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1. Introduction

The differential modular forms are invented by Buium and his collaborators in a beau-
tiful series of papers [8–10,12,11]. These are the modular forms obtained by applying the
arithmetic p-jet space functor (adjoint to the p-typical Witt vector functor) to the ring
of modular forms. We wish to understand the differential modular forms obtained by ap-
plying arithmetic jet space functor to the ring of modular forms on Shimura curves over
totally real fields [19]. This paper is a modest attempt to study the differential modular
forms for Shimura curves over totally real fields extending the results for the Shimura
curves over Q [9,10]. We note that the present paper is the first initiative to investigate
the differential modular forms for fields different from Q. It is expected that the study
of the differential modular forms on the Shimura curves over totally real fields should be
0022-314X/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
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useful in an “effective” proof of the André–Oort conjecture for the Shimura curves over
totally real fields. The aim of the present paper is to study the following questions.

Question 1. Describe the Shimura curves over totally real fields modulo Hecke correspon-
dences.

Question 2. Describe the quotient of Shimura curves over totally real fields modulo
isogeny.

Question 3. Describe the “test objects” of the Shimura curves over totally real fields
which have lifts of Frobenius.

Question 4. Describe explicit lifts of Hasse invariants for the Shimura curves over totally
real fields.

We observe that isogeny covariance is stronger condition than being Hecke equivari-
ance. Inspired by Kolchin’s theory for differential algebras, Buium introduced δ-geometry
and the theory of differential modular forms to answer these questions. δ is an analogue
of the differentials for number fields. We enlarge the algebraic geometry to δ-geometry
of Buium to study the questions. As in [11], we replace polynomials with arithmetic
differential equations to describe the categorical quotients of Questions 1, 2 and the ge-
ometrically significant class of abelian schemes inside the unitary PEL Shimura curves
as in Questions 3 and 4.

Some of the differential modular forms over totally real fields also have certain symme-
tries, namely isogeny covariance. This is one of the motivation of the study/construction
of the differential modular forms. We closely follow the constructions of basic differential
modular forms of Buium to show that there exist differential modular forms over totally
real fields, whose zero sets are the solutions to the questions.

Let f =
∑

n anq
n be a classical elliptic newform of weight 2 with respect to the

congruence subgroup Γ1(N). Let Kf = Q({an}n) be the coefficient field of this newform
with gf = [Kf : Q]. Buium attached gf differential eigenforms of order 2, weight 0
to such a classical newform in [12]. We fix a totally real number field F with ring of
integers OF and let N be an ideal of OF . We assume that the field F and the ideal N
satisfy the following Jacquet–Langlands condition: either [F : Q] is odd or ordv(N) = 1
for all v | N . Let T denote T ⊗

∏
p Zp for any abelian group T and let K0(N) = {

(
a b
c d

)
∈

GL2(OF )|N | c} be a subgroup of GL2(F ).
Let p be an odd prime not dividing the discriminant of the totally real field F and let

P be a prime ideal of OF over p. We also assume that a fixed quaternion algebra over F
is split at P (cf. Section 2). In this paper, we will study differential modular forms w.r.t.
this fixed prime ideal.

Let f be a Hilbert modular newform over F of parallel weight 2, level K0(N) and
trivial central character with the coefficient field Kf , a number field of degree h. Then
there is an abelian variety of dimension h with a motivic L-function. This abelian variety
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is a quotient of the Jacobian of a suitably defined Shimura curve. We now state one of
the main theorems of this paper, which gives a partial answer to Question 1.

Theorem 5. Let f be a Hilbert modular newform as above. There exist h non-zero linearly
independent differential modular forms on Shimura curves over totally real fields (cf.
Section 3) of weight 0, which are eigenforms of the Hecke operators for all ideals m

coprime to the ideal PN .

Notice that the above theorem is a generalization of Theorem 2.6 in [12] for totally
real number fields. This theorem is a partial result towards the “Main Conjecture” 2.54
of [11].

Theorem 6. There exist 16d2 isogeny covariant full cotangent differential modular forms
(cf. Section 3) of order 1 and weight 1+φ on any affine, open subscheme of the Shimura
curves over totally real fields of degree d > 1 such that the quaternionic abelian schemes
(cf. Section 2) on this affine scheme have lifts of the Frobenius at P if and only if they
belong to the zero set of these forms. One of these full cotangent differential modular
forms is a differential modular form of weight 1 + φ.

Proposition 7. For all r, there exist non-zero isogeny covariant differential modular forms
of order r and weight 1 + φr.

The points of these Shimura curves are abelian schemes with some extra structure
coming from endomorphism, polarization and level. Recall that Hasse invariants for the
quaternionic Shimura curves over totally real fields are defined in [19, Section 5].

Theorem 8. Let p be an odd prime that splits completely in F . There exist isogeny covari-
ant differential modular forms of weight 1 − φ and order 1 on the Shimura curves over
totally real fields such that on the set of ordinary points of the special fiber they coincide
with the Hasse invariants of the Shimura curves over totally real fields.

Since differential modular forms are global sections of certain line bundles on com-
pact Shimura curves, they do not have Fourier expansions. We define the Serre–Tate
expansions for differential modular forms on Shimura curves over totally real fields in
Section 6 as a special case of the general expansion principle in [11].

2. Modular forms on quaternionic Shimura curves over totally real fields

We start by recalling few basic facts about Shimura curves over totally real fields
mentioned above. Let F be a totally real field of degree d > 1 with τi : F → R for
1 � i � d its embeddings in R. We denote τ1 simply by τ . Let OF be the ring of integers
of F and let N be an ideal of OF . Fix a prime p as in the introduction and we denote
the primes of F lying above p by P1, . . . ,Pm. We call P1 simply P. Let FP denote the
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completion of F at P. Let OP be the ring of integers of FP with residue field κ of order
q = pf . Without loss of generality, we may assume p is the uniformizer of OP.

Let O(P) be the localization of OF at P with completion Ô(P). Let Ô(P)
nr

denote the
maximal unramified extension of Ô(P). This is a discrete valuation ring with maximal
ideal generated by p. Let R denote the completion of Ô(P)

nr
.

Let B be a quaternion algebra over F which is split at τ and ramified at all other
infinite places. We also assume that B is split at P. Let N be a non-zero ideal of OF

and E be a totally imaginary quadratic extension of F whose relative discriminant is
prime to N . Let D = B ⊗F E be the quaternion algebra with center E. We have an
inclusion,

E → E ⊗Qp = Fp ⊕ Fp = FP1 ⊕ · · · ⊕ FPm
⊕ FP1 ⊕ · · · ⊕ FPm

.

The above decomposition of E ⊗ Qp induces a decomposition OD ⊗ Zp = (OD1 ⊕
OD2 · · ·ODm

) ⊕ (OD1 ⊕OD2 · · ·ODm
). Hence every OD ⊗ Zp module Λ decomposes as

Λ =
(
Λ1

1 ⊕ Λ1
2 ⊕ · · · ⊕ Λ1

m

)
⊕

(
Λ2

1 ⊕ Λ2
2 ⊕ · · · ⊕ Λ2

m

)
.

Since B is unramified at the prime P1, we have OD1 = M2(OP). The matrix algebra
M2(OP) has two idempotents e =

( 1 0
0 0

)
and 1 − e =

( 0 0
0 1

)
. There is a further decom-

position of Λ2
1 as two isomorphic projective R module eΛ2

1 and (1− e)Λ2
1 with an action

of OP. We denote them by Λ2,1
1 and Λ2,2

1 respectively. Let Γ be the restricted direct
product of (B ⊗ Fν)∗ for all places ν but P. We are interested in subgroups of Γ of the
form GL2(OP) ×H and we denote them by {0, H}.

For any abelian scheme A, let At = Pic0(A) be the dual abelian scheme of A and
Â be the formal completion of A along the closed fiber p. Let G = ResF/Q(B∗) be an
algebraic group such that G(Q) = B∗ acts on the complex manifold H± = C − R. Let
Af =

∏
p Zp denote the ring of finite adeles of Q. We fix an open, compact subgroup

K ⊂ G(Af ) and now consider the Shimura curve, whose C valued points are MK(C) =
G(Q)\H± ×G(Af )/K. By the work of Shimura, there is a model of this Shimura curve
over F , though it won’t have any modular interpretation. According to Jarvis (cf. [18,
p. 4, Thm. 3.1]), this Shimura curve has a model over OP ∩ F . Carayol introduced an
auxiliary Shimura curve in [16] with a model over E. We fix an embedding of E in FP

and base change this new unitary PEL Shimura curve to FP. The model of this Shimura
curve has a modular interpretation.

We now define these PEL Shimura curves. Let V be the underlying Q vector space
of D with a fixed trace form (cf. [19, p. 4]). For any FP-algebra R, let G′(R) be the group
of symplectic similitudes w.r.t. this trace form [19]. Let Γ ′ = G′(Af,p)×(B⊗FP1)∗×· · ·×
(B⊗FPm

)∗ be an adelic group with G′(Af ) = Q∗
p×GL2(FP)×Γ ′. Let K ′ = Zp×KP×H ′

be an open compact subgroup of Γ ′. We consider the Shimura curve with C valued points
M ′

K′(C) = G′(Q)\X ′ ×G′(Af )/K ′. This Shimura curve has a smooth, canonical proper
model over E. The base change of this curve to FP is denoted by M ′

K′ .
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Theorem 9. (See Carayol [16].) M ′
K′ represents the functor

(FP-algebra)op → Sets

that sends any FP-algebra S to the set of all isomorphism classes of (A, i, θ, αP) such
that

• A is an abelian scheme over S of relative dimension 4d equipped with an action of OD

given by i : OD → EndS(A) such that
(1) the projective S module Lie2,1

1 (A) has rank one and OP acts on it via OP → S,
(2) for j � 2, we have Liej2(A) = 0,

• θ is a polarization of A of degree prime to p such that the corresponding Rosati
involution sends i(l) to i(l∗),

• αP is a K ′ level structure, so a class modulo K ′ of symplectic OD linear isomor-
phisms αP : T̂ (A) � V ⊗Z Ẑ.

If we choose the subgroup of the form {0, H ′}, then there is a specific choice of the
level structure (last condition in the above theorem) [5]. For H ′ sufficiently small, there
is a smooth curve M′

0,H′ over OP such that M ′
0,H′ = M′

0,H′ ⊗FP [16, Prop. 5.3, p. 191].
By [5, p. 38], the smooth curve M′

0,H′ solves the same moduli problem but now for
OP-algebras.

In this paper, we denote the points of this quaternionic Shimura curve by “quaternionic
abelian schemes”. The above moduli problem is fine. There is a universal object (A′

K′ =
A′

0,H′ , i, θ, αP) over M′
0,H′ such that any test object over an OP-algebra R is obtained by

pulling back the universal quadruple via the corresponding morphism Spec(R) → M′
0,H′ .

Let ε : A′
0,H′ → M′

0,H′ denote the structure map. The OM′
0,H′

module ε∗(Ω1
A′

0,H′/M
′
0,H′

)

is an OD⊗Zp module and ω = (ε∗(Ω1
A′

0,H′/M
′
0,H′

))2,11 is a line bundle on M′
0,H′ . Let ωA/R

be the corresponding line bundle on the quaternionic abelian scheme A/R.
For any OP-algebra R, the space of modular forms over R of level K ′ and weight k is

defined by

SD
(
K ′, k, R

)
= H0(M ′

0,H′ ⊗R,ω⊗k
)
.

To study the Shimura curves M0,H , the following theorem of Carayol [16] shows that it
is enough to study the Shimura curves M ′

0,H′ .

Theorem 10 (Carayol). Let H ⊂ Γ be a small enough open compact subgroup and NH

a connected component of M0,H ⊗ Fnr
P . There exists an open compact subgroup H ′ ⊂ Γ ′

and a connected component N ′
H′ of M ′

0,H′ ⊗Fnr
P , such that NH and N ′

H′ are isomorphic
over Fnr

P .
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2.1. Arithmetic jet spaces and Witt vectors

In this section, we briefly recall the concept of p-typical Witt vectors and arithmetic jet
spaces by closely following [4] and [6]. For any ring A, we denote by Â its completion in the
p-adic topology. By p-adic ring, we mean a ring A such that A = Â = lim←−n

A/pnA. Any
such ring has a natural structure of Zp-algebra. For any p-adic ring S, let Spf(S) be the
formal scheme obtained by completing Spec(S) along the closed subscheme defined by the
ideal pS. By a p-formal scheme, we shall understand a formal scheme locally isomorphic
to formal schemes Spf(S). For a scheme X over OP, let X̂ be the completion of X along
the closed subscheme defined by the ideal (p). Let C be the category of p-formal schemes.

Let CRings be the category of p-adic rings. For any A ∈ CRings, we may consider
the ghost maps wi : Am+1 → A, 0 � i � m by wi(a0, a1, . . . , am) =

∑
j p

jap
i−j

j . Let
◦n : CRings → CRings be the functor ◦n(A) = An. Recall that the Witt vector
is a functor Wn : CRings → CRings whose underlying functor CRings → Sets is
Wn(A) = An+1 and for which the ghost maps w : Wn(A) → An+1; (xn)n → (wn)n
define a natural transformation of functor of rings Wn → ◦n+1. The ring W (A) is an
inverse limit of the rings Wn(A).

Following [4], we recall that W (A) is an example of a ring B with a map ψ : B → A

and a Frobenius map F : B → B which reduces to the map x → xp mod pB. The ring
W (A) is a universal object in the category of rings with Frobenius map and with a map
to A. In other words, if B′ is another ring with a map ψ : B′ → A and a Frobenius
map F : B′ → B′ which reduces to the map x → xp mod pB′ then there exists a map
ψ̃ : B′ → W (R) which commutes with Frobenius and satisfies the following diagram:

B′ ψ̃

ψ

W (A)

w0

A.

Let ϕ : A → B be a ring homomorphism.

Definition 1. A map δ : A → B is called a p-derivation of ϕ if it satisfies the following
equalities:

• δ(1) = 0.
• δ(xy) = (ϕ(x))pδ(y) + (ϕ(y))pδ(x) + pδ(x)δ(y).
• δ(x + y) = δ(x) + δ(y) + Cp(ϕ(x), ϕ(y)).

Here, Cp(x, y) = xp+yp−(x+y)p
p is a polynomial with integer coefficients.

In other words, δ is such that the map (ϕ, δ) : A → W1(B) (where W1(B) is the ring
of “Witt vectors” of length 2 on B) is a ring homomorphism. For a p-derivation δ of ϕ,
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let φ : A → B denote the ring homomorphism φ(a) = ϕ(a)p + pδ(a). If R = B then φ

lifts the p-power Frobenius of R/pR. A δ-ring is a ring A ∈ CRings equipped with a
p-derivation A → A. The category of δ-rings is the category DCRings whose objects
are δ-rings and whose morphisms are the ring homomorphisms that commute with δ.
The arithmetic jet space functor is a left adjoint functor to the Witt vector functor. In
other words, we have HomCRings(Jn(C), R) � HomDCRings(C,Wn(R)).

By a prolongation sequence, we mean a sequence S0 →ϕ0
S1 →ϕ1

S2 · · · of ring
homomorphisms which are equipped with p-derivations of ϕn’s S0 →δ0

S1 →δ1
S2 · · ·

such that ϕn ◦ δn+1 = δn ◦ ϕn+1. For any ring C, J∗(C) = (Jn(C)) is naturally a
prolongation sequence. We fix an embedding OP → R. Let φ : R → R be the unique ring
homomorphism that lifts the p-power Frobenius endomorphism. We endow the ring R

with the derivation of identity δ(x) = φ(x)−xp

p . Let R∗ be the prolongation sequence
obtained by letting all Rn = R and all p-derivations be equal to δ. In this paper, we only
consider prolongation sequences S∗ over R∗ [8, p. 103] with each Sn p-adically complete,
Noetherian and flat over R.

We recall the following fundamental proposition of Buium. The arithmetic jet space
functor induces a contravariant functor from the category of affine schemes to itself. This
functor induces by gluing a functor from the category C to itself [6].

Proposition 11. For X,Y ∈ C, giving a morphism f ∈ Hom(Jn(X), Y ) is equivalent to
attaching any prolongation sequence S∗ a map fS∗ : X(S0) → Y (Sn) which is functorial
in S∗.

Proof. Follows from [8, Prop. 1.9, p. 107]. �
2.2. δ weight

If G and G′ are two groups, by a δ-homomorphism of order � n we mean a group
homomorphism χ : Jn(G) → G′. Let Z[φ] denote the polynomial ring in φ with coeffi-
cients in Z. If w =

∑n
0 aiφ

i with ai ∈ Z, we get a δ-homomorphism χw : Ĝm → Ĝa

by χw(λ) = λa0φ(λ)a1 · · ·φn(λ)an . By a δ weight, we mean group homomorphisms
Jr(Gm) → Ĝa. For a δ weight w =

∑n
0 aiφ

i ∈ Z[φ], let deg(w) =
∑n

0 ai be the degree
of the weight w. By Proposition 11, giving δ weights are equivalent to giving homomor-
phisms (S0)∗ → Sn.

3. Differential modular forms on the quaternionic Shimura curve

Let H ′ be an open compact subgroup of Γ ′ and let X be an affine, open subscheme
of M ′

0,H′ . Let V = Spec(
⊕

n∈Z ω
⊗n) → X be the physical line bundle attached to the

line bundle ω with zero section removed. The space of modular forms M = M(X) on X

are the global sections of V on X [19]. The space of differential modular forms are global
sections of Jn(V ).
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We now make it more explicit following [14]. A differential modular form of weight
w ∈ Z[φ], order � n over X is a rule which assigns to any “test object” (A, i, θ, αP, ω, S∗)
over S0, where

• (A, i, θ, αP) ∈ X(S0),
• ω is a basis of ωA/S0 ,
• prolongation sequence S∗ over R∗,

an element f(A, i, θ, αP, ω, S∗) ∈ Sn such that

• f(A, i, θ, αP, ω, S∗) depends on S∗ and the isomorphism classes of (A, i, θ, αP, ω),
• the formation of f(A, i, θ, αP, ω, S∗) is functorial in S∗,
• for any λ ∈ S0, we have f(A, i, θ, αP, λω, S∗) = χw(λ)−1f(A, i, θ, αP, ω, S∗).

A full cotangent differential modular form of order � n and weight w is a rule f that takes
“test object” (A, i, θ, αP, ω, S∗) consisting of a prolongation sequence S∗, a quaternionic
abelian scheme (A, i, θ, αP) and a basis ω of the projective OP module H0(A,ΩA) of
dimension 4d, an element f(A, i, θ, αP, ω, S∗) ∈ Sn such that

f
(
A, i, θ, αP, λω, S∗) = χw(λ)−1f

(
A, i, θ, αP, ω, S∗)

for λ ∈ S0. Observe that the information about the 1-dimensional projective OP mod-
ule H0(A,ΩA)2,11 is clearly not sufficient to completely determine when a “test object”
consisting of a 4d-dimensional abelian scheme has a lift of Frobenius (Theorem 6). To
salvage the situation, we introduce full cotangent differential modular forms which may
be thought of as a generalization of the differential modular forms in our setting. This
is inspired by the concept of matrix valued Siegel differential modular forms (cf. [2,
p. 1461]). Let Mn be the space of all differential modular forms over X of all weights
and order n.

Lemma 12. M̂n = Jn(M).

Proof. Since M = O(V ) and X is affine, hence we have Jn(M) = O(Jn(V )). The
points of X(S0) are the isomorphism classes of quaternionic abelian schemes over S0

with certain structures coming from endomorphism, polarization and level structures.
By Proposition 11, giving a morphism Jn(V ) → S0 is equivalent to giving a morphism
V (S0) → Sn. Hence, we deduce the desired equality. �

For an isogeny u : A1 → A2 of degree prime to p between two quaternionic abelian
schemes over S0, let [u] be the 4d× 4d matrix corresponding to the natural linear map
between the cotangent spaces. A full cotangent differential modular form f of weight k

is said to be isogeny covariant if for any isogeny u : A1 → A2 with [u] = Id,
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f
(
A1, i1, θ1, ω1, S

∗) = deg(u)−
deg(k)

2 f
(
A2, i2, θ2, ω2, S

∗).
We note that the isogenies are not required to commute with polarizations or endomor-
phism structures.

4. d-Dimensional formal group attached to abelian schemes

In this section, we recall some basic facts about d-dimensional formal group. Let
A be an abelian scheme of relative dimension d over R. Since the abelian schemes
are commutative, it is enough to study the behavior of the tangent space at the
origin. Let e : Spec(R) → A be the identity section and let OA,e be the regular
local ring at the origin with maximal ideal mA,e. Finally let Ofor

A,e be the comple-
tion of OA,e w.r.t. mA,e-adic topology. Since A is smooth of relative dimension d,
there exist indeterminates X1, X2, . . . , Xd such that Ofor

A,e = R[[X1, . . . , Xd]]. Similarly,
Ofor

A×A,e×e = R[[Y1, . . . , Yd, Z1, . . . , Zd]] with Xi ◦ π1 = Yi and Xi ◦ π2 = Zi. The mul-
tiplication map m : A × A → A induces morphism m∗ : Ofor

A,e → Ofor
A×A,e×e with

Fi(Yi, Zi) = m∗(Xi). We get a d-tuple of power series F = (F1, . . . ,Fd) ∈ R[[X,Y ]]d,
which satisfies the following properties:

Proposition 13. If Y = (Y1, . . . , Yd) and Z = (Z1, . . . , Yd), then

• F(Y ,Z) = Y + Z (mod mA,e),
• F(Y , 0) = Y , F(0, Y ) = Y ,
• F(X,F(Y ,Z)) = F(F(X,Y ), Z).

If in addition, Fi(X,Y ) = Fi(Y,X) for all i then the formal group law is said to be
commutative. Once we choose a basis ωi of H0(A,ΩA), by duality it will determine a
basis of the tangent space H0(A, TA/S). Now, let F(X,Y ) ∈ R[[X,Y ]]d be a d-dimensional
formal group and n be a positive integer. We can construct a formal group with a formal
group law p−nF(pX, pY ). This gives a p-formal group structure F{n} on the affine space
Ĝd

a and we call them the n-twists of F . According to [6, Prop. 3.3], we have a complete
description of the kernel Jn(G) → Jn−1(G).

Proposition 14. Let G/R be a smooth group scheme of finite type and let F be any formal
group law defining the associated local formal group. The kernel of Jn(G) → Jn−1(G)
is isomorphic as a p-formal group to the twist Fφn{n} of Fφn . Here, Fφn is the formal
group law obtained by applying φn to the coefficients of the formal group law F .

4.1. The Hasse invariant

Let R0 be an Fp-algebra and (A, i) be a quaternionic abelian scheme over an
R0-algebra R. Consider the abelian scheme A(q) obtained from base change by the
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q-power Frobenius map on R. Finally, let F : A → A(q) be the Frobenius map with
V : A(q) → A the dual isogeny (Verschiebung) and let ω be a basis of H0(A,ΩA/R)2,11 .
To prove Theorem 8, it is useful to recall the definition of the Hasse invariant for Shimura
curves over totally real field [19, Prop. 3.3].

Let W = Spec(R) be an affine open subset of M ′
0,H′ ⊗ k. We choose a coordinate of

(OA,e)2,11 such that ω = (1 + a1X + a2X
2 · · ·)dx. In this coordinate, the action of the

uniformizer takes the form [p](X) = pX+aXq +
∑

j cjX
j(q−1). We now define the Hasse

invariant by H|W = aω⊗(q−1). By suitably modifying [21, Lemma 3.6.1], we observe
that C(ω) = Hω(q) for the Cartier operator C on the cotangent complex.

4.2. Frobenius operator and unit root subspace of the De Rham cohomology of
quaternionic abelian schemes

Let (A/S0, i, θ, α, ω, S∗) be a test object as in Section 3. Let ϕ : S0 → S1 be a ring
homomorphism and δ : S0 → S1 be the p-derivation of ϕ. Let φ : S0 → S1 be the ring
homomorphism φ(x) = ϕ(x)p + pδ(x). Let Aϕ/S1 and Aφ/S1 be the pullback of A/S0

by ϕ and φ.
Let pr : Aφ → A be the projection map. A quaternionic abelian scheme A/S0 is said

to have a lift of Frobenius if there is a morphism FA/S∗ : Aϕ → Aφ whose reduction
modulo p is the p-power Frobenius map and which satisfies the following diagram:

Aϕ

uϕ

FA

FA/S∗

Aφ

uφ

pr
A

u

S1 φ∗

S0.

For an affine scheme of the form S = Spec(R), the De Rham cohomology Hn
dR is

a contravariant functor from the category of S-schemes to the category of R modules.
Let iφ : H1

dR(A/S0) → H1
dR(A/S0) ⊗φ S1 be the natural inclusion of the De Rham

cohomology groups and let Φ = H1
cry(Fϕ,φ) be the Frobenius endomorphism on the

De Rham cohomology [8, p. 135].
Recall, the Frobenius Φ has the property Φ(iφ(λx)) = φ(λ)Φ(iφ(x)) [1, p. 244]. Let

C ⊂ A be the canonical subgroup [19, Thm. 9.1, p. 19] with A′ = A/C the quotient
abelian scheme and π : A → A′ the projection map. Let M0 be the ring of p-adic ordinary
modular forms and let A be the universal “ordinary” quaternionic abelian scheme. Let
C be the canonical subgroup of A and let A′ = A/C. Again by [19, Thm. 9.1, p. 19],
this quaternionic abelian scheme is ordinary. Hence, there is a unique homomorphism
φ : M0 → M0 such that A′ = Aφ and φ is the Frobenius homomorphism of M0.
Let Φ = π∗ ◦ φ−1 : H1

dR(A/M0) → H1
dR(A/M0) be the Frobenius morphism on the
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De Rham cohomology group. Note that the Frobenius Φ respects the Hodge filtration and
hence by an argument of successive approximation, there is a subspace of the De Rham
cohomology invariant under the Frobenius. In other words, there exists U ⊂ H1

dR(A)
such that Φ(u) = u for all u ∈ U and H1

dR(A) = H0(A, ΩA) ⊕ U . For any quaternionic
ordinary abelian scheme, we get the unit root subspace as a pullback in the De Rham
cohomology of the unit root subspace U (cf. [1, p. 248]).

We now prove a lemma about the De Rham cohomology of an abelian scheme in
characteristic p > 0:

Lemma 15. For a “test object” on the special fiber of the Shimura curve M′
0,H′ , the

Frobenius endomorphism commutes with the Hodge filtration of the De Rham cohomology
groups. In other words, we have a commutative diagram in the De Rham cohomology
groups:

H1
dR(Aφ)

F

π H1(Aφ,O
Aφ)

F

H1
dR(Aϕ) π H1(Aϕ,OAϕ).

Proof. Since the Hodge–De Rham spectral sequence degenerates at E1, we have a short
exact sequence for any abelian scheme A/S

0 → Ω1
A/S → H1

dR(A/S) → H1(A,OA) → 0.

Since the formation of this short exact sequence is functorial, so the Frobenius map of
the abelian scheme Aϕ/S1 gives rise to a commutative diagram as in the statement of
the lemma. �

According to [3], there exists a canonical perfect bilinear pairing

〈 〉d : H1
dR(A) × H1

dR
(
At

)
→ OS .

We also have an evaluation bilinear pairing 〈 〉e : H0(A,ΩA) × Lie(A) → OS . There
is a natural isomorphism Lie(A) → H1(At,OAt) [15, p. 114]. Recall that the Cartier
operator is dual to the absolute Frobenius w.r.t. the pairing 〈 〉e. In other words, we
have an equality 〈η, C(ω)〉e = 〈F ∗η, ω〉e.

For any OS module T , we set T̂ = HomOS
(T,OS). The above two bilinear pairings are

induced by functorial homomorphisms ψA : ̂H1
dR(At) → H1

dR(A) and ψ0
A : ̂H0(At, ΩAt) →

H1(A,OA). By [15, Thm. 5.1.6], these homomorphisms are actually isomorphisms. We
can write

〈η1, η2〉d = ψ−1
A (η1)(η2)
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for η1 and η2 in H1
dR(A) and H1

dR(At) respectively. Similarly, we conclude that 〈ω, η〉e =
ψ0
A
−1(η)(ω) for η and ω in H1(A,OA) and H0(At, ΩAt).

Lemma 16. The evaluation pairing is compatible with the pairing 〈 〉d in the De Rham
cohomology groups.

Proof. Let i : H0(At, ΩAt) → H1
dR(At) be the natural inclusion map. Recall [15,

Prop. 7.2.1, p. 115], we have the following commutative diagram in the De Rham coho-
mology group:

̂H1
dR(At)

ψA

î ̂H0(At, ΩAt)

ψ0
A

H1
dR(A)

πA H1(A,OA).

Using this, we get

〈
πA(η), ωt

〉
e

= ψ0
A
−1

πA(η)
(
ωt

)
= îψ−1

A (η)
(
ωt

)

:= ψ−1
A (η)

(
i
(
ωt

))
=

〈
η, i

(
ωt

)〉
d
. �

Lemma 17. If u : A → B be an isogeny between two abelian schemes over S, then we
have a commutative diagram in the De Rham cohomology:

H1
dR(B/S) × H1

dR(Bt/S)

u∗

S

H1
dR(A/S) × H1

dR(At/S)

ut∗

S.

Proof. By [15, Prop. 7.2.2, p. 116], we have a commutative diagram

̂H1
dR(Bt/S)

ût∗

ψB H1
dR(B/S)

u∗

̂H1
dR(At/S)

ψA H1
dR(A/S).

We obtain

〈
u∗(φ2), ωt

1
〉
A

= ψ−1
A u∗(φ2)

(
ωt

1
)

= ût∗ψ−1
B (φ2)

(
ωt

1
)

= ψ−1
B (φ2)

(
ut∗ωt

1
)

=
〈
φ2, u

t∗ωt
1
〉

. �

B
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The following two important lemmas of Buium will be very useful in the proof of
Theorem 6. We fix a prolongation sequence S∗ (cf. Section 2.1).

Lemma 18 (Buium). An abelian scheme A over S0 has a lift of Frobenius if and only if
the projection J1(A) → Â has a section.

Lemma 19 (Buium). For any abelian scheme A of relative dimension g over S0, the
following are equivalent:

• A has a lift of Frobenius,
• the S1 module Hom(J1(A), Ĝa) has rank g.

The proofs are given in [6, Prop. 3.2, p. 328] and [11, p. 74, Cor. 3.7].

5. Explicit differential modular forms for totally real fields

In this section, we prove Theorems 5, 6 and 8 by closely following the fundamental
constructions of Buium and Barcau.

5.1. Proof of Theorem 5

Proof of Theorem 5. Let the field F and the ideal N satisfy the Jacquet–Langlands con-
dition. We use the converse of the Jacquet–Langlands correspondence due to Zhang [24,
Thm. 5.4, p. 32] to identify automorphic representations of PGL2(AF ) of parallel
weight 2, level K0(N) and holomorphic 2-forms on the Shimura curve M0,H , which are
common eigenforms for all the Hecke operators. We also denote by f the holomorphic
2-form on the Shimura curve corresponding to f . Let αf be the character of T induced
by f and let Af be the maximal abelian subscheme of Jac(M0,H) killed by the kernel
of αf . According to [23, Lemma 3.4.5], we have a decomposition Jac(M0,H) �

⊕
f Af

with a projection map Π : Jac(M0,H) → Af .
Recall that the Hodge class [ζ] is a degree 1 line bundle obtained by a suitable nor-

malization of the canonical bundle. In [23], Zhang defined a map β : M0,H → Jac(M0,H)
by β(x) = [x] − [ζ]. We use Theorem 10 and fix an isomorphism s between the con-
nected components M0

0,H and T = M ′ 0
0,H′ of two Shimura curves. By composing the

above morphism with s, we get a morphism T → Jac(M0,H) over C and now the Neron
mapping property allows one to get a map Π ◦ β ◦ s : T → Af over R. We apply
the arithmetic p-jet space functor to the above mentioned homomorphism and obtain
Jn(Π ◦ β ◦ s) : Jn(T ) → Jn(Af ) for all n. One knows that Hom(J∞(Af ), Ĝa) is of rank
at least g [6, Thm. A, p. 311].

Since each connected component of M0,H is isomorphic to one of the connected com-
ponents of M ′

0,H′ , we deduce that each of these non-zero δ-homomorphisms gives a global
section of J∞(M ′

0,H′) and hence differential Hilbert modular forms of weight 0. Let P | p
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be a prime such that Af has a lift of Frobenius at P. By Lemma 19, there exist at least
g linearly independent δ-characters of order 1. For all 1 � j � g, let ψj : J1(Af ) → Ĝa

be the δ-characters. We get induced homomorphisms

f �j = ψj ◦ J1(β ◦Π ◦ s) : J1(T ) → Ĝa.

On the other hand if Hom(J1(Af ), Ĝa) = 0, then Hom(J2(Af ), Ĝa) is of rank g. There
exist g linearly independent δ-characters ψi : J2(Af ) → Ĝa. By composing these
δ-characters with induced maps on arithmetic jet spaces, we obtain the differential
Hilbert modular forms of weight 0 and order 2

f �j = ψj ◦ J2(β ◦Π ◦ s) : J2(T ) → Ĝa.

For ideals m of OF coprime to the level N , we consider the Hecke operators T (m)’s
as in [23, Section 3.2]. Recall that f is a common Hecke eigenform. We prove that each
f �j is also a common Hecke eigenform. Say P = s(P ′) for P ∈ M0

0,H and P ′ ∈ M ′ 0
0,H′ .

The Hecke operators have the properties that T (m)ζ = deg(T (m))ζ. We now have

ψjΠT (m)
(
β(P )

)
= ψjΠT (m)(P − ζ) = ψjΠ

∑
i

(Pi − ζ) = ψj

∑
i

Π
(
β(Pi)

)

=
∑
i

ψjΠ
(
β(Pi)

)
= T (m)ψj ◦Π ◦ β(P ) = T (m)f �j (P ).

Let Of be the ring of integers of Q(am(f)), we fix an embedding i : Of → End(Af ).
Applying [12, Prop. 4.5], we observe that ψjΠT (m)(β(P )) = χj(i(am)) · f �j (P ) and
hence T (m)f �j (P ) = χj(i(am))f �j (P ). We deduce that the differential Hilbert modular
forms f �j ’s are eigenforms of Hecke operators T (m)’s for all ideals m coprime to PN . �
Remark 20. We proved the above theorem without using analogue of the Manin–Drinfeld
theorem [12]. In [12], the embedding of modular curve to it’s Jacobian is obtained by
associating to any P the point of the Jacobian [P ] − [P0] for any cusp P0. For the cusp
P0 = ∞, the proof may be simplified using Tl(∞) = (1 + l)∞.

5.2. Frobenius lifting of an abelian scheme

The aim of the present section is to construct full cotangent differential modular forms,
which are generalization in the totally real field setting of the differential modular form
f1
jet in [8]. In other words, we prove Theorem 6.

Proof of Theorem 6. Let (A, i, θ, α, ω, S∗) be a quaternionic test object with ω basis of
the full cotangent space H0(A,ΩA). Since the quaternionic abelian schemes are of relative
dimension 4d, one knows that the formal completion of A along the identity section is
given by OA,e = R[[X1, X2, . . . , X4d]]. The kernel of the S1 schemes J1(A) → Â is given
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by the twisted formal scheme Fφ{1} = p−1Fφ(pX, pY ) (cf. [6, Prop. 2.2]). According to
Grothendieck’s existence theorem, an abelian scheme A has a lift of Frobenius if and only
if Â has a lift of Frobenius. By Lemma 19, the abelian scheme Â has a lift of Frobenius
if and only if Hom(J1(A), Ĝa/S

1) is of rank 4d. We choose a basis of Lie(A) and N1(A)
corresponding to the basis ω of H0(A,ΩA) and let Li be a basis of Hom(N1(A), Ĝa).

Recall that the short exact sequence of p-formal abelian schemes 0 → N1 → J1(A) →
Â → 0 gives rise to a long exact sequence,

0 → Hom
(
J1(A), Ĝa

)
→ Hom

(
N1, Ĝa

)
∂−→ H1(A,OA).

An abelian scheme of dimension 4d has a lift of Frobenius if and only if each Li lifts
to elements of Hom(J1(A), Ĝa). In other words, the existence of lifting is equivalent to
∂(Li) = 0 in the above short exact sequence.

Since the polarization θ of A is of degree prime to p, we obtain that θ∗ is invertible
and hence H0(A,ΩA) ∼= H0(At, ΩAt). Corresponding to the basis ω of H0(A,ΩA), we
choose a basis ωt = (θ∗)−1(ω) of H0(At, ΩAt). We now define the 16d2 full cotangent
differential modular forms by

Fij

(
A, i, θ, α, ω, S∗) =

〈
∂
(
Li

)
, ωt

j

〉
e
.

That Fij(A, i, θ, ω, α, S∗) = 0 if and only if ∂(Li) = 0 for all i follows from the fact
that the evaluation pairing is a non-degenerate bilinear pairing. The last assertion is
equivalent to the fact that Hom(J1(A), Ĝa) has rank 4d. Clearly, F11 is a differential
modular form corresponding to the basis ω of H0(A,ΩA)2,11 .

We now prove they are of weight 1 + φ. Under the identification of OA,e =
R[[X1, . . . , X4d]], a choice of basis λωi instead of ωi of H0(A,ΩA) is equivalent to a
choice λXi of the dual basis instead of Xi and hence Fi will be replaced by λFi (cf.
Section 4). Since the kernel of the group scheme J1(A) → Â is p−1Fφ

i (pX, pY ), hence
we get the formal group law φ(λ)Li instead of Li and the weight of the full cotangent
differential modular forms as 1 + φ.

We now prove that these forms are isogeny covariant. Let u : A1 → A2 be an isogeny
of degree prime to p such that ω1,t, ω2,t be the basis of H0(At

1, ΩAt
1
) and H0(At

2, ΩAt
2
)

respectively and T 1, T 2 be the basis of H1(A1,OA1) and H1(A2,OA2) dual to the above
basis. Recall, we have [u ◦ ut] = [deg(u)] and [u ◦ ut] = [u] ◦ [ut] (cf. [2, p. 1463]).
If ut∗ω1,t = deg(u)ω2,t then by Lemma 17 u∗(T 2) = deg(u)T 1 and hence we get
u∗(∂(L2)) = deg(u)∂(L1). Consider now the commutative diagram:

H1
dR(A2)

u∗

πA2 H1(A2,OA2)

u∗

H1
dR(A1)

πA1 H1(A1,OA1).
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Say ∂L2
i = πA2(Ti), then Lemma 17 shows that

〈
∂
(
L1
i

)
, ω1,t

j

〉
A1,e

= 1
deg(u)

〈
u∗(∂(L2

i

))
, ω1,t

j

〉
A1,e

= 1
deg(u)

〈
u∗(πA2(Ti)

)
, ω1,t

j

〉
A1,e

= 1
deg(u)

〈
πA1u

∗(Ti), ω1,t
j

〉
A1,e

= 1
deg(u)

〈
u∗(Ti), ω1,t

j

〉
A1,d

= 1
deg(u)

〈
Ti, ut∗ω1,t

j

〉
A2,d

= 1
deg(u)

〈
πA2(Ti), ut∗ω1,t

j

〉
A2,e

= 1
deg(u)

〈
∂
(
L2
i

)
, ut∗ω1,t

j

〉
A2,e

= deg(u)−1〈∂(L2
i

)
, ω2,t

j

〉
A2,e

.

Hence, the full cotangent differential modular forms Fij ’s are isogeny covariant. �
We now prove Proposition 7.

Proof of Proposition 7. Since the degree of polarization of the “test object” is prime to p,
θ∗ induces an isomorphism H0(A,ΩA) → H0(At, ΩAt). Let ωt = (θ∗)−1(ω) with ω and ωt

basis of H0(A,ΩA)2,11 and H0(At, ΩAt)2,11 respectively. Let Φ be the Frobenius morphism
on the De Rham cohomology groups (cf. Section 4.2). We define the differential modular
forms on the Shimura curves over totally real fields for all r � 1 by

Gr
crys

(
A, i, θ, α, ω, S∗) = 1

p

〈
Φr(ω), ωt

〉
d
.

That they are isogeny covariant follows again from [u] = Id and hence [ut] = [deg(u)].
Let Ã be a quaternionic abelian scheme of the form Jacobian Jac(C) of a curve C,

then the pairing 〈 , 〉d coincides with the usual cup product [20, p. 192] pairing of
the De Rham cohomology group. In this case, we note that the p-adic valuation of
Gr

crys(Ã, ĩ, θ̃, α̃, ω̃, S∗) is finite (cf. [8, Section 5, p. 137]). Hence, we proved that the
differential modular forms Gr

crys’s are non-zero. �
5.3. Construction of lifts of Hasse invariants

We now construct differential modular forms which are lifts of Hasse invariants on the
ordinary locus of the unitary PEL Shimura curves over totally real fields. In [19], Kassaei
proved that the lifts of the Hasse invariants exist as P-adic modular forms on Shimura
curves. In this section, we also assume that the inertia degree f = 1. We construct
differential modular forms on the ordinary points of Shimura curves, which are lifts of
Hasse invariants. The weights of these differential modular forms are φ− 1.

Recall that Kassaei proved the existence of lifts of Hasse invariants by showing
H1(M ′

K′ , ω⊗k) = 0. We consider the formal OP modules attached to quaternionic abelian
schemes. According to [19], a quaternionic formal abelian scheme is supersingular if the
corresponding 1-dimensional formal OP module is of height two. By [19, Prop. 5.1], the
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Hasse invariant vanishes at the supersingular points of the quaternionic Shimura curve.
We now prove Theorem 8.

Proof of Theorem 8. By Lemma 16, the pairings 〈 〉d and 〈 〉e are compatible. Since
the polarization is of degree prime to p, hence the polarization induces an isomorphism
of corresponding local rings. Recall that ordinarity of the quaternionic abelian scheme
is determined by the rank of the corresponding formal OP module. This allows one to
conclude that the quaternionic abelian scheme A is ordinary if and only if the dual
quaternionic scheme At is ordinary. Let U be the unit root subspace inside the De Rham
cohomology group H1

dR(At) as in Section 4.2 with u a basis of U2,1
1 and let x = (A, i, θ, α)

be a geometric point of the special fiber M′
0,H′ ⊗k. Let u be a basis of the 1-dimensional

unit root subspace U2,1
1

∼= H1(At,OAt)2,11 . Let Φ be the Frobenius endomorphism on
H1

dR(At) as in Section 4.2.
We define the order 1 differential modular form by

f∂
(
A, i, θ, α, ω, S∗) = 〈Φ(u), iφω〉d

φ(〈u, ω〉d)
.

Again since Φ(λu) = φ(λ)Φ(u), so f∂ is independent of the choice of basis u ∈ U2,1
1

and hence they are well-defined. The Frobenius induces an endomorphism F ∗ on the
1-dimensional OP module H1(At,O

At)2,11 and Section 4.1 says that the Cartier opera-
tor C is dual to F ∗ for the pairing 〈 〉e with C(ω) = Hω.

We now prove that f∂ is actually a lift of the Hasse invariant. Since the definition of
the differential modular form is independent of the choice of basis of unit root subspace,
without loss of generality we may assume that 〈u1, ω〉d = 1. Let Π be the natural projec-
tion H1

dR(At) → H1(At,OAt). The map Π commutes with the Frobenius endomorphism
of the De Rham cohomology. By [10, Prop. 6.1], we have

f∂ =
〈
Φ(u1), ω

〉
d

=
〈
Π
(
Φ(u1)

)
, ω

〉
e

=
〈
F ∗Π(u1), ω

〉
e

=
〈
Π(u1), C(ω)

〉
e

=
〈
Π(u1), Hω

〉
e

= H〈u1, ω〉d = H.

That the differential modular forms f∂ ’s are isogeny covariant, follows from [1,
Lemma 5.1, p. 253] and Lemma 17. �
6. Serre–Tate expansions of differential modular forms

We study the Serre–Tate expansions of differential modular forms for Shimura curves
over totally real fields. The Serre–Tate expansions of differential modular forms are
the expansions induced by the Serre–Tate’s deep theorem in deformation theory about
lifting of characteristic p ordinary abelian schemes to characteristic zero. We first show
that Serre–Tate expansions exist for differential modular forms in this setting. We note
that the special fiber M ′

0,H′ is not geometrically irreducible. By [23, p. 43], the set of
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geometric connected component of the special fiber is the same as that of the generic
fiber. We restrict our attention to one of the connected components of the geometric
special fiber.

Let now C be the category of complete, Noetherian local Ônr
P

-algebras with residue
field k and let x0 = (A0, θ0, i0, α0) be a geometric point on the connected components of
the special fiber of the quaternionic Shimura curve. Denote by M ′

0 the projective limit
of M ′

0,H′ for all compact, open subgroups H ′, providing an étale cover M ′
0 → M ′

0,H′ .
Finally, let y be a pullback of x0 w.r.t. this map giving an isomorphism of local rings
ÔM ′

0,y
� ̂OM ′

0,H′ ,x0 .
According to [16, Section 5.4], there is a bijection between the isomorphism classes

of quaternionic abelian schemes A with an isomorphism A ⊗ Spec(R0) = A0 and the
isomorphism classes of p-divisible groups with an action of OD and this bijection is
given by A → A[p∞]. The deformation of a point x0 = (A0, i0, θ0) is determined by the
corresponding p-divisible group A0[p∞]. To study this p-divisible group, it is enough to
study the formal OP module E0 = A0[p∞]2,11 of height 2 [18].

Let E be the pullback of E0 by the map y : Spec(k) → M ′
0. This module E is inde-

pendent of the choice of the pullback y and it is a formal OP module f : OP → E of
height two. For h = 1, 2, let Σh be the unique formal divisible OP modulo of height h.
Drinfeld’s classification of formal OP module of height 2 says that there are only two
possibilities for E , namely E = Σ1 × FP/OP or E = Σ2.

By Appendices 7 and 8 of [16], the functor which to each S ∈ C associates the set of
isomorphism classes of deformations of (E , f) to S is represented by a ring isomorphic to
W (k)[[T ]]. By the well-known fact, the deformation functor is isomorphic to the completed
local ring at the point x0. Since Ofor

M ′
0,H′ ,x0

� W (k)[[T ]], we have a map E : O(M ′
0,H′) →

W (k)[[T ]] and hence an induced map E : O(Jn(M ′
0,H′)) → ̂W (k)[[T ]][T ′, T ′′, . . . , Tn] (cf.

Proposition 11). If we start with a line bundle L, locally this line bundle is trivial. Hence,
we have a Serre–Tate expansion map

Ex0 : Mn → ̂R[[T ]]
[
T ′, T ′′, . . . , Tn

]
.

Since we have chosen the geometric point in one of the connected component of the
special fiber, hence the Serre–Tate expansion maps are injective on these components.
If the strict class number of F is one, then the Serre–Tate expansion maps are injec-
tive.

6.1. Serre–Tate expansion of f �1

In this section, we again assume that the inertia degree f = 1. Recall [22], an elliptic
curve E over Ẑnr

p is called CL (canonical lifting) at the prime p if there exists a morphism
FE : E → E that satisfies the commutative diagram of Section 4.2 with S0 = S1 = Ẑnr

p

and ϕ = Id. According to Theorem 4.4 of [13], the CL and CM elliptic curves are closely
related.
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Theorem 21. Let f be a Hilbert modular newform of parallel weight 2, level K0(N) and
trivial central character with Kf = Q. Suppose f �1 be a differential modular form as in
Theorem 5. There exists a power series G(S) ∈ R[[S]] such that the Serre–Tate expansion
of f �1 is

• E(f �1) = 1
p (φ2 − apφ + p)

∑
n

βn

n G(S)n,
• E(f �1) = 1

p (φ− up)
∑

n
βn

n G(S)n

depending on whether the elliptic curve Ef is non-CL or CL. Here, G(S) and f(X) =∑
n

β(n)
n Tn are two well-defined power series related to the Hilbert modular newform f .

Proof. Following [23], let Π : M ′
0,H′ → Ef = E be the Shimura curve parametrization of

the elliptic curve E with Π(x) = e. Let T = −X
Y be a local parameter at the zero element

on the global minimal model of the modular elliptic curve E. We consider the formal
group (cf. Section 4) attached to the elliptic curve E. Let ωE be the invariant differential
on the global minimal (Neron) model of E. We develop ωE locally in terms of T to
find an expression of the form ωE = (

∑∞
n=1 β(n)Tn)dT , β(1) = 1. The formal minimal

model of Ef is now GE(X,Y ) = f−1
E (fE(X) + fE(Y )) for fE(X) =

∑∞
n=1 β(n)Xn. If

l is the logarithm of the formal group attached to the elliptic curve E, then we have
ωE = dl(T )

dT dT . The induced map π∗ : Ofor
E,e

= R[[T ]] → Ofor
M ′

0,H′ ,x
= R[[S]] satisfies

π∗(T ) = G(S).
Since e = f = 1, we view Ef as an elliptic curve over Zp. Let Ef be a non-CL elliptic

curve for a prime p and let ψ be the non-zero δ-character on the elliptic curve Ef over Zp.
By [7, Thm. 1.10], we have E(ψ) = 1

p (φ2 − apφ+ p)lE(T ). On the other hand, let Ef be
a CL elliptic curve at p. Let u be the unique root in pZp of the polynomial φ2 − apφ+ p.
Again by [7, Thm. 1.10], observe that E(ψ) = 1

p (φ−up)lE(T ). Since the formation of the
differential modular form is functorial in S∗, we deduce that the Serre–Tate expansion
of f �1 = Π∗(ψ) has the form as in the statement of the theorem. �

We end this paper with some computation. Using the software SAGE, we calculate
β(n)’s for some modular elliptic curves. Consider the totally real number field F =
Q(

√
5 ) = Q(a). By [17, p. 17], A: y2 + x ∗ y + (1/2 ∗ a + 1/2) ∗ y = x3 + (−1/2 ∗ a −

3/2) ∗x2 is a modular elliptic curve over F . Since lA(T ) =
∫
ωA dt, we use the command

sage : A.formalgroup().differential(50) to compute ωA and hence the coefficients β(n)’s.
We calculate the coefficients up to n = 10 as

lA(t) = t + (−1/4 ∗ a− 1/4) ∗ t2 − 1
3 t

3 + (3 ∗ a + 3)
4 ∗ t4 + (5/2 ∗ a− 1/2)

5 ∗ t5

+ (−17/2 ∗ a− 47/2)
6 ∗ t6 + (−4 ∗ a− 3)

7 ∗ t7 + (81/2 ∗ a + 235/2)
8 ∗ t8

+ (−7 ∗ a + 33) ∗ t9 + (−475/2 ∗ a− 979/2) ∗ t10 + O
(
t10

)
.
9 10
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From the Hilbert modular form database (cf. http://www.lmfdb.org/ModularForm/
GL2/), we deduce that the corresponding Hilbert modular form is a non-CM newform.
The prime 19 splits into two different prime ideals in Q(

√
5 ) with the corresponding

eigenvalues of the Hecke operators are 4 and −4 respectively. The elliptic curve A is
not a CL elliptic curve over Ẑnr

19 . If π∗(T ) = G(S), then we have E(f �1) = 1
19 (φ2 − 4φ +

19)
∑

n
β(n)
n G(S)n for coefficients β(n)’s as in the previous paragraph.
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