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We prove an optimal Zsigmondy bound for elliptic divisibility 
sequences over function fields in case the j-invariant of the 
elliptic curve is constant.
In more detail, given an elliptic curve E with a point 
P of infinite order over a global field, the sequence D1, 
D2, . . . of denominators of multiples P , 2P, . . . of P is a 
strong divisibility sequence in the sense that gcd(Dm, Dn) =
Dgcd(m,n). This is the genus-one analogue of the genus-zero 
Fibonacci, Lucas and Lehmer sequences.
A number N is called a Zsigmondy bound of the sequence 
if each term Dn with n > N presents a new prime factor. 
The optimal uniform Zsigmondy bound for the genus-zero 
sequences over Q is 30 by Bilu-Hanrot-Voutier [2], but finding 
such a bound remains an open problem in genus one, both over 
Q and over function fields.
We prove that the optimal Zsigmondy bound for ordinary 
elliptic divisibility sequences over function fields is 2 if the 
j-invariant is constant. In the supersingular case, we give a 
complete classification of which terms can and cannot have a 
new prime factor.
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1. Introduction

An elliptic divisibility sequence (EDS) over Q is a sequence D1, D2, D3, . . . of positive 
integers defined as follows. Given an elliptic curve E over Q and a point P ∈ E(Q) of 
infinite order, choose a globally minimal Weierstrass equation for E and write for every 
Q ∈ E(Q):

Q =
(
AQ

D2
Q

,
CQ

D3
Q

)
, (1.1)

where the fractions are in lowest terms. Then set Dn = DnP .
A result of Silverman [26] shows that all but finitely many terms Dn have a primitive 

divisor, that is, a prime divisor p | Dn such that p � Dm for all 1 ≤ m < n. Equivalently, 
this says that all but finitely many positive integers n occur as the order of (P mod p)
for some prime p. The question whether there is a uniform bound N such that Dn has 
a primitive divisor for all pairs (E, P ) and all n > N remains open, see [2], [4], [8], [14].

The definition of DQ of (1.1) is equivalent to

v(DQ) = max{−1
2v(xv(Q)), 0} (1.2)

for all non-archimedean valuations v and xv the x-coordinate function for a v-minimal 
Weierstrass equation. If E and P are defined over a number field F , then we define the 
EDS of the pair (E, P ) to be the sequence of ideals Dn = DnP of OF defined by (1.2).

Similarly, if E and P are defined over the function field F = K(C) of a smooth, 
projective, geometrically irreducible curve C over a field K, then we define the EDS
of the pair (E, P ) to be the sequence of divisors Dn = DnP on C defined by (1.2). 
See Section 1.2 for an equivalent definition in the case of perfect K. Elliptic divisibility 
sequences over function fields are studied in [6,9,16,28].

From now on, we will speak of primitive valuations instead of primitive divisors, so as 
not to confuse with the terms themselves, which are divisors in the function field case. 
A positive integer N is a Zsigmondy bound of the sequence (Dn)n if for every n > N the 
term Dn has a primitive valuation.

Silverman’s result and proof are also valid in the number field case [15]. In the case of 
function fields of characteristic zero, the same result is true, as shown by Ingram, Mahé, 
Silverman, Stange and Streng [16, Theorems 1.7 and 5.5].

This was extended to ordinary elliptic curves E over function fields of characteristic 
�= 2, 3 by Naskręcki [21]. Conditionally Naskręcki makes the result uniform in E. The 
special case of the results of [21] where j(E) is constant gives a Zsigmondy bound N as 
follows.

• For fields K(C) of characteristic 0 we have N ≤ 72 (see [12, p. 437] and [21, 
Lemma 7.1]).
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• For fields K(C) with p = charK(C) ≥ 5 and field of constants K = Fq, q = ps we 
have N < 10100(15+20g(C)) · p84 for ‘tame’ elliptic curves (cf. [21, Definition 8.3]) and 
a bound N = N(g(C), p, χ, s) for ‘wild’ ordinary elliptic curves where χ is the Euler 
characteristic of the elliptic surface attached to E over K(C).

1.1. Our results

All previous Zsigmondy bound estimates exclude the case of supersingular curves. In 
this paper, we consider the case of function fields F = K(C) and assume j(E) ∈ K, which 
includes the case of supersingular E. In a companion paper we will deal with the case 
j(E) ∈ F \K, where we extend the results of Naskręcki [21] to arbitrary characteristic 
and improve the bound N .

In the ordinary case, we prove a bound N = 2 and show that it is optimal. In the 
supersingular case in characteristic p, we show that the terms Dn for n > 8p have a 
primitive divisor if and only if p � n, and we give a sharp version for every characteristic.

In more detail, the main results are as follows.

Theorem A (Theorem 8.1). Let F be the function field of a smooth, projective, geomet-
rically irreducible curve over a field K.

Let E be an ordinary elliptic curve over F and let P ∈ E(F ) be a point of infinite 
order such that j(E) ∈ K, but the pair (E, P ) is not constant, cf. Definition 2.1. Then 
for all integers n > 2, the term Dn has a primitive valuation.

Conversely, for all ordinary j-invariants j ∈ K there exist an elliptic curve E/F with 
j(E) = j and a point P ∈ E(F ) of infinite order such that the terms D1 and D2 do 
not have a primitive valuation and there exist an elliptic curve E/F with j(E) = j and 
a point P ∈ E(F ) of infinite order such that all terms Dn for n ≥ 1 have a primitive 
valuation.

Theorem B (Theorem 8.2). Let F be the function field of a smooth, projective, geomet-
rically irreducible curve over a field of characteristic p > 0. Let n be a positive integer.

If the entry corresponding to n and p in Table 1 is ‘yes’ (respectively ‘no’), then for ev-
ery supersingular elliptic curve E over F , and every P ∈ E(F ) with (E, P ) non-constant 
and P of infinite order, the term Dn has a (respectively no) primitive valuation.

If the entry is ‘∗’, then there exist E and P as in the previous paragraph such that 
Dn has a primitive valuation and there exist E and P such that Dn has no primitive 
valuation.

In the case where E itself is defined over K (and not just its j-invariant), the result 
is much stronger, as follows.

Theorem C (Theorem 2.3). Let F be the function field of a smooth, projective, geomet-
rically irreducible curve over a field K of characteristic p ≥ 0. Let E be an elliptic curve 
over K and P ∈ E(F ) \ E(K) a point of infinite order. Let n be a positive integer,
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Table 1
Table referred to in Theorem B.

p = 2

n 1 2(= p) 3 4(= 2p) 6(= 3p) 8(= 4p) odd
n>4

even
n>8

Dn ∗ ∗ ∗ ∗ ∗ ∗ yes no

p = 3

n 1 2 3(= p) 6(= 2p) 9(= 3p) n>3
3�n

n>9
3|n

Dn ∗ ∗ ∗ ∗ ∗ yes no

p ≡ 1 mod 3

n 1 2 3 p 2p 3p n>3
p�n

n>3p
p|n

Dn ∗ ∗ yes ∗ ∗ no yes no

p ≡ 2 mod 3, p �= 2

n 1 2 3 p 2p 3p n>3
p�n

n>3p
p|n

Dn ∗ ∗ yes ∗ ∗ ∗ yes no

1. if p � n or E is ordinary, then Dn has a primitive valuation,
2. if p | n and E is supersingular, then Dn = p2Dn/p has no primitive valuation.

1.2. Alternative definition

We now give a more standard, but more technical, definition of elliptic divisibility 
sequences over function fields in the case of perfect base fields K. It is proven in [16, 
Lemma 5.2] that this defines the same sequence (DnP )n in the case of number fields K; 
and the proof at [16] extends to perfect fields K.

Let E be an elliptic curve over the function field K(C) of a smooth, projective, 
geometrically irreducible curve C over a perfect field K. Let S be the Kodaira–Néron 
model of E, i.e., a smooth, projective surface with a relatively minimal elliptic fibration 
π : S → C with generic fibre E and a section O : C → S, cf. [24, §1], [27, III, §3]. For 
example, if the curve E is constant (that is, defined over K), then we can take S = E×C

with the natural projection π : E × C → C.
Let P be a point of infinite order in the Mordell–Weil group E(K(C)). We define a 

family of effective divisors DnP ∈ Div(C) parametrised by natural numbers n. For each 
n ∈ N the divisor DnP is the pull-back of the image O of the section O through the 
morphism σnP : C → S induced by the point nP , that is,

DnP = σ∗
nP (O).

The delicate issues with non-perfect coefficient fields K are discussed in detail in 
Section 7 and Example 7.6.
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1.3. Known results about divisibility sequences over function fields

Elliptic divisibility sequences over function fields F = K(C) and related sequences 
were discussed in several places. We collect some known results here.

First of all, they satisfy the strong divisibility property

gcd(Bm, Bn) = Bgcd(m,n) (1.3)

for all positive integers m, n, where gcd(Bm, Bn) :=
∑

v min{v(Bm), v(Bn)}[v]. Indeed, 
the proof in e.g. [30, Lemma 3.3] carries over.

Theorem 1.5 of [16] shows that in case E/K with K a number field (and again 
P ∈ E(F ) \ E(K)) the set of prime numbers n such that DnP −D1P is irreducible has 
positive lower Dirichlet density.

Cornelissen and Reynolds [6] study perfect power terms in the case j(E) ∈ F \F p for 
global function fields F of characteristic p ≥ 5. Everest, Ingram, Mahé, and Stevens study 
primality of terms of elliptic divisibility sequences for K(C) = Q(t) in the context of mag-
nified sequences, see [9, Theorem 1.5]. Silverman [28] and Ghioca-Hsia-Tucker [11] study 
the common subdivisor for two simultaneous divisibility sequences on elliptic curves over 
K(t), where K is a field of characteristic 0.

In a broad context, Flatters and Ward [10] prove an analogue of Theorem 8.1 for 
divisibility sequences of Lucas type for polynomials and Akbar-Yazdani [1] study the 
greatest degree of the prime factors of certain Lucas polynomial divisibility sequences.

Hone and Swart [13] study examples of Somos 4 sequences over K(t), which are 
constructed from specific elliptic divisibility sequences. They construct a certain elliptic 
surface and show that the corresponding sequence is a sequence of polynomials.

1.4. Overview and main ideas of the proof

The main idea behind the proof is to reduce to the case where E is defined over the 
base field K of F = K(C). In that case P ∈ E(F ) can be viewed as a dominant morphism 
C → E over K. The primitive valuations of Dn then are exactly the pull-backs of points 
of order n on E, which gives Theorem C. For details, see Section 2.

For elliptic curves over F where only the j-invariant is in K, we find an elliptic curve 
Ẽ over K with the same j-invariant and an isomorphism φ : E → Ẽ over F . Then 
Theorem 2.3 applies to the sequence (DnP ′)n obtained from (Ẽ, φ(P )). See Section 3.

At that point, we know exactly which terms of (DnP ′)n have primitive valuations, 
and the goal is to conclude which terms of (DnP )n have primitive valuations.

For this, we look at the rank of apparition m(v) of a valuation v of F in the sequence 
(DnP )n, which is the positive integer

m(v) = m(P, v) := min{n ≥ 1 : ordv(DnP ) ≥ 1},



B. Naskręcki, M. Streng / Journal of Number Theory 213 (2020) 152–186 157
or ∞ if the set is empty. A valuation v is primitive in the term DnP if and only if 
n = m(v).

The key to our proof is to see how much the rank of apparition m(v) of a valuation 
v of F can vary between the sequences (DnP )n and (DnP ′)n. Section 4 shows that this 
does not vary much, and bounds the variation in terms of the component group of the 
special fibre of the Néron model.

This is already enough to get a weaker version of the main results, which is not sharp, 
but is already uniform (Theorems 4.7 and 4.9).

In Section 5 we prove two auxiliary results about the order of a point P in the 
component group at v. This is needed in the proof of the main theorems to obtain a 
sharp result.

In Section 6 we show that the term D3P for sequences in characteristic �= 2, 3 always 
has a primitive valuation if j(E) = 0. This is also needed in order to obtain a sharp 
result.

Section 7 contains examples which we use to show that our main theorems are optimal, 
that is, to prove the converse statement in Theorem A and the ∗-entries in Theorem B.

Finally, in Section 8 we combine all of the above into a proof of Theorems A and B.

Acknowledgements
The authors would like to thank Peter Bruin and Hendrik Lenstra for helpful discussions 
and the anonymous referee for comments that improved the exposition.

2. Constant curves

Let C be a smooth, projective, geometrically irreducible curve over a field K and let 
F = K(C) be its function field. Let E/F be an elliptic curve and P ∈ E(F ) a point. For 
a field extension M ⊃ L and an elliptic curve E′ over L, let E′

M be the base change of 
E′ to M .

Definition 2.1. We say that E is constant if there exists an elliptic curve Ẽ/K and an 
isomorphism φ : E → ẼF defined over F .

We say that the pair (E, P ) is constant if there exist such Ẽ and φ that also satisfy 
φ(P ) ∈ Ẽ(K).

We say that the j-invariant j(E) of the curve E/K(C) is constant if j(E) ∈ K.

Lemma 2.2. The pair (E, P ) is constant if and only if E is constant and for all elliptic 
curves Ẽ/K and isomorphisms φ : E → ẼF we have φ(P ) ∈ Ẽ(K).

Proof. The ‘if’ implication follows from the definition, so it is enough to prove the ‘only 
if’ implication. Suppose that (E, P ) is constant. There exists an elliptic curve Ẽ defined 
over K and an isomorphism φ : E → ẼF of F -curves such that φ(P ) ∈ Ẽ(K). Let Ẽ′

be an elliptic curve over K and φ′ : E → Ẽ′
F another F -isomorphism. Let φ ◦ φ′ −1 :
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Ẽ′
F → ẼF denote the corresponding isomorphism of F -curves. It follows that the curves 

Ẽ′
F and ẼF have equal j-invariant and since Ẽ and Ẽ′ are defined over K there exists 

a K-isomorphism ψ : ẼK → Ẽ′
K

. Let F ′ denote the function field of the curve CK . We 
have

η ◦ ψF ′ ◦ φF ′ = φ′
F ′

for some η ∈ Aut(Ẽ′
F ′) = Aut(Ẽ′

K
). Since P ∈ E(F ), we have φ′(P ) ∈ Ẽ′(F ). From 

our assumption it follows that φ(P ) ∈ Ẽ(K) and hence φ′(P ) = (η ◦ ψF ′ ◦ φF ′)(P ) ∈
Ẽ′(K). Combining these statements, we get φ(P ) ∈ Ẽ′(K ∩ F ). As C is smooth and 
geometrically irreducible, it is geometrically integral, hence by [20, Corollary 3.2.14(c)], 
we get K ∩ F = K. �
2.1. Constant E

Suppose that E is constant. Then without loss of generality we consider E = ẼF . 
Then P ∈ E(F ) can be interpreted as a morphism of curves P : C → Ẽ defined over K

as follows. We give two interpretations, both leading to the same morphism.
Consider the constant elliptic surface (S, π, C) where S = Ẽ × C and π : S → C is 

the projection on the second factor. Every point P on the generic fibre E corresponds 
to a unique section σP : C → S. Composition μ ◦ σP : C → Ẽ of σP with the projection 
μ : S → Ẽ on the first factor is a morphism defined over K. By abuse of notation we 
denote the morphism μ ◦ σP by P .

Equivalently, the point P ∈ E(F ) has coordinates in F = K(C), hence defines a 
rational map from C to E. All such rational maps are morphisms as C is smooth and E
is projective.

Applying this abuse of notation to nP too, we get nP = [n] ◦ P .
Note that the pair (E, P ) is constant if and only if the morphism P : C → Ẽ is a 

constant morphism, or equivalently, maps to a single point.

2.1.1. Constant P
If P maps to a single point, then so does [n] ◦P . In particular, for all n either nP = O

or the images of [n] ◦P and O are disjoint. If P has infinite order, then this gives for all 
n:

DnP = 0. (2.1)

2.1.2. Non-constant P
Let us assume in this section that E is constant and the morphism P : C → Ẽ is 

non-constant.
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Theorem 2.3. Let F be the function field of a smooth, projective, geometrically irreducible 
curve over a field K of characteristic p ≥ 0. Let E be an elliptic curve over K and 
P ∈ E(F ) \ E(K) a point of infinite order. Let n be a positive integer,

1. if p � n or E is ordinary, then Dn has a primitive valuation,
2. if p | n and E is supersingular, then Dn = p2Dn/p has no primitive valuation.

Proof. We have DnP = ([n] ◦ P )∗(O) = P ∗[n]∗(O). Note that

[n]∗(O) = degi([n])
∑

Q∈E(K)[n]

(Q) (2.2)

where degi([n]) denotes the inseparable degree of [n]. If p | n and E is supersingular, then 
the endomorphism [p] is purely inseparable of degree p2, hence degi([p · np ]) = p2 degi([

p
n ])

and E(K)[p] = {O}; so formula (2.2) gives Dn = p2Dn/p, which proves (2).
Moreover, if E is ordinary or p � n, then E(K) contains a point Qn of order n. Since 

P is a dominant morphism, there is a point that maps to Qn under P , and the valuation 
associated with such a point is a primitive valuation of DnP . �
Remark 2.4. The existence of a cover P : C → Ẽ implies that C has genus greater than 
or equal to 1.

In fact, as all such covers factor through the identity map id : Ẽ → Ẽ, we see that for 
every elliptic curve Ẽ/K, there is one prototypical example given by P = id : Ẽ → Ẽ. 
In other words, this example has C = Ẽ and S = Ẽ × Ẽ. The point P ∈ E(K(E))
corresponds to the morphism μ ◦Δ where Δ : Ẽ → Ẽ × Ẽ is the diagonal map and μ is 
the projection on the first factor.

Example 2.5. Let C = Ẽ : y2 = x3 + x over K = F3 and P = (x, y) ∈ Ẽ(K(Ẽ)). Let i
be a square root of −1 in a quadratic extension of F3. Then

Ẽ(K)[1] = {O}

Ẽ(K)[2] = Ẽ(K)[1] ∪ {(0, 0), (±i, 0)}

Ẽ(K)[3] = Ẽ(K)[1]

Ẽ(K)[4] = Ẽ(K)[2] ∪ {(1,±i), (−1,±1), (±i + 1,±i), (±i− 1,±1)},

where all the signs are independent. In particular, we obtain

D1P = O

D2P = D1P + (0, 0) + (i, 0) + (−i, 0)

D3P = 9O
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D4P = D2P +
∑

s∈{±1}

[
(1, si) + (−1, s) + (i + 1, si)
+(−i + 1, si) + (i− 1, s) + (−i− 1, s)

]

D6P = 9D2P .

By symmetry, for b �= 0 the points (a, b) and (a, −b) only appear together. Because of 
that, we introduce the following notation. Let

D′
m =

{
DmP − ordO(DmP )O if 2 � m,

DmP − ordO(DmP )D2P if 2 | m.

The divisor D′
m is the pull-back x∗δm of an effective divisor δm on the affine x-line A1. 

Let p(m) denote a monic polynomial with divisor of zeroes equal to δm. We get that the 
divisor DnP has the form

DnP = a(n)(O) + b(n)div0(y) + div0(p(n)), (2.3)

where

a(n) = 9ord3(n),

b(n) =
{

0 if n is odd,
a(n) if n is even,

and we present below only the factorisation of the polynomial p(n).

p(1) = 1

p(2) = 1

p(3) = 1

p(4) = (x + 1) · (x + 2) · (x2 + x + 2) · (x2 + 2x + 2)

p(5) = (x4 + x + 2) · (x4 + 2x + 2) · (x4 + x2 + 2)

p(6) = 1

p(7) = (x3 + x2 + 2x + 1) · (x3 + 2x2 + 2x + 2) · (x6 + 2x4 + x2 + 1)

· (x6 + x5 + 2x4 + 2x3 + 2x2 + 2x + 1) · (x6 + 2x5 + 2x4 + x3 + 2x2 + x + 1)

p(8) = (x + 1) · (x + 2) · (x2 + x + 2) · (x2 + 2x + 2) · (x4 + x3 + x2 + x + 1)

· (x4 + x3 + x2 + 2x + 2) · (x4 + x3 + 2x2 + 2x + 2)

· (x4 + 2x3 + x2 + x + 2) · (x4 + 2x3 + x2 + 2x + 1)

· (x4 + 2x3 + 2x2 + x + 2)
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p(9) = 1

p(10) = (x4 + x + 2) · (x4 + 2x + 2) · (x4 + x2 + 2) · (x4 + x2 + x + 1)

· (x4 + x2 + 2x + 1) · (x4 + 2x2 + 2) · (x4 + x3 + 2) · (x4 + x3 + 2x + 1)

· (x4 + x3 + x2 + 1) · (x4 + 2x3 + 2) · (x4 + 2x3 + x + 1) · (x4 + 2x3 + x2 + 1)

p(11) = (x10 + x7 + x5 + x4 + 2x3 + 2x2 + x + 2)

· (x10 + 2x7 + 2x5 + x4 + x3 + 2x2 + 2x + 2)

· (x10 + 2x8 + x6 + x5 + x2 + 2x + 2) · (x10 + 2x8 + x6 + 2x5 + x2 + x + 2)

· (x10 + 2x8 + x7 + x6 + x5 + 2x4 + 2x3 + x2 + 2)

· (x10 + 2x8 + 2x7 + x6 + 2x5 + 2x4 + x3 + x2 + 2)

p(12) = (x + 1)9 · (x + 2)9 · (x2 + x + 2)9 · (x2 + 2x + 2)9

This confirms the equality D12P = 9D4P and the fact that terms DnP with 3 � n have 
primitive valuations.

3. Relating constant E to constant j globally

3.1. Definitions and example

Let E be an elliptic curve over F = K(C) and let P ∈ E(F ) be a point of infinite 
order. Now suppose j(E) ∈ K. Note that this includes the case where E is supersingular 
by [29, V.3.1(a)(iii)].

The idea behind the proof of our main results is to relate the EDS (DnP )n obtained 
from P with constant j-invariant to an EDS (DnP ′)n obtained from a point on a constant 
elliptic curve and then to apply Theorem 2.3 to (DnP ′)n.

Lemma 3.1. Let K be a field, let C/K be a smooth, projective, geometrically irreducible 
curve and let F = K(C). Let E/F be an elliptic curve with j(E) ∈ K.

Then there exist

(i) an elliptic curve Ẽ/K with j(Ẽ) = j(E),
(ii) finite extensions K ′ ⊃ K and F ′ ⊃ F with K ′ ⊂ F ′,
(iii) an isomorphism φ : EF ′ → ẼF ′ ,
(iv) a smooth, projective, geometrically irreducible curve C ′/K ′ with F ′ = K ′(C ′), and
(v) a non-constant morphism f : C ′ → CK′ inducing the inclusion map FK ′ ↪→ F ′.

Notation 3.2. On top of the notation of Lemma 3.1, we use the following notation. Given 
a point P ∈ E(F ),

(vi) let P ′ = φ(P ) ∈ Ẽ(F ′),
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(vii) let DnP be the EDS obtained from (E, P ) as defined in (1.2), and
(viii) let DnP ′ be the EDS obtained from (Ẽ, P ′).

The symbol v will denote a place of C and v′ will denote a place of C ′ lying over v.

Proof. (i) Let Ẽ/K be an elliptic curve with j(Ẽ) = j(E), let F be an algebraic closure 
of F and let K ⊂ F be an algebraic closure of K. Then there exists an isomorphism 
φF : EF → ẼF by [29, Proposition III.1.4(b)]. Let F ′′ ⊂ F be generated over F by the 
coefficients b1, b2, . . . , br ∈ F of φF .

If K is perfect, then we take F ′ = F ′′ and K ′ = (K ∩F ′′) (which satisfy (ii) and (iii)) 
and find by [29, Remark II.2.5] a curve C ′ satisfying (iv). The inclusion FK ′ ⊂ F ′ then 
gives the morphism of (v).

If K is not perfect, then this construction does not always give a smooth curve (see 
Example 3.3), so we do some additional steps in our construction.

The field F ′′′ := F ′′K is a finitely generated extension of transcendence degree 1
over the algebraically closed field K, hence is the function field of a smooth, projective, 
(geometrically) irreducible curve C ′

K
/K by [29, Remark II.2.5].

The inclusion FK ⊂ F ′′′ induces a non-constant rational map fK : C ′
K

→ CK , which 
is a morphism as the curves are regular and projective.

Choose embeddings i : C → Pm over K and j : C ′
K

→ Pn over K. Then embed C ′
K

into Pn × (P1)r via j × b1 × · · · × br.
(ii, iv) Then let K ′ be generated over K by the coefficients of a system of defining 

equations of C ′
K

⊂ Pn×(P1)r and fK . From now on we view C ′
K

as a projective curve C ′

over K ′, which is smooth and irreducible over K. In particular, the curve C ′ is smooth, 
projective and geometrically irreducible over K ′.

Moreover, the field F ′ := K ′(C ′) contains the coefficients b1, . . . , br of φF since they 
are coordinate functions on the r copies of P1. (iii) In particular the morphism φF can 
be viewed as a morphism φ : EF ′ → ẼF ′ . (v) Similarly K ′ contains the coefficients of 
fK , so fK can be viewed as a morphism f : C ′ → CK′ . �

The following two examples illustrate why the proof of Lemma 3.1 is so complicated 
for non-perfect base fields K. The reader who is interested mostly in the perfect case 
may wish to skip ahead to Example 3.5.

Example 3.3. Here is an example to show that we cannot just take F ′ = F ′′ if K is 
non-perfect. Let K = F2(b), F = K(u), and E : y2 + u3y = x3 + b, so j(E) = 0. Take 
Ẽ : y2 + y = x3 and φ : (x, y) �→ (u−2x, u−3(y + t)) where t ∈ F satisfies

t2 + u3t + b = 0. (3.1)

Then F ′′ = F (t) = K(u, t) is the function field of a regular, projective, geometrically 
integral curve over K with affine open part given by (3.1), but this curve is not smooth. 
Indeed the given model is smooth exactly outside u = 0 and is regular at the place u = 0.
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Example 3.4. To motivate why we embed C ′
K

in such a complicated way in the proof, let 
K be a field of characteristic �= 3 in which −1 is not a square. Let F = K(t), E : y2 =
x3+t2, Ẽ : y2 = x3−1, s = 3

√
t ∈ F , and 

√
−1 ∈ F . Take φ : (x, y) �→ (−s−2x, 

√
−1s−3y), 

so F ′′ = F (
√
−1s). Then F ′′′ = K(s), so we can take C ′ = P1 with s as coordinate. The 

map f is then given by t = s3.
Now we can take i and j to be the identity map. If we had defined K ′ using only f

and the images of i and j, then we would have gotten K ′ = K and F ′ = K ′(s) = K(s). 
But then φ is not defined over F ′.

Here is an example where we compute both (DnP )n and (DnP ′)n and compare them.

Example 3.5. Let E be the supersingular elliptic curve over F = F3(t) = F3(P1) given 
by

E : y2 = x3 + tx− t (3.2)

and let P = (1, 1) ∈ E(F ). We start by computing DnP for a few values of n. The 
discriminant Δ(E) is −t3, hence the given model is minimal for all finite places of P1. 
Therefore, we can compute these valuations of DnP by computing the square root of the 
denominator of x(nP ). For the valuation at infinity, we take (x′, y′) = (t−2x, t−3y), so

E : y′2 = x′3 + t−3x′ − t−5, (x′(P ), y′(P )) = (t−2, t−3),

which is minimal since the discriminant −t−9 has valuation 9.
To keep the notation short, we write p(t) ·∞k with p(t) ∈ F3(t) to mean div0(p(t)) +

k(∞) :=
∑

v �=∞ ordv(p(t))(v) + k(∞). In this notation, we compute

D1P = D2P = 1, D3P = t2,

D4P = (t + 2)3, D5P = (t2 + t + 2)3,

D6P = t2 · ∞3, D7P = (t + 1)3 · (t3 + t2 + t + 2)3,

D8P = (t + 2)3 · (t4 + 2t3 + t + 1)3, D9P = t20,

D10P = (t2 + t + 2)3 · (t2 + 2t + 2)3

· (t4 + t3 + t2 + 1)3,

D11P = (t10 + 2t9 + 2t8 + t7 + t6 + 2t5

+ 2t4 + 2t3 + 2t2 + 1)3, D12P = t2 · (t + 2)27 · ∞3.

All terms DnP with 3 � n listed here have a primitive valuation except D1P and D2P . 
All terms DnP with 3 | n listed here have no primitive valuation except D3P and D6P .

As j(E) = 0, we find that E is isomorphic over F to

Ẽ : Y 2 = X3 + X. (3.3)
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Next, we look for an isomorphism φ : EF → ẼF . All isomorphisms are given in case 
II of the proof of Proposition A.1.2(b) of Silverman [29] as

X = u2x + r, Y = u3y, where (3.4)

u4 = 1/t, 0 = r3 + r + u2. (3.5)

We use the notation v = −r and solve for u and v in (3.5). Choose a 4th root u ∈ F of 
1/t, and take v ∈ F such that v3 + v = u2. Then F ′ = F (u, v) is an extension of F of 
degree 12 and is the function field of the curve

C ′ : u2 = v3 + v (3.6)

over K ′ = K. The inclusion F → F ′ corresponds to the projection

u−4 : C ′ → P1 : (v, u) �→ u−4,

which is a 12-fold covering. The isomorphism φ given by (3.4) is

φ : EF ′ → ẼF ′ (3.7)

(x, y) �→ (u2x− v, u3y).

Then

P ′ = φ(P ) = (u2 − v, u3) = (v3, u3) = Frob3((v, u)) ∈ Ẽ(F ′). (3.8)

In other words, if we identify C ′ with Ẽ via (X, Y ) = (v, u), then P ′ : C ′ → Ẽ is 
the (purely inseparable) 3rd power Frobenius endomorphism Frob3 (of degree 3). In 
particular, the EDS (DnP ′)n obtained from (Ẽ, P ′) is 3 times the EDS of Example 2.5.

3.2. The point P ′ is non-constant

Next we show that if (E, P ) is non-constant (cf. Definition 2.1), then the point P ′ =
φ(P ) ∈ Ẽ(F ′) of Notation 3.2 is non-constant (that is, not in Ẽ(K)).

Lemma 3.6 (Tate normal form). Let E be an elliptic curve over a field L and let P ∈ E(L)
be a point of order ≥ 4. Then there are unique b, c ∈ L and a change of coordinates over 
L such that

E : y2 + (1 − c)xy − by = x3 − bx2, P = (0, 0). (3.9)

Proof. Starting with a general Weierstrass equation, first translate to get P = (0, 0)
(allowed as P �= O). Then we have E : y2 + a1xy + a3y = x3 + a2x

2 + a4x.
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With y �→ y − a4/a3x (allowed as 2P �= O), we get a4 = 0. With (x, y) �→ (u2x, u3y)
and u = a2/a3 (allowed as 3P �= O), we get a2 = a3. Then let b = −a2 and c = 1 − a1. 
This proves existence.

Unicity follows as we used up all freedom for changes of Weierstrass equations (x, y) �→
(u2x + r, u3y + u2sx + t) as in [29, III.3.1(b)]. �
Corollary 3.7. Let K, F , E, Ẽ, P , and P ′ be as in Notation 3.2 (this includes j(E) ∈ K). 
Suppose that P has order ≥ 4. If P ′ is constant (that is, is in Ẽ(K)), then the pair (E, P )
is constant as in Definition 2.1.

Proof. If P ′ ∈ Ẽ(K), then the Tate normal form of (Ẽ, P ′) has b, c ∈ K. The Tate 
normal form of (E, P ) has b, c ∈ F . By uniqueness of the Tate normal form over F , we 
get b, c ∈ K ∩ F = K, hence (E, P ) is isomorphic over F to a pair defined over K. �

In particular, in our case where P has order ∞ > 4, if the pair (E, P ) is non-constant, 
then the point P ′ is non-constant.

4. Relating constant E to constant j locally

4.1. Reduction modulo primes of curves with constant j

Elliptic curves with constant j-invariant admit only places of good or additive reduc-
tion. We show that the valuations v of additive reduction appear early on in the sequence 
DnP (Lemma 4.1(2–3)), while those of good reduction appear in the same place as in 
the corresponding constant sequence DnP ′ (Lemma 4.2).

Recall that the rank of apparition m(v) = m(P, v) of a valuation v of F is the smallest 
positive integer n such that v(DnP ) > 0 (with m(v) = ∞ if it does not exist).

With the notation as in Notation 3.2, let Fv be the completion of F at v. Let E0(Fv)
(respectively E1(Fv)) be the subgroup of E(Fv) consisting of points that reduce to a 
non-singular point (respectively the point O) on the reduction of the minimal Weierstrass 
equation. In particular, we have v(Dn) > 0 if and only if nP ∈ E1(Fv). Moreover the 
quotient E(Fv)/E0(Fv) is the component group of the special fibre of the Néron model 
of E at v (cf. [27, Corollary IV.9.2] and [5, Theorem 5.5]).

Lemma 4.1. Let F be the function field of a smooth, projective, geometrically irreducible 
curve over a field K of characteristic p ≥ 0. Let E be an elliptic curve over F and let 
P ∈ E(F ). Let v be a discrete valuation of F with v(K) = {0} and v(F ) �= {0}, and let 
d = dv be the order of P in the component group E(Fv)/E0(Fv).

1. If j(E) ∈ K, then E has good or additive reduction at v.
2. If E has additive reduction at v, then

(a) if p = 0, then m(v) = d or m(v) = ∞.
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(b) if p > 0, then m(v) = d or m(v) = dp.

3. If E has additive reduction at v, then d ≤ 4.
4. If j(E) ∈ K, then

(a) if p �= 2, then d ≤ 3,
(b) if p �= 3 and j(E) �= 0, then d | 4,
(c) if p /∈ {2, 3} and j(E) �= 0, then d ≤ 2.

Proof. (1) As j(E) ∈ K, we have v(j(E)) ≥ 0, hence E does not have multiplicative 
reduction at v by [29, Proposition VII.5.1(b) and j = c34/Δ].

(2) Note that m(v) is the order of P in E(Fv)/E1(Fv). In the additive case, the 
subgroup E0(Fv)/E1(Fv) is isomorphic to the additive group underlying the residue 
field of v. If p = 0, then the latter group is torsion-free, so that m(v) is ∞ or d. If p > 0, 
then the latter group has exponent p, so that m(v) is d or dp. Write c = #E(Fv)/E0(Fv), 
so d | c. For parts (3) and (4), we will use tables of reduction types to find restrictions 
on c, hence on d.

If K is perfect, then the reduction types were classified by Kodaira and Néron and 
can be found in [27, Table 4.1 in §IV.9] (equivalently [29, Table 15.1 in Appendix C]). 
For general fields K, we need the generalization by Szydlo [32, Theorem 3.1 and Propo-
sition 7.1.1]. All types that are in Szydlo’s classification and were not already in the 
Kodaira-Néron classification have c ∈ {1, 2} by [32, (20) on page 96], so we may assume 
that we are in one of the cases from the Kodaira-Néron classification.

(3) In the additive reduction case, we get #E(Fv)/E0(Fv) = c with c ∈ {1, 2, 3, 4} by 
[27, Table 4.1].

(4a) Suppose first that K is perfect. If c = 4, then the reduction type is I∗n, hence by 
the bottom part of [27, Table 4.1], we get char(K) = 2 or v(j(E)) < 0. For general fields 
Theorem 5.1 and Tables 1 and 4 of [32] give the same result.

(4b) In the same way, the case c = 3 only happens when char(K) = 3 or v(j(E)) > 0. 
Indeed, the reduction type is IV or IV ∗, the same reference works in the perfect case, 
and in the general case one needs Table 5 in [32] instead of Table 4. Combining (4a) with 
(4b) gives (4c). �
4.2. Relating (DnP )n with (DnP ′)n

To prove our main results, we link the EDS (DnP )n obtained from (E, P ) to the EDS 
(DnP ′)n obtained from (Ẽ, P ′). Let v′ be a valuation of F ′ lying over a valuation v of F .

Lemma 4.2. Let the notation be as in Notation 3.2 and suppose that P has infinite order.
If E does not have additive reduction at v, then we have v′(DmP ′) = v′(DmP ) for 

all m ∈ Z>0.
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Proof. Note that ẼF ′ has good reduction at all valuations of F ′. Suppose that E does 
not have additive reduction at v. As j(E) ∈ K, we find that E also has good reduction 
at v, hence the isomorphism EF ′ → ẼF ′ is an isomorphism over the local ring at v′, 
which does not affect the valuation of x(mP ). �
Example 4.3. We continue Example 3.5, so E : y2 = x3 + tx − t and P = (1, 1). In that 
example, we saw that the EDS (DnP ′)n is 3 times the EDS of Example 2.5, with X = v, 
Y = u, u2 = v3 + v and t = u−4.

We compute the difference DnP ′ −DnP for the first few terms. To help in this com-
putation, note the following identities.

div0(t) = div0(u−4) = 12(O),

div∞(t) = 4div0(u), where div0(u) = (0, 0) + (i, 0) + (−i, 0),

and if p is a polynomial with p(0) �= 0 and p∗ is its reciprocal, then

div0(p(t)) = div0(p∗(u4)) = div0(p∗((v3 + v)2)).

We obtain

D1P ′ −D1P = 3(O)

D2P ′ −D2P = 3(O) + 3div0(u)

D3P ′ −D3P = 27(O) − 2div0(t) = 3(O)

D4P ′ −D4P = 3(O) + 3div0(u)

+ 3div0((v + 1)(v + 2)(v2 + v + 2)(v2 + 2v + 2))

+ − 3div0(1 + 2u4) = 3(O) + 3div0(u)

D5P ′ −D5P =

div0((v4 + v + 2)(v4 + 2v + 2)(v4 + v2 + 2))

+ − div0(1 + u4 + 2u8) = 3(O)

D6P ′ −D6P = 27(O) + 27div0(u) − 2div0(t) − 3div∞(t) = 3(O) + 15div0(u)

D7P ′ −D7P = 3(O)

D9P ′ −D9P = 243(O) − 20div0(t) = 3(O)

D12P ′ −D12P = · · · = 3(O) + 15div0(u).

The difference is indeed only in the valuations lying over the places t = 0 and t = ∞ of 
additive reduction of E.

The following lemma shows how much the primitive valuations of the sequence (DnP ′)n
can be “postponed” to later terms of (DnP )n.
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Lemma 4.4. Let K, F , E, P , v, P ′ and v′ be as in Notation 3.2. Suppose that P has 
infinite order and that E has additive reduction at v. Let d = dv be the order of P in the 
component group E(Fv)/E0(Fv).

Let m = m(P, v) and m′ = m(P ′, v′) be the ranks of apparition of the valuations v
and v′ in the elliptic divisibility sequences associated to P and P ′.

1. We have m′ | d.
2. If K has characteristic 0, then m = d or m(v) = ∞.
3. If K has characteristic p > 0, then m = d or m = dp.

Proof. Parts (2) and (3) are exactly part (2) of Lemma 4.1.
It remains to prove (1). After base-changing to F ′

v′ , we get a Weierstrass equation Ẽ
over K. As Ẽ is defined over K, it has good reduction at v′. We have an isomorphism 
φ : EF ′ → ẼF ′ . Claim: φ(E0(Fv)) ⊂ (ẼF ′)1(F ′

v′). Assuming the claim, we get dP ′ =
φ(dP ) ∈ (ẼF ′)1(F ′

v′), hence v(DdP ′) > 0, hence m′ | d. So in order to prove (1), it 
suffices to prove the claim.

Proof of the claim. By [29, VII.1.3(d)] there are u, r, s, t ∈ Ov′ with u �= 0 such that 
for all Q = (x, y) ∈ E(F ′

v′) and (x′, y′) = φ(Q):

x = u2x′ + r, and y = u3y′ + u2sx′ + t.

In fact, we have v′(u) > 0 as otherwise E has good reduction already with its model 
over Fv.

It now suffices to show that for points Q of good reduction (i.e., inside E0(Fv)), we 
have x(Q) �≡ r modulo v. Using a translation of the coordinates x and y of E by the 
elements r and t of Ov′ we may assume without loss of generality that r = t = 0 (but 
now E is given by a non-minimal Weierstrass equation over F ′

v′ and Q ∈ E(F ′
v′)). As we 

have v′(u) > 0, we find from [29, Table III.1.2] that a1 ≡ −2s, a2 ≡ s2, a3 ≡ a4 ≡ a6 ≡ 0, 
so the reduction of our model of E modulo v′ is y2 − 2sxy = x3 + s2x2. The only point 
with x = 0 is the singular point (0, 0), so x(Q) �≡ 0 modulo v′. This proves the claim. �
Example 4.5. In Example 4.3 the valuations of F at which E has additive reduction are 
t = 0 and t = ∞, corresponding respectively to O and div0(u) of C ′.

The reduction at t = 0 is of type II, hence the component group there has order 2. 
As the point P does not reduce to the singular point, we have d = 1. In the sequence, 
we see m = m(P, v) = 3 = p and m′ = m(P ′, v′) = 1 = d.

The reduction at t = ∞ is of type III∗, hence the component group has order 2. 
As the point P reduces to the singular point, we have d = 2. In the sequence, we see 
m = m(P, v) = 6 = dp and m′ = m(P ′, v′) = 2 = d.

In both cases, we have m′ = m(P ′, v′) ≤ 2 ≤ 4.
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Proposition 4.6. Let F , E, P be as in Notation 3.2. Suppose that P has infinite order 
and that (E, P ) is non-constant. Let n be a positive integer. If E is supersingular, assume 
that char(F ) � n. Then

1. DnP has a primitive valuation or
2. there is a valuation v of F such that n divides the order dv of P in the component 

group E(Fv)/E0(Fv).

Proof. Let v′ be a primitive valuation of DnP ′ , which exists by Theorem 2.3. Let v be 
the restriction of v′ to F . Then E has good or additive reduction at v by Lemma 4.1(1). 
If E has good reduction, then n = m(P ′, v′) = m(P, v) by Lemma 4.2. If E has additive 
reduction, then n = m(P ′, v′) | dv by Lemma 4.4(1). �

As we have dv ≤ 4 by Lemma 4.1(3), we get the following result.

Theorem 4.7. Let E and P be as in Notation 3.2. Suppose that E is ordinary, that P
has infinite order, and that (E, P ) is non-constant. Then for all n > 4, the term DnP

has a primitive valuation. �
Proposition 4.8. Let E be a supersingular elliptic curve over F . Let P ∈ E(F ) be a point 
of infinite order. Suppose that (E, P ) is non-constant. Let n be a positive integer. Then

1. DnpP has no primitive valuation or
2. there is a valuation v of F such that n divides the order dv of P in the component 

group E(Fv)/E0(Fv).

Proof. If DnpP has no primitive valuation, then we are done. Otherwise, let v be such 
a primitive valuation, so m(P, v) = np. Let v′ be an extension of v to F ′. Then E
has good or additive reduction at v by Lemma 4.1(1). If E has good reduction, then 
m(P ′, v′) = m(P, v) = np by Lemma 4.2, but that contradicts Theorem 2.3. If E has 
additive reduction, then Lemma 4.4(3) gives np = m(P, v) | dvp, so n | dv. �

As we have dv ≤ 4 by Lemma 4.1(3), Propositions 4.6 and 4.8 imply the following 
result.

Theorem 4.9. Let F , E, P be as in Notation 3.2. Suppose that E is supersingular, that 
P has infinite order, and that (E, P ) is non-constant. Let p be the characteristic of F . 
Then

1. for all integers n > 4 with p � n, the term Dn has a primitive valuation, and
2. for all integers n > 4, the term Dpn has no primitive valuation. �
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5. Component groups

In order to sharpen Theorems 4.7 and 4.9 further, we need to look at the component 
group. In this section we derive extra restrictions on the order dv of a point in the 
component group.

By a local function field, we mean a completion K(C)v of the function field K(C)
of a smooth, projective, geometrically irreducible curve C over a field K at a discrete 
valuation v with v(K) = {0} and v(F ) �= {0}.

Proposition 5.1. Let F be a local function field of characteristic 2 with valuation v and 
constant field K. Let E be an elliptic curve over F with j(E) ∈ K∗. Then the component 
group E(F )/E0(F ) does not have an element of order 4.

Proof. Suppose that the component group E(F )/E0(F ) has an element of order 4. We 
will show v(j(E)) �= 0, which contradicts our assumption that j(E) is a non-zero con-
stant.

By the tables of reduction types in [27,32] (see the detailed references in the proof of 
Lemma 4.1(2) above), if E(F )/E0(F ) has an element of order 4, then the elliptic curve 
E has reduction at v of type I∗n for some n = 2m +1 with m ≥ 0. By Szydlo [32, Table 7]
(see also Theorems 5.1 and 6.1 of [32]), it follows that E has a v-minimal Weierstrass 
model with

v(a1) ≥ 1, v(a2) = 1, v(a3) = m + 2, v(a4) ≥ m + 3, v(a6) ≥ 2m + 4. (5.1)

As an alternative reference: under the assumption that K is perfect, one can also ob-
tain (5.1) from Dokchitser and Dokchitser [7, Proposition 2], using the fact that (in 
characteristic 2) b6 = a2

3.
The j-invariant equals

j(E) = a12
1

a4
1(a2a

2
3 + a1a3a4 + a2

4 + a2
1a6)︸ ︷︷ ︸

α

+ a3
1a

3
3︸︷︷︸

β

+ a4
3︸︷︷︸
γ

.

Let r = v(a1), so r ≥ 1. We find v(α) = v(a4
1a2a

2
3) = 4r + 2m + 5 as all other terms in 

α have larger valuation.
Write m = 2r − 1 + A for some A ∈ Z. It follows that

v(α) = 8r + 2A + 3, v(β) = 9r + 3A + 3, v(γ) = 8r + 4A + 4.

If A ≥ 0, then v(α) < min{v(β), v(γ)} and v(j(E)) = 4r−2A −3 is odd, hence non-zero. 
If A < 0, then v(γ) < min{v(α), v(β)} and v(j(E)) = 4(r −A − 1) > 0. �
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Proposition 5.2. Let F be a local function field of characteristic 3 with valuation v and 
constant field K. Let E be an elliptic curve over F with j(E) ∈ K∗. Then the component 
group E(F )/E0(F ) does not have an element of order 3.

Proof. Suppose that the component group E(F )/E0(F ) has an element of order 3. Then 
at the valuation v the elliptic curve E has reduction of type IV or IV ∗ (same reference 
as in the proof of Proposition 5.1).

Let n = 1 for type IV and n = 2 for type IV ∗. By [32, Table 4] (see also Theorems 
5.1 and 6.1 of [32]), there exists a minimal model of the form

y2 = x3 + a2x
2 + a4x + a6

with

v(a2) ≥ n, v(a4) ≥ n + 1, v(a6) = 2n, v(Δ) ≥ 4n. (5.2)

The j-invariant of E is

j(E) =

δ︷︸︸︷
2a6

2
2a2

2a
2
4︸ ︷︷ ︸

α

+ a3
4︸︷︷︸
β

+ a3
2a6︸︷︷︸
γ

.

We will show v(j(E)) �= 0, which contradicts our assumption that j(E) is a non-zero 
constant. Let m = v(a2) − n and l = v(a4) − 2n, hence m, l ≥ 0. It follows that v(δ) =
6m + 6n, v(α) = 2m + 2l + 4n + 2, v(β) = 3l + 3n + 3 and v(γ) = 3m + 5n.

• If l ≥ m, then

v(j(E)) =
{

v(δ) − v(β) = 3m + 3 > 0, if n = 2, l = m,

v(δ) − v(γ) = 3m + n > 0, otherwise.

• If l < m, then

v(j(E)) = v(δ) − v(β) = 6m + 3n− 3l − 3 > 0. �
6. The third term when j = 0

In this section we give a separate result, with an elementary proof, for the terms D3
and D3p in the case j = 0, because the local considerations of Section 5 do not apply to 
that case.

We first collect some well-known results about elliptic curves with j-invariant 0 in the 
following lemma, of which we give a proof for completeness.
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Lemma 6.1. Let E be an elliptic curve with j-invariant 0 over a field L of characteristic 
p > 0.

1. If p ≡ 1 mod 3, then E is ordinary.
2. If p �≡ 1 mod 3, then E is supersingular.
3. If p > 3, then E has a Weierstrass model of the form y2 = x3 + A with A ∈ L∗.
4. If p > 3 and p ≡ 2 mod 3, then any Weierstrass model as in (3) satisfies

[p]E(x, y) =
(
A− p2−1

3 xp2
,−A− p2−1

2 yp
2
)
.

Moreover, all elliptic curves with non-zero j-invariant over fields of characteristic 2 and 
3 are ordinary.

Proof. Suppose that Ẽ is an elliptic curve over Fp with j-invariant 0. Then E and Ẽ
are isomorphic over L, and one is supersingular if and only if the other is (see e.g. [29, 
V.3.1(a)(i)]). For p = 2 (respectively p = 3) Example V.4.6 (respectively V.4.5) of [29]
gives supersingular Ẽ/Fp with j(Ẽ) = 0. If p > 3, then we take Ẽ : y2 = x3 + 1, which 
is ordinary if and only if p ≡ 1 mod 3 by Example V.4.4 of [29].

In characteristic p > 3, there is a short Weierstrass equation y2 = x3 + Bx + A and 
as j(E) = 0, we get B = 0. This proves (3).

Let a = 6
√
A ∈ F and φ : E → Ẽ : (x, y) �→ (x/a2, y/a3), where again Ẽ : y2 = x3 + 1. 

If p ≡ 2 mod 3, then we claim #Ẽ(Fp) = p + 1. Indeed, in that case the map Fp →
Fp : x �→ x3 + 1 is a bijection, hence so is Ẽ(Fp) → P1(Fp) : (x, y) �→ y, which proves 
the claim. By [29, Theorem 2.3.1(b) in the Second Edition], we then get Frob2

p +[p] = 0
inside End(Ẽ), so [p]Ẽ : (x, y) �→ (xp2

, −yp
2). We conclude:

[p]E(x, y) = φ−1 ◦ [p]Ẽ ◦ φ(x, y)

= (a2(x/a2)p
2
,−a3(y/a3)p

2
)

= (A−2 p2−1
6 xp2

,−A−3 p2−1
6 yp

2
),

which proves (4).
For the final remark, it suffices to know that there is exactly one supersingular 

j-invariant in each characteristic p ∈ {2, 3}. But this follows from the formula for the 
number of supersingular j-invariants in Corollary 12.4.6 of Katz-Mazur [19] (that for-
mula needs the order of the automorphism group of the elliptic curve with j-invariant 
zero, which is computed in Proposition A.1.2(c) of [29]). �
Proposition 6.2. Let K be a field of characteristic p ≥ 0 with p �= 2, 3, let C be a smooth, 
projective, geometrically irreducible curve over K and let F = K(C). Let E be an elliptic 
curve over F with j-invariant 0 and let P ∈ E(F ) be a point of infinite order.

If the pair (E, P ) is not constant, then the term D3P has a primitive valuation.
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Proof. As the characteristic is not 2 or 3 and the j-invariant is 0, we get a Weierstrass 
equation y2 = x3 + A with A ∈ F ∗ (cf. Lemma 6.1(3)). If A ∈ (F ∗)6K∗, then E is 
isomorphic over F to a curve over K and the result is a special case of Theorem 2.3. So 
we restrict to the remaining case: A /∈ (F ∗)6K∗. Write P = (x1, y1) ∈ E(F ). We claim 
that x3

1/A is non-constant. Indeed, suppose it is c ∈ K. If c = 0, then P is 3-torsion, 
contradiction. So c ∈ K∗ and y2

1/A = c +1. If c = −1, then P is 2-torsion, contradiction. 
So we get c + 1 ∈ K∗. Now compute

A = x3
1c

−1 = y2
1(c + 1)−1, so (6.1)

A = A3

A2 =
(
y1

x1

)6
c2

(c + 1)3 ∈ (F ∗)6K∗. (6.2)

Contradiction, hence x3
1/A is non-constant.

As a consequence, the function h = x3
1/A + 4 is also non-constant, so let v be a 

valuation of F with v(h) > 0. We obtain 3v(x1) −v(A) = v(h −4) = 0 and 2v(y1) −v(A) =
v(h − 3) = 0, hence v(A) ∈ 3Z ∩ 2Z = 6Z. By the transformation A �→ u6A, x �→ u2x, 
y �→ u3y, which does not change h, we then get v(A) = 0, hence v(x1) = 0. Write 
x3 = x(3P ), which we compute to be

x3 = x9
1 − 96Ax6

1 + 48A2x3
1 + 64A3

9x2
1(x3

1 + 4A)2 . (6.3)

Recall v(x1) = v(A) = 0 and v(x3
1 + 4A) > 0. In particular, the valuation of the de-

nominator of this expression for x3 is positive. The numerator is congruent to −(12A)3
modulo x3

1 + 4A, hence is �≡ 0 modulo v. We conclude v(x3) < 0 and v(x1) = 0 for the 
minimal Weierstrass equation y2 = x3 + A, hence v(D3P ) > 0 and v(DP ) = 0. �
Lemma 6.3. Let K be a field of characteristic p > 3 with p ≡ 2 mod 3. Let C be a smooth, 
projective, geometrically irreducible curve over K and let F = K(C).

Then there exist a supersingular elliptic curve E over F with j-invariant 0 and a 
point P ∈ E(F ) of infinite order such that D3pP has a primitive valuation and (E, P ) is 
non-constant.

Proof. Take any valuation v and x1, y1 ∈ F with v(x1) = v(y1) = 1. Let A = y2
1 − x3

1, 
let E : y2 = x3 + A and let P = (x1, y1) ∈ E(F ). Write 3P = (x3, y3).

Note v(A) = 2, hence the model is minimal at v. As v(x3
1) > v(A), the triplication 

formula (6.3) gives v(x3) = 0, so v(D3P ) = 0.
As v(x3) = 0 and v(A) = 2, the multiplication-by-p formula of Lemma 6.1 gives 

v(x(3pP )) = −p2−1
3 ·2 +p2 ·0 < 0, so v(D3pP ) > 0. As v(x1) = 1 and v(A) = 2, the same 

multiplication-by-p formula also gives v(x(pP )) = −p2−1
3 · 2 + p2 > 0, so v(DpP ) = 0. 

We find that v is a primitive valuation of D3pP . As v(A) = 2 /∈ 6Z, we find that A is 
not a 6th power, hence E is not isomorphic to a curve over K, hence the pair (E, P ) is 
non-constant.
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Repeated use of the multiplication-by-p formula gives that v(x(3pkP )) is strictly de-
creasing with k, hence P is non-torsion. �
Example 6.4. Let K = F5 and F = K(t). As in the proof of Lemma 6.3, take P = (t, t)
and E : y2 = x3 + t2 − t3. Then

D1P = D2P = 1, D3P = t + 2,

D4P = t2 + 2t + 4, D5P = (t + 4)4,

D6P = (t + 1) · (t + 2) · (t + 3) · (t2 + t + 2),

D7P = (t2 + 2t + 3) · (t3 + t2 + 2) · (t3 + 4t2 + 3t + 4),

D8P = (t2 + 2t + 4) · (t4 + 2t2 + 2t + 1)

· (t4 + 3t3 + 3t2 + 2t + 2),

D9P = (t + 2) · (t3 + t + 4) · (t3 + 3t2 + 4)

· (t6 + 3t4 + 3t3 + t + 3), D10P = (t + 4)4 · ∞12,

D15P = (t + 4)4 · t8 · (t + 2)25,

D20P = (t + 4)4 · (t2 + 2t + 4)25 · ∞12.

And indeed the term D15P has a primitive valuation t.

7. Additional examples

In this section we gather examples that are crucial for the proof of optimality in the 
main theorems. In our examples, the function field F is always F = K(t) for a field K, 
that is, the examples have C = P1. The following result shows that this suffices, in 
the sense that the existence of such examples implies the existence of examples over all 
function fields that we consider.

Theorem 7.1. Let K be a field and let F be the function field of a smooth, projective, 
geometrically irreducible curve over K. Let E be an elliptic curve over K(t) with j(E) ∈
K and let P ∈ E(K(t)).

If there is a rational place in P1(K) of good reduction of E, then there exist an 
embedding K(t) ↪→ F , an elliptic curve E′ over F , and a point P ′ ∈ E′(F ) such that

1. P ′ and P have the same order,
2. E′ and E have the same j-invariant, and
3. for every valuation v′ of F , if v is the restriction to K(t), then

m(P ′, v′) = m(P, v).
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The main idea for the proof of Theorem 7.1 is to base change via a suitable morphism 
of base curves. We will use the following results.

We denote by Br(f) the branch locus of a finite morphism f : X → Y of normal 
projective curves over K. This is the image through f of the set of closed points x ∈ X

for which the map f is not étale at x, cf. [20, Definition 7.4.15].

Proposition 7.2. Let K be a field. Let C and C ′ be smooth projective curves defined 
over K. Let φ : C ′ → C be a dominant morphism of curves over K. Let E be an elliptic 
curve over K(C) and P a point in E(K(C)). Let E′ denote the elliptic curve obtained 
from the pull-back by the map φ and P ′ the corresponding point on E′. We assume that 
the branch locus Br(φ) of φ is disjoint with the set of places of bad reduction for E. Then 
for every valuation v′ in K(C ′) above v in K(C) we have

m(P, v) = m(P ′, v′).

Proof. If v is a place of good reduction for E and v′ is any place above v in K(C ′), 
then the elliptic curve E′ still has good reduction at v′ and the order of the point P ′

modulo v′ is the same as the order of the point P modulo v.
It remains to prove the result for places of bad reduction, so let v be such a place. Let 

R ⊂ F = K(C) (respectively R′ ⊂ F ′ = K(C ′)) denote the discrete valuation ring with 
valuation v (respectively v′). From our assumptions and [20, Definition 7.4.15] it follows 
that the extension R′/R has ramification index 1 and that the corresponding extension 
k′/k of residue fields is separable.

Let E be the Néron model of E over R. It follows from [3, Theorem 7.2.1(ii)] that the 
base change E ′ = E ⊗R R′ is the Néron model of EF ′ over R′.

Let x (respectively x′) be the x-coordinate function of a v-minimal (respectively 
v′-minimal) Weierstrass equation of E. For a point Q ∈ E(F ), we denote by Q̃ the 
corresponding point in E(R). We have for every point Q ∈ E(F ) that v(x(Q)) < 0
holds if and only if Q̃ restricts to the zero section of the special fibre, that is, satisfies 
Q̃⊗R k = O (see [27, Corollary IV.9.2] and [5, Theorem 5.5]). By base-changing from R
to R′, we see that this happens if and only if Q̃′ ∈ E(R′) = E ′(R′) satisfies Q̃′⊗R′ k′ = O, 
hence if and only if v(x′(Q)) < 0 holds.

Applying this to Q = nP for any n, we find v(DnP ) > 0 if and only if v′(DnP ′) > 0. 
In particular, we have m(v, P ) = m(v′, P ′). �

In order to use Proposition 7.2, we need to find an appropriate morphism φ for every 
function field F = K(C) and suitable examples over K(t) for prime fields K. We use the 
following result to find such maps.

Theorem 7.3 (Wild p-Belyi theorem of Katz [18, Lemma 16], [33, Theorem 11]). Let C
be a smooth, projective, geometrically irreducible curve defined over a perfect field K of 
positive characteristic. Then there exists a non-constant morphism φ : C → P1

K (over K) 
that is unramified above A1. �
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Proposition 7.4. Let K be any field. Let S ⊂ P1(K) be a finite set and C a smooth, 
projective, geometrically irreducible curve over K. If S does not contain P1(K), then 
there exists a non-constant morphism φ : C → P1

K (over K) that is unramified above S.
[Note that the hypothesis of S not containing P1(K) is automatically satisfied if K is 

infinite.]

Proof. We give a proof in the case where K is infinite and a proof in the case where K
is perfect. Together, these two proofs cover all cases.

If K is infinite. Let K(C) be the field of functions of C, so K ∩ K(C) = K. Since 
C is smooth, it is geometrically reduced. As the transcendence degree of K(C) is one, 
it then follows from [20, Proposition 3.2.15] that K(C) is a finite separable extension 
of a purely transcendental extension K(t) of K. Hence there exists a separable finite 
morphism f = t : C → P1

K . The set Br(f) is finite by [20, Corollary 4.4.12].
Write K = A1(K) ⊂ P1(K) and let s be an element in K \ Br(f), which exists since 

K is infinite. We define a map η = (x �→ 1/(x − s)) ◦ f . It follows that Br(η) does not 
contain ∞. The set {y − x : x ∈ Br(η), y ∈ K ∩ S} is finite, so there exists an element 
s′ ∈ K that does not belong to it. The map φ = (x �→ x + s′) ◦ η suffices.

If K is perfect. By Theorem 7.3 there exists a morphism f : C → P1 over K with 
Br(f) = {∞}. Take s ∈ P1(K) \ S. There exists a fractional linear map α : P1 → P1

over K which satisfies α(∞) = s. We define φ = α ◦ f and check that it satisfies the 
claim. �
Question 7.5. In Proposition 7.4 we have assumed that the set S is disjoint from P1(K). 
In our situation this is enough for the applications, but it would be interesting to know 
in general whether one could drop this assumption. We leave it here as an open question 
to the reader.

Proof of Theorem 7.1. Let S ⊂ P1(K) be the set of points such that E has bad reduction 
at the corresponding place. By assumption, the set S does not contain P1(K), so by 
Proposition 7.4 there is a morphism φ : C → P1

K that is unramified above S. Let E′

(respectively P ′) be the base change of E (respectively P ) to F = K(C) via φ. Then (1) 
and (2) are clearly true, and (3) follows from Proposition 7.2. �

In Theorem 7.1 and Proposition 7.2, we do a change of base curve C, but we do not 
allow a change of the base field K of the base curve. Indeed, the following example shows 
that the results are false for inseparable changes of base field K.

Example 7.6. Let K = F3(s), F = K(t), E : y2 = x3 + t6x + s2, and P = (0, s). The 
discriminant of E is −t18, hence E is minimal and of good reduction at all places except 
t = 0, ∞. At t = 0, the model is minimal and of reduction type Z1 in Szydlo’s tables 
[32, Table 4]. At t = ∞, we have the model Y 2 = X3 + t−2X + t−12s2, which is minimal 
because it has discriminant −t−6 of valuation 6.
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We get that P is integral, so D1P = 0, which has no primitive valuation. Now take 
r = − 3

√
s ∈ K, let K ′ = K(r) = F3(r), and let F ′ = K ′(t) ⊃ F . Take x′ = t−2(x + r2)

and y′ = t−3y, so E′ : y′2 = x′3 + t2x′ − r2 is a model over F ′, hence E is not minimal 
at t = 0 over F ′. In fact, the model E′ is minimal and of reduction type Z1 over F ′.

Over F ′, the resulting point P ′ satisfies x′(P ′) = r2/t2, so D1P ′ = (t), hence this term 
has a primitive valuation t = 0. We get m(P, v) > 1 = m(P ′, v′).

7.1. General characteristic examples

In the case of ordinary E with characteristic �= 2, 3 and j(E) �= 0, we will see in 
Theorem 8.1 that every term has a primitive valuation, except possibly D1P and D2P . 
The following examples show that sometimes these two remaining terms do not have a 
primitive valuation.

Lemma 7.7. Let K be a field with p := char(K) �= 2. Let j ∈ K be an element, such that 
if p = 3, then j = 0. Then there exists an elliptic curve E with j(E) = j defined over 
the function field K(t) of P1

K and a point P ∈ E(K(t)) of infinite order such that

1. (E, P ) is non-constant,
2. E has at least one rational place of good reduction,
3. DP = D2P = 0,
4. if E is supersingular, then DpP and D2pP have primitive valuations.

Proof. If p = 3, take a = 1, b = 0 ∈ K. Otherwise, let a, b ∈ K be such that

Ẽ : y2 = x3 + ax + b (7.1)

defines an elliptic curve over K with j(Ẽ) = j. Let r = t3 + at + b ∈ K[t], which is 
square-free as the discriminant of Ẽ is non-zero. Let

E : y2 = x3 + r2ax + r3b, (7.2)

so j(E) = j(Ẽ) = j. We find a point P = (rt, r2) ∈ E(F ). Note that the given Weierstrass 
equation is minimal at all primes of K[t], and that the point P is integral at all such 
primes. Moreover, the curve E has places of additive reduction of type I∗0 hence by [25, 
Corollary 7.5] the point P (which does not have order 1 or 2) has infinite order.

The point P ′ of Notation 3.2 is P ′ = (t, 
√
r) ∈ Ẽ(K(t, 

√
r)), which is non-constant. 

By Lemma 2.2 this proves (1).
Note that K[t] has at most three primes at which E has bad reduction (the roots of 

r) and for all fields K except F2 and F3 there are more than 3 rational points in A1(K), 
hence there is at least one rational place of good reduction. For K = F3, our choice of r
has only one rational root, hence there are two rational affine places of good reduction. 
This proves (2).
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We also find the following Weierstrass equation, which is minimal for the place at 
infinity of K[t]:

E : Y 2 = X3 + t−8r2aX + t−12r3b, X = t−4x, Y = t−6y. (7.3)

Then X(P ) = t−4rt, so P is also integral at that place. We find that P is an integral 
point, so D1P = 0.

The duplication formula gives

x(2P ) = 1
4(3t2 + a)2 − 2rt, (7.4)

which is integral at all finite places of K[t]. We also get

X(2P ) = 1
4(3 + at−2)2 − 2rt−3, (7.5)

which is integral at infinity. We find that 2P is an integral point, so D2P = 0. This 
proves (3).

Now suppose that E is supersingular. Then j ∈ Fp2 , so we take a, b ∈ Fp2 from the 
beginning. If p = 3, then we moreover have j = 0 and we take a = 1, b = 0. It remains 
only to prove that DmpP does have primitive valuations for m = 1, 2.

We have P ′ = (t, 
√
r) ∈ Ẽ(K(t, 

√
r)) and the valuation ∞ that appears in D1P ′ with 

multiplicity 1 does not appear in D1P .
Next, we claim [p] = ψ ◦Frobp2 on Ẽ with ψ : (x, y) �→ (u2x, u3y) for some u ∈ K∗. If 

p > 3, then the claim follows from [29, Corollary II.2.12], which applies as Fp2 is perfect 
and a, b ∈ Fp2 . In case p = 3, we have Ẽ : y2 = x3 + x over F3 and a direct calculation 
proves [3] = ψ ◦ Frob9 with u = −1, cf. [29, Theorem 2.3.1(b) in the Second Edition].

We conclude that the valuation ∞ appears with multiplicity p2 in DpP ′ , hence appears 
in DpP with multiplicity p2−v∞(t−4r) ≥ p2−8 −v∞(r) > −v∞(r) > 0, hence m(∞) = p.

The valuations v at the roots of r, which appear in D2P ′ do not appear in D2P . 
They also do not appear in DpP ′ (otherwise by the strong divisibility property (1.3) and 
gcd(2, p) = 1 they would appear in D1P ′ = 0), hence they do not appear in DpP either. 
They do appear with multiplicity p2 in D2pP ′ , hence appear in D2pP with multiplicity 
at least p2 − v(r) = p2 − 1 > 0, thus m(v) = 2p. �
Example 7.8 (Ordinary). In Lemma 7.7, take K = F5, a = b = 1, so j(E) = 1. We obtain

D1P = D2P = 1, D3P = (t + 3) · (t + 4) · (t2 + 3t + 4),

D4P = (t3 + 2t2 + 4t + 4) · (t3 + 3t2 + 4), D5P = (t2 + 2t + 4)5 · ∞2

where D1P and D2P are trivial, as we already saw in Lemma 7.7.
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7.2. Examples in characteristic 3

Example 7.9 (Ordinary). Let K be a field of characteristic 3 and let j ∈ K∗. We consider 
the elliptic curve

E0 : y2 = x3 + j2x2 + 2j5

with j-invariant j. We consider the quadratic twist E(d)
0 of the curve E0 over K(t) where 

d = t3 + j2t2 + 2j5. The curve E(d)
0 : y2 = x3 + j2dx2 + 2j5d3 is non-constant and has 

j-invariant j and discriminant j11d6.
This is a generic fibre of a Kummer K3 surface with places of bad reduction only at 

the roots of d = 0 and at t = ∞, all of type I∗0 (by e.g. [32, Table 4]). On the curve E(d)
0

we have a point P = (t · d, d2) of height 1 (hence non-torsion cf. [24]) which satisfies the 
condition DP = D2P = 1, since x(2P ) = t4 + 2j5t + j7.

Example 7.10 (Supersingular). Let K be a field of characteristic 3. We consider the curve

Et : y2 = x3 + t3x + t4

over K(t), which has a point P = (0, t2). The discriminant of the equation Et is 2t9, 
hence there is no place of bad reduction away from 0, ∞. By [32, §5 and Table 4] the 
reduction type at t = 0 is IV ∗ and at t = ∞ is III and our model is minimal at all 
places. By Shioda’s height formula [24, Theorem 8.6] the point P has height 1/6 hence 
is non-torsion. A direct computation of the divisors DnP reveals

D1P = D2P = D3P = 1, D4P = t + 2, D5P = t2 + t + 2,

D6P = ∞2, D9P = t6, D27P = t60.

Remark 7.11. Here is how we came up with the curve and point in Example 7.10. We 
wanted a pair (E, P ) such that j(E) = 0, charK = 3, and P is a point of infinite order 
such that DP = 1, D3P = 1, and D9P has a primitive valuation v. Such an elliptic curve 
E has a Weierstrass model y2 = x3 +Ax +B with A, B ∈ K(C). We look for a valuation 
v of bad additive reduction for E such that the group of components has order 3, that 
is, reduction of type IV or IV ∗ at v (see the proof of Lemma 4.1). Moreover, the point 
P should intersect a non-trivial component at v and the point 3P should intersect the 
component of the zero section but should not be zero itself. Automatically, by additive 
reduction in characteristic 3, the point 9P then hits the zero section at v.

From [22] it follows that there are only two possible structures for the Néron-Severi 
group of a rational elliptic surface E → P1 over an algebraically closed field of any 
characteristic which admit a primitive embedding of the lattice E6 (which corresponds 
to the reduction type IV ∗), namely U⊕E6⊕A1⊕〈1/6〉 (type 49) and U⊕E6⊕A∗

2 (type 
27). Over the complex numbers both types of the Néron-Severi group exist, cf. [23].
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An example of such an elliptic surface with type 49 over an algebraically closed field 
of characteristic 3 was constructed in [17, 4.2.18, case 6A, 5.]. The generic fibre over 
F3(t) of that surface is E49,t where for s ∈ F3(t), we define

E49,s : y2 = x3 + s3(s + 2)x + s4(s2 + s + 1).

It has reduction of type III at t = −2, reduction type IV ∗ at t = 0 and no other singular 
fibres.

It is easy to verify that Et from Example 7.10 is isomorphic over F3(t) to E49, t
2+t

.

7.3. Examples in characteristic 2

Example 7.12 (Supersingular). We consider a rational elliptic surface with Weierstrass 
equation:

y2 + ty = x3 + t2x

over K(t) for any field K of characteristic 2. We have that j(E) = 0 so the curve is 
supersingular. The equation above has discriminant t4, hence there is no bad reduction 
away from 0, ∞. It has bad additive reduction at t = 0 (type IV ) and at t = ∞ (type 
I∗1 ) over K(t) by the extended Tate algorithm in [32] (Table 5 for t = 0 and Table 7 for 
t = ∞ with the model y2 + t2y = x3 + tx2). From the Oguiso-Shioda classification [22]
it follows that the rank of the group E(K(t)) is 1 and the group is freely generated by 
a point of height 1/12. We checked that the point P = (t, 0) satisfies this condition.

It is easy to verify that the divisors DP , D2P , D3P and D4P are trivial and D6P is 
supported at t = 0 and D8P is supported at t = ∞. More precisely,

D1P = D2P = D3P = D4P = 1, D5P = t + 1,

D6P = t, D7P = t2 + t + 1,

D8P = ∞2, D9P = t3 + t2 + 1,

D10P = (t + 1)4, D11P = (t5 + t4 + t3 + t2 + 1),

D12P = t5, D13P = (t3 + t + 1) · (t4 + t + 1),

D14P = (t2 + t + 1)4, D15P = (t + 1) · (t8 + t7 + t3 + t + 1),

D16P = ∞10, D17P = (t4 + t3 + t2 + t + 1)

· (t8 + t7 + t6 + t5 + t4 + t3 + 1),

D18P = t · (t3 + t2 + 1)4, D19P = (t6 + t4 + t3 + t + 1)

· (t9 + t6 + t4 + t3 + 1),

D20P = (t + 1)16.



B. Naskręcki, M. Streng / Journal of Number Theory 213 (2020) 152–186 181
Example 7.13 (Supersingular). Let Ek : y2 + t2ky = x3 + t2(t + 1)x2 + tx, k ≥ 1 be an 
elliptic curve over K(t) for any field K of characteristic 2. The curve Ek has discriminant 
t8k and no bad reduction away from 0, ∞. We apply the extended Tate algorithm [32]
to the places t = 0 and t = ∞. For t = 0 our model is minimal for each k and of type 
III. For k = 1 the model of Ek with s = 1/t

y2 + s4y = x3 + (s + s2)x2 + s7x

is minimal at s = 0 (t = ∞) and of reduction type I∗5 by the extended Tate algorithm 
and Table 7, cf. [32]. For k = 2 the model of Ek with s = 1/t

y2 + s2y = x3 + (s + s2)x2 + s7x

is minimal at s = 0 and of type I∗1 .
There exists a point P = (0, 0) on Ek which is not of order 2 or 4, hence it is of infinite 

order on this curve by [25, Corollary 7.5].

(a) If k = 1, then D2P and D4P have a primitive valuation. More precisely,

D1P = 1, D2P = t, D3P = (t2 + t + 1) · (t3 + t + 1), D4P = t6 · ∞2.

(b) If k = 2, then D2P and D8P have a primitive valuation. More precisely,

D1P = 1, D2P = t3, D3P = t9 + t8 + 1, D4P = t16,

D6P = t3 · (t9 + t8 + 1)4, D8P = t68 · ∞2.

Example 7.14 (Ordinary). Let K be a field of characteristic 2 and j ∈ K∗. For any 
a ∈ K(t) \K we have an elliptic curve

Ea : y2 + xy = x3 + (a + 1
a2j

)x2 + 1
j

with a point P = (a, 0). Let a = t. Then Et is a generic fibre of an elliptic K3 surface 
with bad reduction at t = 0 and t = ∞. If j is a square in K, then we have type I∗4 at 
t = 0 and otherwise this is type K8 according to [32, §5.1, §5.2]. In both cases the model

Emin : (y′)2 + tx′y′ = (x′)3 + (t3 + 1
j
)(x′)2 + t6

1
j

obtained via a transformation x = 1/t2x′, y = 1/t3y′ is minimal at t = 0 (see also [31, 
6.12] with the model obtained from Emin by mapping x �→ x + t3).

There is a model at t = ∞, of the form (with respect to t = 1/s)

Einf : (y′′)2 + sx′′y′′ = (x′′)3 + (1
s4 + s)(x′′)2 + 1

s6.

j j
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It is minimal and of type I∗4 if j is a square in K and of type T3 if j is not a square in K, 
cf. [32] or [31, 6.14]. The point (t, 0) is not a 2-torsion point, hence it is of infinite order 
by [25, Corollary 7.5]. The point P in the model Emin has the form Pmin = (t3, 0) and 
the point 2Pmin on Emin satisfies the condition x(2Pmin) = t4 + 1/j, so the points are 
integral and integral at infinity, hence the divisors DP and D2P have empty support.

8. Proof of the main theorems

We now have all the ingredients required for proving the following two main theorems.

Theorem 8.1. Let F be the function field of a smooth, projective, geometrically irreducible 
curve over a field K.

Let E be an ordinary elliptic curve over F and let P ∈ E(F ) be a point of infinite 
order such that j(E) ∈ K, but the pair (E, P ) is not constant, cf. Definition 2.1. Then 
for all integers n > 2, the term Dn has a primitive valuation.

Conversely, for all ordinary j-invariants j ∈ K there exist an elliptic curve E/F with 
j(E) = j and a point P ∈ E(F ) of infinite order such that the terms D1 and D2 do 
not have a primitive valuation and there exist an elliptic curve E/F with j(E) = j and 
a point P ∈ E(F ) of infinite order such that all terms Dn for n ≥ 1 have a primitive 
valuation.

Proof. For the first assertion, by Theorem 4.7, it suffices to prove that D3P and D4P

each have a primitive valuation. Let p be the characteristic of K.
Proof that D3P has a primitive valuation. Recall that E is ordinary. By Proposi-

tion 4.6, in order to show that D3P has a primitive valuation, it suffices to show that 
for every valuation v of F , the order dv of P in the component group E(Fv)/E0(Fv) is 
not 3.

If j(E) �= 0 and p �= 3, then Lemma 4.1(4b) gives dv �= 3. If j(E) �= 0 and p = 3, then 
Proposition 5.2 gives dv �= 3.

If j(E) = 0, then p �= 2, 3 by Lemma 6.1(2), so in that case D3P has a primitive 
valuation by Proposition 6.2.

Proof that D4P has a primitive valuation. Again by Proposition 4.6 it suffices to prove 
that for every valuation v ∈ F , we have dv �= 4. If p �= 2, then this is Lemma 4.1(4a). If 
p = 2, then this is Proposition 5.1. This proves the first assertion.

Examples (E, P ) where the terms D1P and D2P also have a primitive valuation are 
trivial to find: just start from an arbitrary pair (E, Q) and take P = 3Q.

It remains to find examples (E, P ) for every field F = K(C) and every ordinary j ∈ K

where the terms D1P and D2P do not have primitive valuations.
By Theorem 7.1, it suffices to find such examples (E, P ) for each rational function 

field F = K(t), where K ranges over all fields, such that E has good reduction at at
least one place of degree one in P1(K).
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Table 2
Expanded version of Table 1, referred to in Theorem 8.2 and its 
proof.

p = 2

n 1 2(= p) 3 4(= 2p) 6(= 3p) 8(= 4p) odd
n>4

even
n>8

Dn
∗

B,H
∗

G,BH
∗

B,H
∗

G,BH
∗

H,B
∗

GH,B
yes
A

no
A

p = 3

n 1 2 3(= p) 6(= 2p) 9(= 3p) n>3
3�n

n>9
3|n

Dn
∗

B,FI
∗

B,FI
∗

F,BI
∗

FI,B
∗

I, B
yes
A

no
A

p ≡ 1 mod 3

n 1 2 3 p 2p 3p n>3
p�n

n>3p
p|n

Dn
∗

B,F
∗

B,F
yes
CD

∗
F,B

∗
F,B

no
D

yes
A

no
A

p ≡ 2 mod 3, p �= 2

n 1 2 3 p 2p 3p n>3
p�n

n>3p
p|n

Dn
∗

B,F
∗

B,F
yes
C

∗
F,B

∗
F,B

∗
E,B

yes
A

no
A

For K of characteristic not 2 or 3, and any ordinary j-invariant j ∈ K, Lemma 7.7
does the trick. Note that the example has at most three affine places of bad reduction 
and there are more than 3 rational affine places in P1(K), hence at least one rational 
place of good reduction. We obtain D1P = D2P = 0, hence no primitive valuations.

Suppose that K has characteristic 2 or 3 and that j ∈ K is an ordinary j-invariant. 
Then j �= 0, so j ∈ K∗. For K of characteristic 3, we have Example 7.9 for any j ∈ K∗. 
Then d(0) ∈ K∗, hence E has good reduction at the affine rational place t = 0. We 
obtain D1P = D2P = 0, hence no primitive valuations.

For K of characteristic 2, we have Example 7.14 for any j ∈ K∗. It has good reduction 
at t = 1. We obtain D1P = D2P = 0, hence no primitive valuations. �
Theorem 8.2. Let F be the function field of a smooth, projective, geometrically irreducible 
curve over a field of characteristic p > 0. Let n be a positive integer.

If the entry corresponding to n and p in Table 2 is ‘yes’ (respectively ‘no’), then for ev-
ery supersingular elliptic curve E over F , and every P ∈ E(F ) with (E, P ) non-constant 
and P of infinite order, the term Dn has a (respectively no) primitive valuation.

If the entry is ‘∗’, then there exist E and P as in the previous paragraph such that 
Dn has a primitive valuation and there exist E and P such that Dn has no primitive 
valuation.

Proof. For each entry, the letter(s) below it refer(s) to one or more of the proofs listed 
below. In case of ∗, the letters before the comma refer to examples where the term has 
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a primitive valuation, and the letters after the comma to examples where it does not. If 
multiple letters are given, then each separately gives a complete proof.

By Proposition 4.6, in order to prove that DnP has a primitive valuation for p � n, it 
suffices to prove for every additive valuation v of F that n does not divide the order dv
of P in the component group E(Fv)/E0(Fv).

By Proposition 4.8, in order to prove that DnpP has no primitive valuation, it also 
suffices to prove for every additive valuation v of F that n does not divide the order dv
of P in the component group E(Fv)/E0(Fv).

A. Lemma 4.1(3) states dv ≤ 4, and if p �= 2, then Lemma 4.1(4a) states dv �= 4.
B. Take any pair (E, Q) with Q ∈ E(F ) of infinite order. Then for P = 5Q, the pair 

(E, P ) is such an example. To see this, apply the result in the final two columns (or 
Theorem 4.9) to (E, Q).

C. Here p > 3. If j(E) �= 0, then dv �= 3 by Lemma 4.1(4b). If j(E) = 0, then D3P has 
a primitive valuation by Proposition 6.2.

D. Here p ≡ 1 mod 3, so j(E) �= 0 by Lemma 6.1(1). But then dv �= 3 by Lemma 4.1(4b).
E. This is Lemma 6.3.

To prove the cases with ∗, by Theorem 7.1, it suffices to find examples (E, P ) for each 
rational function field F = K(t) (over every field K of the appropriate characteristic) 
such that E has good reduction at at least one place of degree one in P1(K). The 
following are such examples.

F . Lemma 7.7 gives examples for all characteristics p ≥ 3 where D1P and D2P do not 
have primitive valuations, and DpP and D2pP do. They have good reduction at at
least one place.

G. In Example 7.13(a) the terms D2P and D4P have primitive valuations. In Exam-
ple 7.13(b) the terms D2P and D8P have primitive valuations. These examples are 
supersingular over F2(t) and have good reduction at t = 1.

H. Example 7.12 gives a supersingular elliptic curve and point in characteristic 2, where 
DnP has a primitive valuation for n = 6 and n = 8, but not for n ≤ 4. It has good 
reduction at the rational place t = 1.

I. Example 7.10 gives a supersingular elliptic curve and point in characteristic 3 such 
that DnP has a primitive valuation for n = 6 and n = 9, but not for n ≤ 3. It has 
good reduction at the rational place t = 1. �
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