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function.
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1. Introduction

A sequence (xn)n�0 in the s-dimensional unit cube [0,1)s , is said to be uniformly distributed modulo
one if for all intervals [a, b) ⊆ [0,1)s we have

lim
N→∞

#{n: 0 � n < N, xn ∈ [a, b)}
N

= λ
([a, b)

)
,

where λ denotes the s-dimensional Lebesgue measure.
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The discrepancy DN , which is one of the most important measures for the quality of the uniformity
of a finite point set x0, . . . , xN−1 in [0,1)s is defined by

DN = DN (x0, . . . , xN−1) := sup
B⊆[0,1)s

∣∣∣∣ AN(B)

N
− λ(B)

∣∣∣∣,
where AN (B) denotes #{n: 0 � n < N, xn ∈ B} and the supremum is extended over all sub-boxes B
of [0,1)s of the form B = ∏s

i=1[ai,bi) with 0 � ai < bi � 1 for i ∈ {1, . . . , s}.
For an infinite sequence ω = (xn)n�0 in [0,1)s , DN (ω) denotes the discrepancy of the first N ele-

ments of the sequence.
It is easy to check that a sequence (xn)n�0 in [0,1)s is uniformly distributed if and only if

DN tends to zero as N increases.
Excellent introductions to these and related topics can be found in the book of Kuipers and Nieder-

reiter [9] or in the book of Drmota and Tichy [2].
The two most important concepts for the construction of uniformly distributed low-discrepancy

sequences are the concept of Halton (van der Corput–Halton sequences) and the concept of Niederre-
iter (digital (T, s)-sequences).

In [5] it was pointed out that these two concepts are special examples of a more general concept
producing sequences which we would like to call Niederreiter–Halton sequences.

These sequences are defined in the following:

Definition 1. Let q1,q2, · · · ,qv be different primes and let v, w1, . . . , w v be positive integers. For
l ∈ {1, . . . , v} and j ∈ {1, . . . , wl} we have given N × N-matrices over Zql (i.e. the finite field of residue
classes modulo ql), of the following form:

C (l, j) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ
(l, j)

1,0 γ
(l, j)

1,1 γ
(l, j)

1,2 γ
(l, j)

1,3 . . .

γ
(l, j)

2,0 γ
(l, j)

2,1 γ
(l, j)

2,2 γ
(l, j)

2,3 . . .

γ
(l, j)

3,0 γ
(l, j)

3,1 γ
(l, j)

3,2 γ
(l, j)

3,3 . . .

γ
(l, j)

4,0 γ
(l, j)

4,1 γ
(l, j)

4,2 γ
(l, j)

4,3 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Z
N×N

ql
.

We denote row r of the matrix C (l, j) by γ
(l, j)

r = (γ
(l, j)

r,t )t�0 in Zql . We define the s-dimensional se-
quence (xn)n�0 in [0,1)s , where s := w1 + · · · + w v , by

xn := (
x(1,1)

n , . . . , x(1,w1)
n , x(2,1)

n , . . . , x(2,w2)
n , . . . , x(v,1)

n , . . . , x(v,w v )
n

)
.

The component x(l, j)
n , for j ∈ {1, . . . wl}, l ∈ {1, . . . , v}, is generated as follows.

Let n = n(l)
0 +n(l)

1 ql +n(l)
2 q2

l +· · · be the ql-ary representation of n for l ∈ {1, . . . , v}. Then we set (by
using matrix multiplication in Zql )

C (l, j) · (n(l)
0 ,n(l)

1 , . . .
)� =: (y(l, j)

1 , y(l, j)
2 , . . .

)�

and

x(l, j)
n := y(l, j)

1

ql
+ y(l, j)

2

q2
l

+ · · · .
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In the case of wl = 1 and C (l,1) is the unit matrix for all l ∈ {1, . . . , v}, we get the van der
Corput–Halton sequence. If we set v = 1 Definition 1 is consistent with the definition of digital
(t, s)-sequences over Zq1 as introduced by Niederreiter (see [12,13]) or more generally digital (T, s)-
sequences in the sense of Larcher and Niederreiter (see [11]), which for special chosen matrices
provide sequences with excellent distribution properties.

The sequences defined in Definition 1 represent a hybrid of these well-known in some cases low-
discrepancy sequences and it is interesting and reasonable to ask under which condition such a hybrid
is uniformly distributed in the s-dimensional unit cube. We will answer this question completely in
Theorem 4 of this paper.

For the statement of Theorem 4 we need the following definitions:

Definition 2. For each l ∈ {1, . . . , v} and for each choice of non-negative integers d(l,1), . . . ,d(l,wl) let
F (l)(d(l,1), . . . ,d(l,wl)) be minimal such that the (d(l,1) + · · · + d(l,wl)) × F (l)(d(l,1), . . . ,d(l,wl))-matrix
formed by

the left upper d(l,1) × F (l)(d(l,1), . . . ,d(l,wl))-submatrix of C (l,1) together with
the left upper d(l,2) × F (l)(d(l,1), . . . ,d(l,wl))-submatrix of C (l,2) together with
.
.
.

the left upper d(l,wl) × F (l)(d(l,1), . . . ,d(l,wl))-submatrix of C (l,wl)

has rank d(l,1) + · · · + d(l,wl) over Zql . If this minimum does not exist (i.e. the matrix above
never has rank d(l,1) + · · · + d(l,wl) over Zql no matter where the rows are truncated), we set
F (l)(d(l,1), . . . ,d(l,wl)) := ∞.

Definition 3. We denote sequences as introduced in Definition 1 by digital (F, s)-sequences in bases
((q1, w1), . . . , (qv , w v )), where F := (F (1), . . . , F (v)) and the F (l) : N

wl
0 → N0 ∪ {∞} are given by Defi-

nition 2.

Theorem 4. A digital (F, s)-sequence is uniformly distributed in [0,1)s if and only if for all non-negative d(l, j) ,
j ∈ {1, . . . , wl} and l ∈ {1, . . . , v}, all F (l)(d(l,1), . . . ,d(l,wl)) are finite.

Digital (F, s)-sequences were already introduced by Hofer, Kritzer, Larcher and Pillichshammer [5],
but they restricted their investigation in large part to (F, s)-sequences produced by matrices consisting
of rows of finite length exclusively, which are much easier to handle than the general ones. We say
a row (γ

(l, j)
r,t )t�0 has finite length if there exists t0 � 0, such that γ

(l, j)
r,t = 0 for all t � t0. For these

special kinds of (F, s)-sequences they proved the following result [5, Theorem 1].
A digital (F, s)-sequence produced by matrices consisting of rows of finite length exclusively is uni-

formly distributed in [0,1)s if and only if for all non-negative d(l, j) , j ∈ {1, . . . , wl} and l ∈ {1, . . . , v}, all
F (l)(d(l,1), . . . ,d(l,wl)) are finite.

The trick of their proof is to reduce the question of uniform distribution to the number of solutions
of systems of congruences. By applying the Chinese remainder theorem, the number of solutions
can be computed. If a matrix contains rows of infinite length, application of the Chinese remainder
theorem does not succeed any more.

In this paper we develop methods for the investigation of general digital (F, s)-sequences using
several properties of the integer weighted q-ary sum-of-digits function.

Definition 5. We define the weighted q-ary sum-of-digits function of a non-negative integer n as

sq,γ (n) :=
p∑

nrγr,
r=0
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where (γr)r�0 is a given weight sequence in R, n = n0 + n1q + · · · + npqp is the q-ary representation
of n with 0 � ni � q − 1, p = [logq(n)] and np > 0. Especially, if (γr)r�0 is a given weight sequence
in Z then we call sq,γ (n) the integer-weighted q-ary sum-of-digits function.

The distribution modulo one of multidimensional sequences based on weighted q-ary sum-of-
digits function and some generalizations were investigated in large part by Hofer, Larcher and Pil-
lichshammer (see for example [4,6,14]). Note that y(l, j)

r for a given n � 0 in Definition 1 can be
interpreted as s

ql,γ
(l, j)

r
(n) modulo ql , where (γ

(l, j)
r )r�0 in Zql is given by row r of the matrix C (l, j) .

Our investigation of the distribution of sequences given in Definition 1 is based on the q-additive
property of the weighted q-ary sum-of-digits function. Let q � 2 be an integer. A function f : N0 → R

is called q-additive if f (0) = 0 and if for any non-negative integers a,b, j with 0 � b � q j − 1 the
relation f (aq j + b) = f (aq j) + f (b) holds. f is called completely q-additive if f (aq j) = f (a) is true
for all non-negative integers a, j in addition.

Note that the (integer)-weighted q-ary sum-of-digits function is q-additive.
Hence the basic result for the proof of Theorem 4 will be the following proposition. For the proof

we will heavily use techniques developed by Kim [7] also by Drmota and Larcher [3] and by Hofer [4].

Proposition 6. Let v be a positive integer, q1,q2, . . . ,qv be different primes and for each l ∈ {1, . . . , v} we
have given sequences (γ

(l)
t )t�0 in Z. The following two assertions are equivalent:

– there exists at least one l ∈ {1, . . . , v} such that the sequence (γ
(l)

t )t�0 contains at least one element not
congruent zero modulo ql ,

– the following equation holds

1

N

N−1∑
n=0

v∏
l=1

e

(
sql,γ (l) (n)

ql

)
= o(1). (1)

Here and later on e(x) denotes e2π ix for any real x. There for we use techniques elaborated by D.-H. Kim,
improved by Drmota and Larcher and by H.

We already mentioned that in the case v = 1 our Definition 1 reduces to the definition of a digital
(T, w1)-sequence. We define T : N → N0 as follows and call the corresponding (T, w1)-sequence strict.

Let C1, . . . , C w1 be N × N-matrices over Zq1 . For any m ∈ N by C j(m) we define the left-upper
(m × m)-matrix of C j . We set ρm maximal, such that for any choice of non-negative integers
d1, . . . ,dw1 , whose sum is ρm , the following holds:

the first d1 row-vectors of C1(m) together with
the first d2 row-vectors of C2(m) together with
.
.
.

the first dw1 row-vectors of C w1 (m)

are linearly independent over Zq1 .
We set T(m) := m − ρm for all m � 1. We have the following well-known result (see [11]).
A strict (T, w1)-sequence over Zq1 is uniformly distributed in [0,1)w1 if and only if

lim
m→∞

(
m − T(m)

) = +∞.

It is easy to check, that the condition (m − T(m)) diverges as m increases is equivalent to
F (1)(d(1,1), . . . ,d(1,w1)) is finite for all non-negative integers d(1,1), . . . ,d(1,w1) .

For digital (F, s)-sequences we establish the notion strict digital ((T(1), . . . ,T(v)), (w1, . . . , w v))-
sequence, where for l ∈ {1, . . . , v} the T(l) : N → N0 are defined componentwise as for strict digital
(T(l), wl)-sequences above and deduce the following corollary.
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Corollary 7. A strict digital ((T(1), . . . ,T(v)), (w1, . . . , w v))-sequence is uniformly distributed in [0,1)s if and
only if for all l ∈ {1, . . . , v},

lim
m→∞

(
m − T(l)(m)

) = +∞.

Proof. The statement follows by Theorem 4 and by the equivalence of the following conditions for
an arbitrary l ∈ {1, . . . , v}: (m − T(l)(m)) → +∞ and F (l)(d(l,1), . . . ,d(l,wl)) is finite for all non-negative
d(l,1), . . . ,d(l,wl) . �

We summarize: To prove uniform distribution of a strict digital ((T(1), . . . ,T(v)), (w1, . . . , w v ))-
sequence it suffices to show uniform distribution for the v different projections of this digital se-
quence in the corresponding wl-dimensional unit cube and it seems the smaller the T(l) are the
better the strict digital ((T(1), . . . ,T(v)), (w1, . . . , w v))-sequence is distributed in [0,1)s . Discrepancy
estimates are until now only known for some special cases, as for strict digital (T, s)-sequences (see
for example [10,12,13]), for the van der Corput–Halton sequences and related ones (see for example
[1,8]) and for digital (L,F, s)-sequences as considered in [5]. Discrepancy estimates will be the topic
of forthcoming work of the author and the coauthors of [5].

The paper is organized as follows: In Section 2 we will deduce Theorem 4 from Proposition 6,
which will be proved in Section 3.

Throughout the paper we fix the positive integers v, w1, . . . , w v , set s = w1 +· · ·+ w v and fix the
different primes q1, . . . ,qv .

2. Proof of Theorem 4

We have given the (F, s)-sequence (xn)n�0 produced by the following matrices:

C (l, j) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ
(l, j)

1,0 γ
(l, j)

1,1 γ
(l, j)

1,2 γ
(l, j)

1,3 . . .

γ
(l, j)

2,0 γ
(l, j)

2,1 γ
(l, j)

2,2 γ
(l, j)

2,3 . . .

γ
(l, j)

3,0 γ
(l, j)

3,1 γ
(l, j)

3,2 γ
(l, j)

3,3 . . .

γ
(l, j)

4,0 γ
(l, j)

4,1 γ
(l, j)

4,2 γ
(l, j)

4,3 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Z
N×N

ql
,

where j ∈ {1, . . . , wl} and l ∈ {1, . . . , v}. We assume that for each l ∈ {1, . . . , v} we can set
F (l)(d(l,1), . . . ,d(l,wl)) < ∞ for all possible non-negative integers d(l,1), . . . ,d(l,wl) .

We consider elementary intervals of the following form:

I =
v∏

l=1

wl∏
j=1

[
a(l, j)

qd(l, j)

l

,
a(l, j) + 1

qd(l, j)

l

)
,

where d(l, j) are arbitrary non-negative integers and a(l, j) ∈ {0,1, . . . ,qd(l, j)

l − 1} for j ∈ {1, . . . , wl} and
l ∈ {1, . . . , v}. In order to show uniform distribution of the sequence (xn)n�0, it suffices to show that
the following relation holds for each such interval

lim
N→∞

1

N
#{0 � n < N: xn ∈ I} = λ(I), (2)

where λ(I) = ∏v
l=1

∏wl
j=1 1/(qd(l, j)

l ).
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In the following we will compute the number of elements xn for 0 � n < N , which are contained
in such an arbitrary interval. Just to avoid non-uniqueness in the ql-ary representation of the compo-
nents of xn we restrict to matrices C (l, j) with finite columns.

If d(l, j) = 0 for all j ∈ {0, . . . , wl} then we have I = [0,1)s and (2) is trivially fulfilled. In the
following we assume at least one d(l, j) > 0. Let d(l, j) ∈ N0 and a(l, j) ∈ {0,1, . . . ,qd(l, j)

l − 1} be arbitrary
but fixed for j = 1, . . . , wl and l = 1, . . . , v .

We regard the ql-ary representation of a(l, j)/(qd(l, j)

l ) = (0,a(l, j)
1 a(l, j)

2 . . .a(l, j)
d(l, j) )ql and observe that the

following condition is equivalent to xn ∈ I:

v∧
l=1

wl∧
j=1

d(l, j)∧
r=1

(
s

ql,γ
(l, j)

r
(n) ≡ a(l, j)

r (mod ql)
)
. (3)

The empty conjunction is considered to be a tautology.
We compute #{0 � n < N: xn ∈ I}/N for given N by using exponential sums.
We can calculate the number of 0 � n < N , which solve the congruence

s
ql,γ

(l, j)
r

(n) ≡ a(l, j)
r (mod ql)

using the following exponential sum

N−1∑
n=0

1

ql

ql−1∑
z(l, j)

r =0

e
(
z(l, j)

r
(
s

ql,γ
(l, j)

r
(n) − a(l, j)

r
)/

(ql)
)
.

Analogously we can compute the ratio, R(N), of solutions of the system of congruences given in (3)
for 0 � n < N by the following

R(N) = 1

q1

q1−1∑
z(1,1)

1 =0

· · · 1

q1

q1−1∑
z(1,1)

d(1,1)
=0

· · · 1

qv

qv −1∑
z(v,1)

d(v,1)
=0

· · · 1

qv

qv −1∑
z(v,w v )

d(v,w v )
=0

1

N

×
N−1∑
n=0

v∏
l=1

e

( wl∑
j=1

d(l, j)∑
r=1

((
s

ql,γ
(l, j)

r
(n) − a(l, j)

r
)
z(l, j)

r
)/

ql

)
.

We have
∑v

l=1
∑wl

j=1 d(l, j) parameters z(l, j)
r and

∏v
l=1

∏wl
j=1 qd(l, j)

l different settings of them (note that
we have finitely many settings) in the term

1

N

N−1∑
n=0

v∏
l=1

e

( wl∑
j=1

d(l, j)∑
r=1

((
s

ql,γ
(l, j)

r
(n) − a(l, j)

r
)
z(l, j)

r
)/

ql

)
. (4)

We compute (or estimate respectively) the term above for the different settings of the parameters.
If we set z(l, j)

r = 0 for all 1 � r � d(l, j) , 1 � j � wl , 1 � l � v , the term given in (4) equals 1.
Together with the previous factors in the formula of the ratio, R(N), we get the desired term λ(I) =∏v

l=1
∏wl

j=1 1/(qd(l, j)

l ).
In the following we show that (4) tends to zero as N increases for each other setting of the

parameters, and get after applying the triangular inequality
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R(N) = λ(I) +
(

v∏
l=1

wl∏
j=1

qd(l, j)

l − 1

)
· o(1),

which implies the desired relation (2).
Bearing in mind that we have at least one parameter z(l, j)

r 	= 0 for any l, j, r in the corresponding
range, we define for each l, γ (l) = (γ

(l)
t )t�0 by

γ
(l)
t :=

w j∑
j=1

d(l, j)∑
r=1

γ
(l, j)

r,t z(l, j)
r .

We can omit the terms in (4) which are independent of N , since the corresponding constant
factor (e...) has absolute value one. By the definition of the sequences γ (l) it remains to estimate the
following term:

1

N

N−1∑
n=0

v∏
l=1

e

( sql,γ (l) (n)

ql

)
.

In the following we observe that the condition in Proposition 6 is fulfilled. We know that at
least one z(l, j)

r 	= 0, where the corresponding d(l, j) � 1. Let this l be fixed. We consider the string
(γ

(l)
0 , . . . , γ

(l)
F (l)−1

). By our assumptions we have 0 < F (l) = F (l)(d(l,1), . . . ,d(l,wl)) < ∞. We consider the
matrix formed by

the left upper d(l,1) × F (l)(d(l,1), . . . ,d(l,wl))-submatrix of C (l,1) together with
the left upper d(l,2) × F (l)(d(l,1), . . . ,d(l,wl))-submatrix of C (l,2) together with
.
.
.

the left upper d(l,wl) × F (l)(d(l,1), . . . ,d(l,wl))-submatrix of C (l,wl) .
We know that the rows of this matrix are linearly independent over Zql by the definition of

F (l)(d(l,1), . . . ,d(l,wl)), which implies that our string (γ
(l)
0 , . . . , γ

(l)
F (l)−1

) has at least one entry not con-
gruent zero modulo ql , since it is a linear combination over Zql of the rows of the matrix above,
where at least one factor is not congruent zero modulo ql . By applying Proposition 6 we get the term
given in (4) is o(1) as N increases if at least one z(l, j)

r 	= 0. This concludes the proof of sufficiency of
finite F (l)(d(l,1), . . . ,d(l,wl)) for all non-negative integers d(l,1), . . . ,d(l,wl) .

Conversely: We assume that there exist l and corresponding d(l, j) such that F (l)(d(l,1), . . . ,d(l,wl)) is
infinite. Let this d(l, j) and l be fixed. We consider the projection of our sequence to the corresponding
wl-dimensional unit cube and show that it is not uniformly distributed in [0,1)wl , which immedi-
ately implies that (xn)n�0 is not uniformly distributed in the s-dimensional unit cube. Let z � d be
an arbitrary positive integer, where d = ∑wl

j=1 d(l, j) . We consider 0 � n < qz
l . We define the matrix

C (l)
z ∈ Z

d×z
ql

, formed by

the left upper d(l,1) × z-submatrix of C (l,1) together with
the left upper d(l,2) × z-submatrix of C (l,2) together with
.
.
.

the left upper d(l,wl) × z-submatrix of C (l,wl) ,

and consider the equation system over Zql ,

C (l)
z · (n(l)

0 ,n(l)
1 , . . . ,n(l)

z−1

)� =: (a(l)
1 ,a(l)

2 , . . . ,a(l)
d

)�
.
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Since the matrix C (l)
z has rank lower than d over Zql (F (l) is infinite) the system is not solvable for all

(a(l)
1 ,a(l)

2 , . . . ,a(l)
d ) ∈ Z

d
ql

. Hence, we can find an elementary interval of the following form:

I =
v∏

l=1

wl∏
j=1

[
a(l, j)

qd(l, j)

l

,
a(l, j) + 1

qd(l, j)

l

)
,

where d(l, j) are the given non-negative integers and a(l, j) ∈ {0,1, . . . ,qd(l, j)

l − 1}, j ∈ {1, . . . , wl} and
l ∈ {1, . . . , v}, that remains empty if we consider the first qz

l points of the sequence. Actually we can
find an elementary interval of the above form, that remains empty, no matter how many points we
consider. This yields

DN (x0, . . . , xN−1) �
∣∣∣∣ AN (I)

N
− λ(I)

∣∣∣∣ =
v∏

l=1

wl∏
j=1

1/
(
qd(l, j)

l

)

for all positive integers N . Hence limN→∞ DN 	= 0 and the sequence (xn)n�0 is not uniformly dis-
tributed in [0,1)s .

This concludes the proof of Theorem 4.

3. Proof of Proposition 6

We have v a positive integer, q1,q2, . . . ,qv different primes and for each l ∈ {1, . . . , v} let (γ
(l)

t )t�0

be given sequences in Z. If γ
(l)

t ≡ 0 (mod ql) for all l and t � 0 we get

1

N

N−1∑
n=0

v∏
l=1

e

(
sql,γ (l) (n)

ql

)
= 1

for all positive integers N . Hence it remains to show relation (1) if there exists at least one l ∈
{1, . . . , v} such that (γ

(l)
t )t�0 contains at least one element not a multiple of ql . Without loss of

generality we can assume that every (γ
(l)

t )t�0 contains at least one such element, because otherwise
we omit the corresponding factors all equal to one. We distinguish two cases: In the first case we
have that all (γ

(l)
t )t�0 are finite with respect to residue classes, i.e. for all l ∈ {1, . . . , v} there exists tl

such that γ
(l)

t ≡ 0 (mod ql) for all t � tl (see Section 3.1). In the second case, there exists at least one

l ∈ {1, . . . , v} so that γ
(l)

t 	≡ 0 (mod ql) for infinitely many t � 0 (see Section 3.2) and we say (γ
(l)

t )t�0
is infinite with respect to residue classes. It turns out that the second case is much harder to handle
than the first one.

3.1. Finite weight-sequences with respect to residue classes for all l ∈ {1, . . . , v}

For all l ∈ {1, . . . , v} we set tl minimal such that γ
(l)

t ≡ 0 (mod ql) for all t � tl and deduce the
following relation:

Q −1∑
n=0

v∏
l=1

e

(
sql,γ (l) (n)

ql

)
= 0, (5)

where Q = ∏v
l=1 qtl

l . For all l ∈ {1, . . . , v}, we have because of the features of γ (l) the following

sql,γ (l) (n + zQ ) = sql,γ (l) (n) (6)

for all n � 0 and z ∈ N.
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In order to show Eq. (5) we prove for all arbitrary 0 � al < ql,1 � l � v , the following relation:

#

{
0 � n < Q :

v∧
l=1

(
sql,γ (l) (n) ≡ al (mod ql)

)} = Q /(q1 · · ·qv).

Let n = n(l)
0 + n(l)

1 ql + n(l)
2 q2

l + · · · be the ql-ary representation of n. We consider the following
equation over Zql for an arbitrary l ∈ {1, . . . , v}:

(
γ

(l)
0 , . . . , γ

(l)
tl−1

) · (n(l)
0 ,n(l)

1 , . . . ,n(l)
tl−1

)� = (al)

which is equivalent to

sql,γ (l) (n) ≡ al (mod ql). (7)

The equation above (and therefore (7)) has exactly qtl−1
l solutions in {0,1, . . . ,qtl

l − 1}, because

(γ
(l)

0 . . . γ
(l)

tl−1) has rank 1 over Zql , since one entry is not congruent zero modulo ql . Thus (7) is
equivalent to the following condition:

q
tl−1
l∨
i=1

(
n ≡ α

(l)
i

(
mod qtl

l

))
,

where the α
(l)
i are the qtl−1

l different solutions of (7) in {0,1, . . . ,qtl
l − 1}. Since the q1, . . . ,qv are

different primes, by the Chinese Remainder Theorem the following condition:

v∧
l=1

q
tl−1
l∨
i=1

(
n ≡ α

(l)
i

(
mod qtl

l

))

has exactly Q /(q1 · · ·qv) solutions in {0,1, . . . , Q −1} (note that we have
∏v

l=1 qtl−1
l different systems

of congruences with exactly one solution in {0,1, . . . , Q − 1} and that all these solutions are pairwise
different). Thus (5) follows. The periodic property (6) yields

∣∣∣∣∣ 1

N

N−1∑
n=0

v∏
l=1

e

(
sql,γ (l) (n)

ql

)∣∣∣∣∣ =
∣∣∣∣∣ 1

N

N−1∑
n=[N/Q ]Q

v∏
l=1

e

(
sql,γ (l) (n)

ql

)∣∣∣∣∣ � Q

N
,

which concludes the proof of Proposition 6 in case of finite weight sequences (γ (l))t�0 with respect
to residue classes.

3.2. At least one weight sequence is infinite with respect to residue classes

We know that there exists at least one l ∈ {1, . . . , v} with γ
(l)

t 	≡ 0 (mod ql) for infinitely many
t � 0. We have to estimate the following term:

1

N

N−1∑
n=0

v∏
l=1

e

(
sql,γ (l) (n)

ql

)
.

We use methods based on q-additive properties similar as in [3,4,7].
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Because a product of ql-multiplicative functions (the notion ql-multiplicative function is defined in
the obvious way), where the ql are different integers, is difficult to handle, we exchange product and
summation using the following lemma.

Lemma 8. Let q1, . . . ,qv � 2 be pairwise coprime integers. For 1 � l � v let fl : N0 → R be ql-additive
functions. We set gl(n) := e( fl(n)) and g(n) := ∏v

l=1 gl(n), then the following inequality holds

∣∣∣∣∣
N−1∑
n=0

g(n)

∣∣∣∣∣
2

� 4N2
v∏

l=1

(
1

K

K∑
k=1

∣∣∣∣∣ 1

Q l

Q l−1∑
rl=0

gl(rl)gl(rl + k)

∣∣∣∣∣
2) 1

v+1

+ O

(
2N2

K

)
, (8)

where K = [N1/(3v)], Q l = qtl
l with tl = [2 logql

(K )] for l ∈ {1, . . . , v}.

Proof. We refer to [4, p. 38] and the references therein. �
Since sql,γ (l) (n)/ql is a ql-additive function and the ql are different primes, we can apply Lemma 8

and we show that the lth factor tends to zero as K increases under our assumption that we have
infinitely many t � 0 such that γ

(l)
t 	≡ 0 (mod ql). Note that each factor is trivially bounded by 1

in (8). For simplicity of notation we omit the index l and the superscript (l) and fix the integer q � 2
in the following.

For arbitrary positive integers N, K and r ∈ {0,1} we define the correlation functions

ΦN (k) = 1

N

N−1∑
n=0

g(n)g(n + k),

ΦK ,N (r) = 1

K

K−1∑
k=0

ΦN (k)ΦN (k + r)

for g(n) = e(sq,γ (n)/q).
Note that the difference between the lth factor in (8), apart from the exponent, and ΦK ,Q l (0),

where g(n) = e(sql,γ (l) (n)/ql) is bounded by 2/K . So it suffices to show that ΦK ,Q l (0) tends to zero as
K increases in order to show this asymptotic behavior for the corresponding factor. In the following
we will estimate ΦK ,N (0) under the assumption that we have infinitely many elements not congruent
zero modulo q in the given sequence (γt)t�0 in Z.

We need some notation and several lemmata.
We define the superscript (b) for b ∈ N0, which changes the argument in an arithmetic function

from n to qbn. Note that if f (n) = sq,γ (n), f (b)(n) remains a weighted q-ary sum-of-digits func-
tion sq,γ ′(n) with the new weight sequence (γ ′

t )t�0 = (γt+b)t�0 for all t ∈ N0. For the correlation
functions the superscript (b) denotes

Φ
(b)
N (k) = 1

N

N−1∑
n=0

g(b)(n)g(b)(n + k),

Φ
(b)
K ,N (r) = 1

K

K−1∑
k=0

Φ
(b)
N (k)Φ

(b)
N (k + r),

where g(b)(n) = g(qbn), since g : N0 → C is an arithmetic function.
If b = 0 we will omit the superscript (b) for simplicity.
We reduce the estimate of ΦK ,N (0) to the one of Φqz L,qz M(0) for some integers z, L, M big enough,

using the following lemma.
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Lemma 9. Let
√

N � K � N and we set 0 � R, S < qz, N = qz M + R, K = qz L + S. Then we have

ΦK ,N (0) = Φqz L,qz M(0) + O
(
qz/

√
N

)
. (9)

Proof. We estimate for any non-negative integer k the following

∣∣ΦN (k) − Φqz M(k)
∣∣ =

∣∣∣∣∣ 1

N

N−1∑
n=0

g(n)g(n + k) − 1

qz M

qz M−1∑
n=0

g(n)g(n + k)

∣∣∣∣∣
=

∣∣∣∣∣
(

1

N
− 1

qz M

) qz M−1∑
n=0

g(n)g(n + k) + 1

N

N−1∑
n=qz M

g(n)g(n + k)

∣∣∣∣∣
� 2

(
N − qz M

N

)
� 2qz

N
.

Since |ΦN (k)| � 1, |Φqz M(k)| � 1 and |qz/N| � 1 it is easy to deduce

ΦN (k)ΦN (k) = Φqz M(k)Φqz M(k) + O

(
qz

N

)
,

where the O -constant is absolute.
We use this relation to compute ΦK ,N (0),

ΦK ,N (0) = 1

K

K−1∑
k=0

ΦN (k)ΦN (k)

= 1

K

K−1∑
k=0

Φqz M(k)Φqz M(k) + O

(
qz

N

)

= ΦK ,qz M(0) + O

(
qz

N

)
.

Replacing K by qz L analogously as N by qz M yields

∣∣ΦK ,qz M(0) − Φqz L,qz M(0)
∣∣ = O

(
qz

K

)
.

Altogether we obtain

ΦK ,N (0) = Φqz L,qz M(0) + O

(
qz

N

)
+ O

(
qz

K

)
.

Since
√

N � K � N the result follows. �
We now consider the correlation function according to the lth factor on the right-hand side of (8),

ΦK ,Q l (0), and deduce the desired asymptotic behavior. For simplicity the index l and superscript (l)
are omitted.

We assume Q � q10 and set t := [logq(Q )/5] then we have in both cases for z = 2t , Q = q2t M + R ,
K = q2t L + S and for z = 2t + 1, Q = q2t+1M ′ + R ′ , K = q2t+1L′ + S ′ that the error term in (9) tends
to zero as Q increases and further L, L′ � 1, M, M ′ � 1, note that by the definitions in Lemma 8 we
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have K � Q � K 2 for K big enough. We are now in a position to apply Lemma 9 for z = 2t and for
z = 2t + 1, respectively, to estimate ΦK ,Q (0).

In the following we estimate Φq2t L,q2t M(0). In [4, p. 43] we proved for g(n) = e(hsq,γ (n)) where
h is a non-zero integer and (γ i)i�0 is a given sequence in R and sq,γ (n) denotes the weighted q-ary
sum-of-digits function that for r ∈ {0,1} we have

Φq2t L,q2t M(r) � e−∑t−1
i=0 ‖h(γ 2i+1−qγ 2i)‖2/4

(
1 + 7q2

L

)
, (10)

where for a real x, ‖x‖ here and later on denotes the distance to the nearest integer. Since L � 1 we
have 1 + 7q2/L � 1 + 7q2. If we set h = 1 and γ i = γi/q we obtain the following statement.

If

∞∑
i=0

‖γ2i+1/q‖2 = ∞

then Φq2t L,q2t M(r) tends to zero as t (and therefore K , Q and N) increases. Furthermore under this
condition we have

1

N

N−1∑
n=0

v∏
l=1

e

(
sql,γ (l) (n)

ql

)
= o(1)

as N increases.
We know by our assumption that infinitely many γi 	≡ 0 (mod q). If

∞∑
i=0

‖γ2i+1/q‖2

is convergent, then

∞∑
i=1

‖γ2i/q‖2

has to be divergent. In the following we show, that if this holds instead, then Φq2t+1 L′,q2t+1 M′ (0) tends
to zero as t increases (and therefore K , Q , N), which will conclude the proof of Proposition 6. In
[4, p. 40] we proved the following result.

Lemma 10. For r ∈ {0,1} we have

Φ
(b)
qK ,qN (r) = λ

(b)
r Φ

(b+1)
K ,N (0) + μ

(b)
r Φ

(b+1)
K ,N (1) + ν

(b)
r Φ

(b+1)
K ,N (0) + E(b+1)

K ,N (r), (11)

where |E(b+1)
K ,N (r)| � 2/K and with certain λ

(b)
r ,μ

(b)
r , ν

(b)
r satisfying

∣∣λ(b)
r

∣∣ + ∣∣μ(b)
r

∣∣ + ∣∣ν(b)
r

∣∣ � 1.

Let us use (11) for Φq2t+1 L′,q2t+1 M′ (0) and b = 0. We obtain after applying the triangular inequality

∣∣Φq2t+1 L′,q2t+1 M′ (0)
∣∣ � |λ0|

∣∣Φ(1)

q2t L′,q2t M′ (0)
∣∣ + |μ0|

∣∣Φ(1)

q2t L′,q2t M′ (1)
∣∣

+ |ν0|
∣∣Φ(1)

2t ′ 2t ′ (0)
∣∣ + ∣∣E(1)

2t ′ 2t ′ (0)
∣∣.
q L ,q M q L ,q M
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We have

• |λ0|, |μ0|, |ν0| are trivially bounded by 1.
• |E(1)

q2t L′,q2t M′ (0)| � 2/(q2t L′), which tends to zero as t increases since L′ � 1.

• |Φ(1)

q2t L′,q2t M′ (r)| = O (e−∑t
i=1 ‖γ2i/q‖2

).

In the last item we used (10) for h = 1 and γ i = γi+1/q for all i � 0 (we raise the index i because of
the superscript (1)). Altogether we arrive at

Φq2t+1 L′,q2t+1 M′ (0) = o(1)

as t (and therefore K , Q , N) increases, if
∑∞

i=1 ‖γ2i/q‖2 = ∞. This leads to the conclusion that

1

N

N−1∑
n=0

v∏
l=1

e

(
sql,γ (l) (n)

ql

)
= o(1)

as N increases if

∞∑
i=1

‖γ2i/q‖2 = ∞ or
∞∑

i=0

‖γ2i−1/q‖2 = ∞.

The condition is equivalent to there exist infinitely many γi 	≡ 0 (mod q), which is fulfilled by our
assumption. Hence the proof of Proposition 6 is complete.
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