = (2, −1) has been studied by Nunes [13], via the method of Fouvry, Kowalski and 
Michel [3]. Then these sums have been used to investigate the distribution of squarefree 
integers in arithmetic progressions; see Section 5 for exact formulations of the results of 
Nunes [13] and their comparison with our bounds.

We remark that the method introduced by Fouvry, Kowalski and Michel [3], and then 
further developed and used in [1,11,13], relies heavily on such deep tools as the Weil 
and Deligne bounds, see [7, Chapter 11]. As a result, this approach works well only for 
prime moduli p , while the methods of [17,18] are of elementary nature, and in particular 
work without any losses of strength for composite q . On the other hand, the method 
of [1,3,11,22] works for much more general objects than Kloosterman and other similar 
exponential sums.

1.2. General notation

We remark that our bounds involve only the norms of the weights α but do not 
explicitly depend on the size of the set M on which they are supported. Hence, without 
loss of generality, we can assume that M = Zq . On the other hand, our method does 
not apply to general sets N and works only when N is an interval, and thus, for the 
sums with weights we simplify the notation as

Sk,�,q(α;J ) =
∑
m∈Zq

∑
n∈J

αmSk,�,q(m,n), (1.4)

where J = {L +1, . . . , L +N} ⊆ Zq is a set of N consecutive residues of Zq (with q−1
followed by 0). Furthermore, in the case of the sums without weights we only estimate 
such sums when the set M = I = {K + 1, . . . , K + M} ⊆ Zq is another interval, and 
thus we write Sk,�,q(I, J ).

The case of � = −1 is somewhat special as it admits some extra treatment and is 
also important for many applications, see [13] for example. Thus we introduce special 
notations

S∗
k,q(I,J ) = Sk,−1,q(I,J ) and S∗

k,q(α;J ) = Sk,−1,q(α;J ), (1.5)

which shorten (1.1) and (1.4), respectively.
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For an integer u we define

〈u〉q = min
k∈Z

|u− kq|

as the distance to the closest integer, which is a multiple of q .
We also define the norms

‖α‖∞ = max
m∈M

|αm| and ‖α‖σ =
( ∑

m∈M
|αm|σ

)1/σ

,

where σ > 0, and similarly for the weights β .
Throughout the paper, as usual A � B is equivalent to the inequality |A| ≤ cB with 

some constant c > 0, which may depend on the integers k and � , and occasionally, 
where obvious, the real parameter ε > 0 and on the integer parameter ν ≥ 1.

The letter p always denotes a prime number and we say that q is squarefree if it is 
not divisible by p2 for any p .

2. New results

2.1. Bounds for every q

We start with the sums Sk,�,q(α; J ), defined in (1.4), which are medium level of 
complexity as one variable still runs through a continuous interval. The proof is based 
on the method from [18], coupled with a result of Pierce [15, Theorem 4].

Theorem 2.1. If k and � are fixed nonzero integers such that k/� is not a positive integer, 
then, for any fixed positive integer ν , squarefree q ≥ 1 and

J = {L + 1, . . . , L + N} ⊆ Zq,

we have

Sk,�,q(α;J ) � min
{
‖α‖2N

1/2q, ‖α‖1−1/ν
1 ‖α‖1/ν

2(
q + q(2ν2+ν+1)/2ν(ν+1)N1/(ν+1)

)
qo(1)

}
.

In particular, when αm is the characteristic function of the interval I = {K +
1, . . . , K + M} we obtain a bound on the sums Sk,�,q(I, J ), defined by (1.2). We also 
see that in the case of the sums Sk,�,q(I, J ) the roles of M and N can be inter-
changed.
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Corollary 2.2. If k and � are fixed nonzero integers such that k/� and �/k are not 
positive integers, then, for any fixed positive integer ν , squarefree q ≥ 1 and

I = {K + 1, . . . ,K + M}, J = {L + 1, . . . , L + N} ⊆ Zq,

we have

Sk,�,q(I,J ) ≤ X1−1/2ν
(
q + q(2ν2+ν+1)/2ν(ν+1)Y 1/(ν+1)

)
qo(1),

where X = min{M, N} , Y = max{M, N} .

In particular, with ν = 2 we obtain from Corollary 2.2 that

Sk,�,q(I,J ) ≤ q1+o(1)N3/4 + q11/12+o(1)M1/3N3/4. (2.1)

This improves the trivial bound (1.3) provided that

M4N ≥ q2+ε and M8N3 ≥ q5+ε (2.2)

for some fixed ε > 0, and in particular for M = N ≥ q5/11+ε . Note that in (2.1)
and (2.2) the roles of M and N can be interchanged.

In the case M, N = q1/2+o(1) crucial for many applications, Corollary 2.2 implies the 
bound MNq1/2−1/24+o(1) , saving q1/24 compared to the trivial bound (1.3).

2.2. Bounds for almost all q

We also show that in the case of � = −1 for almost all q in a dyadic interval [Q, 2Q]
stronger versions of the results of Section 2.1 hold. In particular, we recall our special 
notations in this case, given by (1.5).

We also have an analogue of the second bound in Theorem 2.1, but only for the sums 
S∗
k,q(α; J ).

Theorem 2.3. If k > 1 is a fixed integer, then, for any fixed positive integer ν , fixed real 
ε > 0 and sufficiently large real Q ≥ 1 , we have

1
Q

∑
q∈[Q,2Q]

|S∗
k,q(α;J )|2ν � ‖α‖2ν−2

1 ‖α‖2
2
(
Q2ν + Qν+1Nν

)
Qo(1).

We now immediately derive:

Corollary 2.4. If k > 1 is a fixed integer, then, for any fixed positive integer ν , fixed real 
ε > 0 and sufficiently large real Q ≥ 1 , for all but O(Q1−ε) integers q ∈ [Q, 2Q] , we 
have
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S∗
k,q(α;J ) � ‖α‖1−1/ν

1 ‖α‖1/ν
2

(
q + q(ν+1)/2νN1/2

)
qε.

We also have the following version of Corollary 2.2 (however this time we cannot 
interchange the roles of M and N ).

Corollary 2.5. If k > 1 is a fixed integer, then, for any fixed positive integer ν , fixed real 
ε > 0 and sufficiently large real Q ≥ 1 , for all but O(Q1−ε) integers q ∈ [Q, 2Q] , we 
have

S∗
k,q(I,J ) � M1−1/2ν

(
q + q(ν+1)/2νN1/2

)
qε.

We see that Corollary 2.5 gives a nontrivial bound if for some integer ν ≥ 1 we have

MN2ν ≥ qν and MNν ≥ q.

3. Preparations

3.1. Linear and bilinear exponential sums

We need the following well-known simple results.
First we recall the following bound of linear sums [7, bound (8.6)].

Lemma 3.1. For any integers u , L and N ≥ 1 , we have

L+N∑
n=L+1

eq(nu) � min
{
N,

q

〈u〉q

}
.

We also need the following well-known result, which dates back to Vinogradov [20, 
Chapter 6, Problem 14.a].

Lemma 3.2. For arbitrary set U , V ⊆ Zq and sequences of complex weights ϕ = {ϕu}u∈U
and ψ = {ψv}v∈V we have

∣∣∣∣∣
∑
u∈U

∑
v∈V

ϕuψv eq(uv)

∣∣∣∣∣ ≤ ‖ϕ‖2‖ψ‖2q
1/2.

3.2. Some equations and congruences

We start with a very simple result on the monomial congruences. It can be derived 
elementary via a combination of the Chinese Remainder Theorem and Hensel Lifting, 
however we simply appeal to the general bound of Huxley [6].
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Lemma 3.3. If k is a nonzero integer then for any a ∈ Zq the congruence

xk ≡ a (mod q), x ∈ Z
∗
q ,

has at most qo(1) solutions.

Proof. Clearly we can assume that a ∈ Z
∗
q as otherwise there is no solution. Then the 

discriminant of the polynomial Xk − a has a bounded greatest common divisor with q
and the result follows from [6]. �

We also need several results of Pierce [15], which in turn generalises previous results 
of Heath-Brown [5, Lemma 1] (which corresponds to � = −1). We present these results 
in slightly more general forms (which are however implicitly contained in the argument 
of [15]).

For an integer ν ≥ 1 and real U let Ik,�,ν,q(U) be the number of solutions to the 
system of congruences

v1 + . . . + vν ≡ vν+1 + . . . + v2ν (mod q),

uk
i ≡ v�i (mod q), i = 1, . . . , 2ν,

with 1 ≤ u1, . . . , u2ν ≤ U and unrestricted variables v1, . . . , v2ν ∈ Zq . We have the 
following slight extension of the bound of Pierce [15, Equation (6.2)] (which is free of 
the restriction U ≤ q(ν+1)/2ν ).

We recall that all implied constants are allowed to depend on ν .

Lemma 3.4. If k and � are fixed nonzero integers such that k/� is not a positive integer, 
then, for any fixed positive integer ν , squarefree q ≥ 1 and U ≤ q we have

Ik,�,ν,q(U) ≤
(
U2νq−1 + U2ν2/(ν+1)

)
qo(1).

Proof. We use the following inequality given (in a slightly more precise form) in [15, 
Section 6.3]:

Ik,�,ν,q(U) ≤
(
Q−1U2ν−1 + QνUν

)
qo(1),

holds for any Q , satisfying the conditions

Q < U and 8QU ≤ q.

Thus taking

Q = min
{
U (ν−1)/(ν+1), q/8U

}
,

we obtain the result. �
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In particular, if U ≤ q(ν+1)/2ν the bound of Lemma 3.4 is essentially of the same form 
as [15, Equation (6.2)].

In the case � = −1, following our previous convention, we denote

I∗k,ν,q(U) = Ik,−1,ν,q(U).

We now show that one can get a better bound on I∗k,ν,q(U) on average over q in a dyadic 
interval [Q, 2Q] . Indeed, let Jk,ν(U) be the number of solutions to the equation

1
uk

1
+ . . . + 1

uk
ν

= 1
uk
ν+1

+ . . . + 1
uk

2ν
, 1 ≤ u1, . . . , u2ν ≤ U. (3.1)

We have the following bound, which is a slight modification of a result of Karatsuba [8], 
corresponding to k = 1 and presented in the proof of [8, Theorem 1].

Lemma 3.5. If k > 1 is a fixed integer, then, for any fixed positive integer ν , we have

Jk,ν(U) ≤ Uν+o(1).

Proof. Clearing the denominators in (3.1), we see that if p | ui for some component 
i = 1, . . . , 2ν of a solution, then we also have p | uj for some j �= i . This means that 
for any solution to (3.1), the product u1 . . . u2ν is squarefull. Since any interval [1, W ]
contains O(W 1/2) squarefull integers, see [19], applying this with W = U2ν and then 
using the classical bound on the divisor function, see [7, Equation (1.81)], we obtain the 
result. �

Now repeating the argument of the proof of [4, Lemma 2.3] and using Lemma 3.5 in 
the appropriate place, we obtain:

Lemma 3.6. If k > 1 is a fixed integer, then, for any fixed positive integer ν and suffi-
ciently large real 1 ≤ U ≤ Q , we have

1
Q

∑
Q≤q≤2Q

I∗k,ν,q(U) ≤
(
U2νQ−1 + Uν

)
Qo(1).

4. Proofs of the main results

4.1. Proof of Theorem 2.1

Changing the order of summation, we obtain

Sk,�,q(α;J ) =
∑
x∈Z∗

∑
m∈Z

αm eq(mxk)
∑
n∈J

eq(nx�).

q q
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Recalling Lemma 3.1, we obtain

Sk,�,q(α;J ) =
∑
m∈Zq

∑
x∈Z∗

q

αmγx eq(mxk),

where

|γx| ≤ min
{
N,

q

〈x�〉q

}
.

We define I = �log q
 and write

Sk,�,q(α;J ) � |Σ0,q| +
I∑

i=1
|Σi,q|, (4.1)

where

Σ0,q =
∑
m∈Zq

∑
x∈Z

∗
q

〈x�〉q≤q/N

αmγx eq(mxk),

Σi,q =
∑
m∈Zq

∑
x∈Z

∗
q

ei+1q/N≥〈x�〉q>eiq/N

αmγx eq(mxk), i = 1, . . . , I.

Now using Lemmas 3.2 and 3.3, we have

|Σ0,q| ≤ ‖α‖2N
√

(q/N)q1+o(1) ≤ ‖α‖2N
1/2q1+o(1). (4.2)

Also, for i = 1, . . . , I , using that if ei+1q/N ≥ 〈x�〉q > eiq/N then γx � Ne−i , hence, 
again by Lemmas 3.2 and 3.3, we obtain

Σi,q =
∑
m∈Zq

∑
x∈Z

∗
q

ei+1q/N≥〈xk〉q>eiq/N

αmγx eq(mx�)

≤ ‖α‖2(qo(1)N2e−2ieiq/N)1/2q1/2 = e−i/2‖α‖2N
1/2q1+o(1).

Therefore,

I∑
i=1

|Σi,q| ≤ ‖α‖2N
1/2q1+o(1)

I∑
i=1

e−i/2 ≤ ‖α‖2N
1/2q1+o(1). (4.3)

Combining (4.2) and (4.3), we obtain the first bound.
For the second bound we turn to use the method of [17]. For a fixed integer ν ≥ 2, 

using the Hölder inequality, we obtain
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|Σ0,q|2ν ≤

⎛
⎝ ∑

m∈Zq

|αm|

⎞
⎠

2ν−2 ∑
m∈Zq

|αm|2W0,q

= ‖α ‖2ν−2
1 ‖α ‖2

2W0,q,

(4.4)

where

W0,q =
∑
m∈Zq

∣∣∣∣∣∣∣∣∣
∑
x∈Z

∗
q

〈x�〉q≤q/N

γx eq(mxk)

∣∣∣∣∣∣∣∣∣

2ν

.

Opening up the inner sum, changing the order of summation and using the orthogo-
nality of exponential functions, we obtain

W0,q =
∑
m∈Zq

∑
· · ·

∑
x1,...,x2ν∈Z∗

q

〈x�
i〉q≤q/N,i=1,...,2ν

ν∏
j=1

γxj
γxν+j

eq

⎛
⎝m

ν∑
j=1

(xk
j − xk

ν+j)

⎞
⎠

= q
∑

· · ·
∑

〈x�
i〉q≤q/N,i=1,...,2ν

xk
1+...+xk

ν≡xk
ν+1+...+xk

2ν (mod q)

ν∏
j=1

γxj
γxν+j

≤ N2νq
∑

· · ·
∑

〈x�
i〉q≤q/N,i=1,...,2ν

xk
1+...+xk

ν≡xk
ν+1+...+xk

2ν (mod q)

1.

Let ui = 〈x�
i〉q , vi = xk

i , then we have

v1 + . . . + vν ≡ vν+1 + . . . + v2ν (mod q),

uk
i ≡ ±v�i (mod q), 0 < ui ≤ q/N,

which implies

v1 + . . . + vν ≡ vν+1 + . . . + v2ν (mod q),

u2k
i ≡ v2�

i (mod q), 0 < ui ≤ q/N.

Applying Lemma 3.4, we have

W0,q ≤ N2νq1+o(1)
(( q

N

)2ν
q−1 +

( q

N

)2ν2/(ν+1)
)
.

Then, we see from (4.4)
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|Σ0,q|2ν ≤ ‖α ‖2ν−2
1 ‖α ‖2

2

(
q2ν + q(2ν2+ν+1)/(ν+1)N2ν/(ν+1)

)
qo(1). (4.5)

Similarly, we also obtain

|Σi,q|2ν ≤ ‖α ‖2ν−2
1 ‖α ‖2

2(
q2ν + q(2ν2+ν+1)/(ν+1)N2ν/(ν+1)e−2iν/(ν+1)

)
qo(1),

(4.6)

and the result now follows from (4.1).

4.2. Proof of Theorem 2.3

We see from (4.1) that by the Hölder inequality,

Sk,�,q(α;J )2ν � I2ν−1

(
|Σ0,q|2ν +

I∑
i=1

|Σi,q|2ν
)
.

Now, using Lemma 3.6 instead of Lemma 3.4 we obtain
∑

q∈[Q,2Q]

|Σ0,q|2ν ≤ ‖α ‖2ν−2
1 ‖α ‖2

2
(
Q2ν−1 + Qν+2Nν

)
Qo(1)

instead of (4.5) and
∑

q∈[Q,2Q]

|Σi,q|2ν ≤ ‖α ‖2ν−2
1 ‖α ‖2

2
(
Q2ν−1 + Qν+2Nνe−iν

)
Qo(1)

instead of (4.6). The result now follows.

5. Comparison with previous results

We note that for a prime q = p , in our notation for the functions K1(t) and K2(t)
from [13] we have

K1(mn) = p−1/2S−2,1,p(ab2m2, n) = p−1/2S2,−1,p(ab2m2, n)

and

K2(mn2) = p−1/2S−2,1,p(ab2m,n) = p−1/2S2,−1,p(ab2m,n).

Recalling the definition (1.1), we now see that the results of Nunes [13] can be written 
as

S∗
2,p(α;M1,J ) ≤

√
‖α‖1‖α‖2p

3/4+o(1)M1/16N5/8 (5.1)



JID:YJNTH AID:5955 /FLA [m1L; v1.231; Prn:8/02/2018; 16:41] P.12 (1-14)
12 K. Liu et al. / Journal of Number Theory ••• (••••) •••–•••
provided that 1 ≤ M ≤ N2 and MN2 ≤ p2 and also

S∗
2,p(α;M2,J ) ≤

√
‖α‖1‖α‖2p

3/4+o(1)M1/12N7/12 (5.2)

provided that 1 ≤ M ≤ N2 and MN ≤ p3/2 , where

M1 = {αj : j = 1, . . . ,M} and M2 = {αj2 : j = 1, . . . ,M}

(with some α ∈ F
∗
p ) and J is an interval of length N < p . Using Theorem 2.1 with 

ν = 2 (and recalling that its bound does not depend on the support M of the weights 
α , see (1.4)), we obtain

S∗
2,p(α;Mj ,J ) ≤

√
‖α‖1‖α‖2

(
p + p11/12N1/3

)
po(1), j = 1, 2.

This bound improves (5.1) for

MN10 ≥ p4+ε and M3N14 ≥ p8+ε

and improves (5.2) for

MN7 ≥ p3+ε and MN3 ≥ p2+ε

with some fixed ε > 0. In particular, if M and N are of similar sizes, that is, N =
M1+o(1) , this happens for M ≥ p8/17+ε and M ≥ p1/2+ε , respectively.

We further note that for applications to squarefree numbers in arithmetic progressions 
only the bound (5.1) matters and only in the case of constant weights and thus it has 
to be compared with that of Corollary 2.2 (it is easy to see that for � = 1 it can be 
extended to the set M1 = αI ). In particular, in this case the bound (2.1) is better when

M13N−2 ≥ p4+ε and M23N−6 ≥ p8+ε,

or similarly with M and N can be interchanged, see also (2.2) for the range when it is 
nontrivial.

One also easily observes that all our results can be extended, without any changes in 
their formulations and proofs, to much more general sums of the shape

Sk,�,q(ξ;m,n) =
∑
x∈Z∗

q

ξx eq
(
mxk + nx�

)
,

with some complex weights ξ = (ξx)x∈Z∗
q

satisfying ‖ξ‖∞ ≤ 1. For example ξx can be the 

Möbius function or the indicator function of primes. Note that the sums Sk,�,q(ξ; m, n)
cannot be treated within the approach of [1,3,11,13].

In particular, in the regime when N = M1+o(1) , which is crucial for many applications, 
the bound (2.1) is both better and nontrivial for M ≥ p8/17+ε . However, the potential 
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improvement of [13], which is implied by our bounds seems to be of the same strength 
as in the follow up work of Nunes [14], where this is achieved via a different approach.

Finally, we remark that the squarefreeness restriction on the modulus in Theorem 2.1
comes from Lemma 3.4. For arbitrary integer q one can use much more general but 
weaker bounds of Kerr [9, Theorem 3.1].
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