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that these averages have a curious tendency to be positive.
This in turn gives that Ramanujan sums are nearly orthogonal
to a family of vectors whose entries are powers of consecutive
integers. Further applications are given to the limit points
of these averages along semigroups of integers, the peak
size of partial sums of Ramanujan sum and an optimization
problem on weighted exponential sums supported on reduced
residue systems. Exact evaluations of trigonometric sums
having combinatorially significant coefficients and subject to
divisibility constraints are obtained in terms of Bernoulli
numbers.
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1. Introduction

For any positive integer k and complex number z, the Ramanujan sum is

ck(z) :=
∑

1�q�k
(q,k)=1

e
2πiqz

k .
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Ramanujan [21] originally introduced these sums to obtain remarkable trigonometric
series representations of certain normalized arithmetical functions. Today there is a
profound theory on the representation of arithmetical functions as infinite orthogonal
expansions involving Ramanujan sums (see [16,19,22,23]). Carmichael [11] was the first
to obtain specific orthogonality properties such as

N∑
j=1

ck1(j)ck2(j) = 0

whenever k1 �= k2 and k1, k2 both divide N , and

N∑
j=1

ck(j)2 = ϕ(k)N

whenever k divides N and ϕ is Euler’s totient function. It would be of interest to search
for additional orthogonality relations or obstructions to such relations, specifically, a fam-
ily of vectors that are not orthogonal but arbitrarily close to being orthogonal to vectors
arising from values of Ramanujan sums. Asymptotic orthogonality of the closely related
Möbius function to nilsequences is recently established by Green and Tao [14] (see [25]
and [7] for other types of cancellation results on partial sums of the Möbius function
along semigroups of integers). For any positive integer r and modulus k, consider the
sum

k∑
j=1

jrck(j).

Making use of properties of such sums, the author [1,6] derived exact formulas involv-
ing Euler’s and Jordan’s totient functions for averages of special values of L-functions
under parity conditions imposed on the characters. The author [3] further studied the
distribution of values of a normalization in the form

1
kr+1

k∑
j=1

jrck(j)

and showed that average value of this normalization over k is

3
π2 + 1

(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

ζ(2m + 1) ,

where ζ is Riemann zeta function and B2m’s are Bernoulli numbers. Connections between
Ramanujan sums and Burgess type zeta functions were investigated in [4]. For similar
average type results concerning values of a special multiplicative function known as the
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restrictive factor, the reader is referred to the recent work of Ledoan and Zaharescu [17].
The author [5] further showed that weighted averages of Gauss sums in the form

1
k

k∑
j=1

w

(
j

k

)
G(j, χ),

where χ is a non-principal character modulo k, G is the corresponding Gauss sum and w is
a Lipschitz continuous function, can be well approximated by certain linear combinations
using algebraic parts of special values of L-functions. Note that when χ is the principal
character modulo k and w(x) = xr for r � 1, one obtains the above normalization
involving values of Ramanujan sum and this gives further motivation for the study of
its distribution. Precisely, we focus on the sign of such a normalization as a real number
and show that these sums have more tendency to be positive. In terms of the standard
inner product on Rk, our results below confirm that for many values of k and r, the
inner product of the vectors

1
kr+1

〈
1r, 2r, . . . , kr

〉
and

〈
ck(1), ck(2), . . . , ck(k)

〉
is positive and they are therefore not orthogonal but somehow arbitrarily close to being
so (see Theorem 2 below). Whether this holds for all values of k and r remains an open
problem.

Theorem 1. The average value over k of

1
kr+1

k∑
j=1

jrck(j)

is positive for all r � 1. For any given k and r large enough only in terms of k,

1
kr+1

k∑
j=1

jrck(j)

is positive.

A natural question is about the positivity of this normalization for all values of k

and r. For fixed r, the limit points of such a normalization as k ranges over certain
semigroups of positive integers were studied in [3]. If r is allowed to vary as well, then
we are able to get more precise results on the set of limit points. In particular, our next
result shows that verifying positivity for all values of k and r is delicate.

Theorem 2. Let P be a set of primes having positive lower density such that for some
constant 0 < θ < 1 and for all large enough x, there exists p ∈ P with x � p � x + xθ.
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If M is an infinite set of positive integers and (P ) is the semigroup of positive integers
generated by the primes in P , then any number in [0, 1] is a limit point of the set

U =
{

1
kr+1

k∑
j=1

jrck(j): k ∈ (P ), r ∈ M

}
.

We remark that P in Theorem 2 can be taken as the set of all primes in a fixed
arithmetic progression containing infinitely many primes. To have a more general con-
struction, assume that for all large enough integers n, there exist primes in [n, n+nθ]. We
may then choose a prime p in [n, n+nθ] (note that for any n � j � p, it is not necessary
to choose a new prime in [j, j + jθ] since p ∈ [j, j + jθ], hence the most efficient way is
to choose the largest prime in [n, n+nθ]). Doing this for all large enough n, one obtains
a set T consisting of all the primes that are chosen. Then any set of primes P ⊇ T with
positive lower density clearly satisfies the conditions of Theorem 2. Let

Jn(k) = kn
∏
p|k

(
1 − 1

pn

)

be Jordan’s totient function of order n � 1. For fixed r, it is possible to produce explicit
positive values of the normalization for certain values of k. Indeed we have

Corollary 1. Let

ar(k) := 1
kr+1

k∑
j=1

jrck(j).

Assume that r � 2 is fixed and {kn} is an increasing sequence of integers satisfying

lim
n→∞

J2(kn)
k2
n

= 1.

Then we have

lim inf
n→∞

ar(kn) � 1
2 − 1

r + 1 .

Moreover, for any given r � 1, there exists a positive density of k’s, where the density
depends only on r, such that ar(k) is positive.

It is true that for small values of r, ar(k) is always positive regardless of the value
of k. Precisely, the following result holds.

Corollary 2. For any k � 1, we have a2(k) > 1
π2 , a3(k) > 3

2π2 , a4(k) > 2
π2 − 1

30 ,
a5(k) > 5

2 − 1 , a6(k) > 3
2 − 1 + 45

6 .
2π 12 π 6 2π
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Determination of the size of peak value concerning partial sums of a non-principal
character χ modulo k is an important problem. As a consequence of the Polya–
Vinogradov inequality, this peak value is <

√
k log k and it is also >

√
k

2π (see [13]). As-
suming the Riemann hypothesis for Dirichlet L-functions, Montgomery and Vaughan [18]
showed that

max
N

∣∣∣∣∑
n�N

χ(n)
∣∣∣∣ � √

k log log k,

which is essentially best possible as Paley [20] showed that

max
N

∣∣∣∣∑
n�N

(
d

n

)∣∣∣∣ > 1
7
√
d log log d

holds for infinitely many quadratic discriminants d > 0, where ( d
n ) is the Kronecker

symbol for the real quadratic field Q(
√
d ). Cancellation type results for convolution

sums of two characters over short ranges were obtained by Güloğlu [15]. Here we offer
to study this peak value for partial sums of Ramanujan sum.

Theorem 3. For any k � 1, the estimate

max
N

∣∣∣∣∣
N∑
j=1

ck(j)

∣∣∣∣∣ � J2(k)
4k + ϕ(k)

2

holds.

Consider the simple but elegant inequality

k

ϕ(k) =
∏
p|k

(
1 + 1

p− 1

)
� 2ω(k),

where ω is the number of distinct prime divisors. One has the following curious inequality
involving these arithmetic functions.

Corollary 3. For integers r � 1 and k � 1, the inequality
∣∣∣∣∣12 +

(
1

(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

J2m(k)
k2m

)
k

ϕ(k)

∣∣∣∣∣ � 2ω(k)

holds.

Our next result is inspired by the work of Bachman [9] who showed uniqueness of
Ramanujan sums as solution of a certain minimization problem. We see below that
Ramanujan sums are unique solutions of a more general optimization problem with
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nonnegative weight functions and subject to the constraints |bn| � 1 for all n � 1. In
this connection, nontrivial lower bounds are produced concerning weighted exponential
sums supported on reduced residue systems.

Theorem 4. Let w be a nonnegative function. For any sequence bn of complex numbers
and real number q � 1, the inequality

k∑
j=1

w(j)
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣
q

�
( |

∑
n bn|

ϕ(k)

)q k∑
j=1

w(j)
∣∣ck(j)∣∣q

holds, where the sum over n is for 1 � n � k and (n, k) = 1. In particular, if w(j) = jr

for some integer r � 2 and q = 1, then we have

k∑
j=1

jr
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣ �
∣∣∣∣∑

n

bn

∣∣∣∣
∣∣∣∣∣12 +

(
1

(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

J2m(k)
k2m

)
k

ϕ(k)

∣∣∣∣∣kr.
If w(j) = j and q = 1, then we have

k∑
j=1

j

∣∣∣∣∑
n

bne
2πinj

k

∣∣∣∣ � 1
2

∣∣∣∣∑
n

bn

∣∣∣∣(2ω(k) + 1
)
k.

Define the constants c2 = 1
π2 , c3 = 3

2π2 , c4 = 2
π2 − 1

30 , c5 = 5
2π2 − 1

12 , c6 = 3
π2 − 1

6 + 45
2π6 .

Then for r ∈ {2, 3, 4, 5, 6}, we have

k∑
j=1

jr
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣ > cr

( |
∑

n bn|
ϕ(k)

)
kr+1.

For any given r � 2, there exists a positive constant Mr depending only on r and infinitely
many k such that

k∑
j=1

jr
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣ > Mr

∣∣∣∣∑
n

bn

∣∣∣∣kr log log k.

Finally, for r � 1, we have

k∑
j=1

jr
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣ �r

(∑
n

|bn|2
) 1

2

kr+1,

where the implied constant depends only on r.
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As a remark note the trivial bounds

∣∣∣∣∑
n

bn

∣∣∣∣kr �
k∑

j=1
jr
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣ �
(∑

n

|bn|
)
kr+1.

To have an application of Theorem 4, let χ be a non-principal character modulo k and
take bn = 1 − χ(n). Then since

∑
n

bn = ϕ(k) −
∑
n

χ(n) = ϕ(k),

we see that

k∑
j=1

j
∣∣G(j, χ) − ck(j)

∣∣ � 1
2
(
2ω(k) + 1

)
ϕ(k)k,

where

G(z, χ) =
∑
n

χ(n)e 2πinz
k

is the Gauss sum. Moreover, by a result of Hardy and Ramanujan, ω(k) is about log log k
for almost all k and since ϕ(k) � k

log log k for all k � 3, the estimate

k∑
j=1

j
∣∣G(j, χ) − ck(j)

∣∣ � k2(log k)(1+o(1)) log 2

log log k

holds for almost all k with an absolute implied constant. Relations between special values
of L-functions, class numbers and finite trigonometric sums were studied by Berndt and
Zaharescu [10], Chan [12] and the author [2]. As a further contribution to this topic, we
give the following evaluation of trigonometric sums subject to divisibility constraints as
a natural consequence of our study of Ramanujan sums.

Theorem 5. For integers k � 2 and r � 1, we have

r∑
s=1

(min(r−1,r−s+1)∑
j=1

(
r

j

)
Ar−j,sk

j

)( ∑
1�m�k
(m,k)=1

g(k,m, s)
(2 sin(πmk ))s

)

= kr+1

(r + 1)

[ r2 ]∑ (
r + 1
2m

)
B2m

∏(
1 − 1

p2m

)
,

m=1 p|k
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where both sides are interpreted to be zero when r = 1, the coefficients Aq,j for q, j � 1
are uniquely determined by the relations Aq,1 = (−1)q, Aq,q+1 = (−1)qq!,

Aq,j = −(j − 1)Aq−1,j−1 − jAq−1,j

for 1 < j < q + 1 and

g(k,m, s) =
{

(−1) s+1
2 sin(πms

k ) if s ≡ ±1 (mod 4)
(−1) s

2 cos(πms
k ) if s ≡ 0, 2 (mod 4).

Combinatorial properties of Aq,j are studied in [2] and it is shown that they can be
written in terms of Stirling numbers of the second kind together with the formula

Aq,j =
j−1∑
v=0

(−1)v+q

(
j − 1
v

)
(j − v)q.

2. Proof of Theorem 1

Let us start by giving an alternative representation of the normalization of weighted
averages of Ramanujan sums. Indeed using an evaluation of Ramanujan sum in the form

ck(j) =
ϕ(k)μ( k

(k,j) )
ϕ( k

(k,j) )
,

where μ is the Möbius function and a recent result of Singh [24] given as

Qr(n) :=
∑

1�j�n
(j,n)=1

jr = nr+1

(r + 1)

[ r2 ]∑
m=0

(
r + 1
2m

)
B2m

n2m

∏
p|n

(
1 − p2m−1)

for r � 1 and n � 2 together with some inspired calculations, one obtains the formula
(see [3] for details)

1
kr+1

k∑
j=1

jrck(j) = ϕ(k)
2k + 1

(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

∏
p|k

(
1 − 1

p2m

)
(1)

for r � 1 and k � 2 with the convention that the sum over m in (1) is taken to be
zero when r = 1. A more useful representation of the right side of (1) is required. Such
a representation was also needed in [3] and for convenience let us reproduce it here.
Assuming r � 2, one has from (1) that
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1
kr+1

k∑
j=1

jrck(j) = ϕ(k)
2k + 1

(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

∑
d|k

μ(d)
d2m

= ϕ(k)
2k + 1

(r + 1)
∑
d|k

μ(d)
[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

d2m . (2)

If r is even, then the monic Bernoulli polynomial of degree r + 1 is given by

Br+1(x) =
r+1∑
s=0

(
r + 1
s

)
Bsx

r+1−s =
r∑

s=0

(
r + 1
s

)
Bsx

r+1−s (3)

since Br+1 = 0. Rewriting (3), one obtains

Br+1(x) = xr+1 − (r + 1)
2 xr + xr+1

r
2∑

m=1

(
r + 1
2m

)
B2m

x2m . (4)

Taking x = d in (4), we see that

r
2∑

m=1

(
r + 1
2m

)
B2m

d2m = 1
dr+1

(
Br+1(d) − dr+1 + (r + 1)

2 dr
)
. (5)

Consequently from (5), it follows that

∑
d|k

μ(d)
[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

d2m =
∑
d|k

μ(d)
(
Br+1(d)
dr+1 − 1 + r + 1

2d

)

=
∑
d|k

μ(d)Br+1(d)
dr+1 −

∑
d|k

μ(d) + (r + 1)
2

∑
d|k

μ(d)
d

=
∑
d|k

μ(d)Br+1(d)
dr+1 + (r + 1)ϕ(k)

2k (6)

since the Möbius sum is zero for k � 2. As a result of (2) and (6), we see that

1
kr+1

k∑
j=1

jrck(j) = ϕ(k)
k

+ 1
(r + 1)

∑
d|k

μ(d)Br+1(d)
dr+1

= ϕ(k)
k

+ 1
(r + 1)

∑
d|k

μ(d)Br+1(d)
dr+1 , (7)
d>1
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where we used the fact that Br+1(1) = 0. For n > 1, define

Sr(n) :=
n−1∑
j=1

jr.

Using the well-known evaluation of Sr(n) in the form

(r + 1)Sr(n) =
r∑

s=0

(
r + 1
s

)
Bsn

r+1−s,

one obtains

Sr(d) = Br+1(d)
r + 1 (8)

for any d > 1. Combining (7) and (8), the representation

1
kr+1

k∑
j=1

jrck(j) = ϕ(k)
k

+
∑
d|k
d>1

μ(d)Sr(d)
dr+1 (9)

follows for even r � 2. A similar argument shows that (9) holds for odd r � 2 as well.
Next observe that for d > 1,

Ld,r := Sr(d)
dr+1 = 1

dr+1

d−1∑
j=1

jr = 1
d

d−1∑
j=1

(
j

d

)r

(10)

is a lower Riemann sum using the equally spaced partitioning points { 1
d ,

2
d , . . . ,

d−1
d }

corresponding to the integral
∫ 1
0 xr dx = 1

r+1 . For any d > 1, Ld,r < 1
r+1 and this

motivates to define the numbers

δd,r := 1
r + 1 − Sr(d)

dr+1 > 0 (11)

as an error in the approximation of this integral by lower Riemann sums. Also considering
the upper Riemann sum for the same integral defined as

Ud,r := 1
d

d∑
j=1

(
j

d

)r

, (12)

one obtains that Ld,r < 1
r+1 < Ud,r and Ud,r − Ld,r = 1

d . It follows from (10)–(12) that
0 < δd,r < 1 for any d > 1 and r � 2. As a result of (9) and (11), the representation
d
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1
kr+1

k∑
j=1

jrck(j) = ϕ(k)
k

+
∑
d|k
d>1

μ(d)
(

1
r + 1 − δd,r

)

= ϕ(k)
k

− 1
r + 1 −

∑
d|k
d>1

μ(d)δd,r (13)

follows for k � 2. Using (13), we have that

∑
k�x

(
1

kr+1

k∑
j=1

jrck(j)
)

= 1 +
∑

2�k�x

(
1

kr+1

k∑
j=1

jrck(j)
)

=
∑
k�x

ϕ(k)
k

− 1
r + 1

∑
2�k�x

1 −
∑
k�x

∑
d|k
d>1

μ(d)δd,r. (14)

Using the well-known asymptotic relation

∑
k�x

ϕ(k)
k

= 6
π2x + O(log x),

we see that (14) further equals

=
(

6
π2 − 1

r + 1

)
x−

∑
k�x

∑
d|k
d>1

μ(d)δd,r + O(log x). (15)

Moreover, note that

∑
k�x

∑
d|k
d>1

μ(d)δd,r =
∑

1<d�x

μ(d)δd,r
[
x

d

]
=

∑
1<d�x

μ(d)δd,r
(
x

d
+ O(1)

)

= x
∞∑
d=2

μ(d)δd,r
d

+ O(log x), (16)

where we used the fact that 0 < δd,r < 1
d . Combining (14)–(16), the desired average

value over k is determined to be

6
π2 − 1

r + 1 −
∞∑
d=2

μ(d)δd,r
d

= 6
π2 − 1

r + 1 + δ2,r
2 + δ3,r

3 + δ5,r
5 −

∞∑
d=6

μ(d)δd,r
d

>
6
π2 − 1

r + 1 −
∞∑ μ(d)δd,r

d
. (17)
d=6
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Observing that

∣∣∣∣∣
∞∑
d=6

μ(d)δd,r
d

∣∣∣∣∣ �
∞∑
d=6

1
d2 �

∞∫
5

1
t2

dt = 1
5 , (18)

we deduce from (17) and (18) that

6
π2 − 1

r + 1 −
∞∑
d=2

μ(d)δd,r
d

� 6
π2 − 8

15 > 0

for r � 2. But when r = 1, the average value over k is 3
π2 . Thus the average value over

k is positive for all r � 1. Finally when k � 2 is fixed, using (13) and the fact that for
any fixed d > 1,

lim
r→∞

δd,r = lim
r→∞

(
1

r + 1 − Sr(d)
dr+1

)
= 0,

we see that

lim
r→∞

(
1

kr+1

k∑
j=1

jrck(j)
)

= ϕ(k)
k

> 0 (19)

which happens to be true also when k = 1. Therefore, if r is large enough only in terms
of k, then the normalization is positive by (19). This completes the proof.

3. Proof of Theorem 2

First observe that since M is infinite, we have from (19) that

lim
r∈M
r→∞

(
1

kr+1

k∑
j=1

jrck(j)
)

= ϕ(k)
k

. (20)

Hence as a result of (20), to show that any number in [0, 1] is a limit point of U , we need
to show that the numbers ϕ(k)

k are dense in [0, 1] as k ranges in (P ). To this end, let us
define an arithmetic function φ : N → Q as follows. If n ∈ (P ), then we take φ(n) = n

ϕ(n) .
This makes φ a multiplicative function on (P ). Then extend φ as a multiplicative function
on N by defining φ(pm) = 1 for any prime p /∈ P and m � 1. Note that fφ(n) = log φ(n)
is an additive function defined on N. Thus, if n ∈ (P ), then fφ(n) = log( n

ϕ(n) ). Moreover,
observe that for any prime p ∈ P and m � 1, we have

∣∣fφ(pm)∣∣ =
∣∣∣∣log

(
1 − 1

)∣∣∣∣ = − log
(

1 − 1
)

� 2 (21)

p p p



E. Alkan / Journal of Number Theory 140 (2014) 147–168 159
and

fφ(p) = 1
p

+ O

(
1
p2

)
. (22)

Next we employ the main result of [8]. Given an additive function f : N → R, assume
that the following conditions are satisfied for some δ > 0 and λ > 0:

∑
f(p)>0
p prime

f(p) = ∞, (23)

∣∣f(pm)∣∣ � C(f)
pδ

(24)

for any prime p and m � 1 with C(f) > 0 depending only on f . There exists t0(f) > 0
depending only on f such that for any 0 < t � t0(f), there is a prime p satisfying

t− t1+λ � f(p) � t. (25)

Then there is a β > 0 (depending on δ, λ) such that for all appropriate α ∈ R

∣∣f(n) − α
∣∣ < 1

nβ

holds for infinitely many n. Since fφ(pm) = 0 when p /∈ P and P has positive lower
density by our assumption, it follows from (22) that

∑
fφ(p)>0
p prime

fφ(p) =
∑
p∈P

(
1
p

+ O

(
1
p2

))
= ∞

and (23) is satisfied. Using (21), we see that (24) holds with C(fφ) = 2 and δ = 1. In
order to verify (25), we consider

t− t1+λ � 1
p

+ O

(
1
p2

)
� t (26)

for p ∈ P . It is easy to see that (26) is equivalent to

x � p + O(1) � x + x1−λ (27)

for all large enough x. Since for all large enough x, there exists p ∈ P with x � p � x+xθ

by our assumption, we may choose λ < 1 − θ to see that (27) holds as well. It follows
that the values of fφ are dense in [0,∞) and therefore that the values ϕ(k)

k are dense in
[0, 1] as k ranges in (P ). This completes the proof.
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4. Proof of Corollary 1

Using the evaluation of Bernoulli polynomials at x = 1, it is easy to see that

1
2 − 1

r + 1 = 1
(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m (28)

for any r � 2. Assume that r � 2 is fixed and {kn} is an increasing sequence of integers
satisfying

lim
n→∞

J2(kn)
k2
n

= 1. (29)

Clearly, (29) gives

lim
n→∞

J2m(kn)
k2m
n

= 1 (30)

for any m � 1. Using (1), one gets

ar(kn) = ϕ(kn)
2kn

+ 1
(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

J2m(kn)
k2m
n

. (31)

Combining (28), (30) and (31), we deduce that

lim inf
n→∞

ar(kn) � 1
2 − 1

r + 1 .

To prove the other claim our main idea is to sieve by the first N primes 2, 3, . . . , pN ,
where N is a parameter. Note that when r = 1, a1(k) is positive for any k � 1. Therefore,
we may assume that r � 2. Given ε > 0, one can find N large enough such that

1 − ε <
∏

p>pN

(
1 − 1

p2

)
< 1

and consequently that

1 − ε <
∏

p>pN

(
1 − 1

p2m

)
< 1

for any m � 1. It follows that with this choice of N , if k is not divisible by the first N

primes, then

1 − ε <
J2m(k)
k2m =

∏(
1 − 1

p2m

)
� 1
p|k
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holds for any m � 1. Using now (28) it is clear that

1
(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

J2m(k)
k2m

can be made as close as we wish to 1
2 −

1
r+1 > 0 when r � 2. To do this, N would depend

only on r. Since the set of k’s not divisible by the first N primes has positive density
depending only on r, one obtains from (1) that ar(k) is guaranteed to be positive for
these values of k.

5. Proof of Corollary 2

Since ar(1) = 1 for r � 1, the inequalities hold when k = 1. Therefore, we may assume
k � 2. We only prove the inequality for r = 6. The other inequalities can be obtained
similarly. Indeed taking r = 6 in (1), we obtain

a6(k) = ϕ(k)
2k + J2(k)

2k2 − J4(k)
6k4 + J6(k)

42k6 >
J2(k)
2k2 − J4(k)

6k4 + J6(k)
42k6 . (32)

Using the inequalities

J2(k)
k2 >

1
ζ(2) = 6

π2 ,
J4(k)
k4 < 1, J6(k)

k6 >
1

ζ(6) = 945
π6

for k � 2, we obtain from (32) the desired inequality for a6(k).

6. Proof of Theorem 3

First note that when k = 1, the required maximum is infinite and the inequality
trivially holds. We may then assume that k � 2. In this case one has

k∑
j=1

ck(j) = 0 (33)

and the required maximum is finite. Taking r = 3 in (1), we obtain that

k∑
j=1

j3ck(j) =
(
ϕ(k)
2k + J2(k)

4k2

)
k4 (34)

for k � 2. Applying Abel’s summation to the left side of (34) and using (33), one sees
that

k∑
j=1

j3ck(j) = −
k∫

3t2
( ∑

1�j�t

ck(j)
)
dt. (35)
1
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It follows from (35) that
∣∣∣∣∣

k∑
j=1

j3ck(j)

∣∣∣∣∣ �
(

max
N

∣∣∣∣∣
N∑
j=1

ck(j)

∣∣∣∣∣
)
k3. (36)

The desired estimate follows from (34) and (36).

7. Proof of Corollary 3

Again when k = 1, the inequality holds by (28). Hence we may assume that k � 2.
From (1), we have

k∑
j=1

jrck(j) =
(
ϕ(k)
2k + 1

(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

J2m(k)
k2m

)
kr+1. (37)

Applying Abel’s summation to the left side of (37), one obtains
∣∣∣∣∣

k∑
j=1

jrck(j)

∣∣∣∣∣ �
(

max
N

∣∣∣∣∣
N∑
j=1

ck(j)

∣∣∣∣∣
)
kr �

(
k∑

j=1

∣∣ck(j)∣∣
)
kr. (38)

Let

k =
s∏

v=1
pav
v

be the prime factorization of k into distinct primes. Then note that ck(j) = 0 unless
k

(k,j) is a square-free number. If we let d = (k, j), then

d =
s∏

v=1
pbvv

with av − 1 � bv � av for each v and there are exactly 2ω(k) values of d (which are
divisors of k) such that ck(j) �= 0. Using the estimate

∣∣ck(j)∣∣ � ϕ(k)
ϕ( k

(k,j) )
,

we have

k∑
j=1

∣∣ck(j)∣∣ =
∑

1�j�k

∣∣ck(j)∣∣ �
∑

1�j�k

ϕ(k)
ϕ( k

(k,j) )
. (39)
ck(j) �=0 ck(j) �=0
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The conditions 1 � j � k and d = (k, j) are equivalent to 1 � j
d � k

d and (kd ,
j
d ) = 1.

Therefore, the number of such integers is ϕ(kd ) and (39) gives that

k∑
j=1

∣∣ck(j)∣∣ � ϕ(k)2ω(k). (40)

The desired inequality follows from (37), (38) and (40).

8. Proof of Theorem 4

We may assume that bn’s are periodic with period k. Note that if (s, k) = 1, then
multiplication by s permutes residue classes (or reduced residue classes) modulo k. Thus
we have

∣∣∣∣∑
n

bn

∣∣∣∣
q k∑
j=1

w(j)
∣∣ck(j)∣∣q =

k∑
j=1

w(j)
∣∣∣∣
(∑

n

bn

)(∑
s

e
2πisj

k

)∣∣∣∣
q

=
k∑

j=1
w(j)

∣∣∣∣∑
n

∑
s

bsne
2πisj

k

∣∣∣∣
q

. (41)

Using Hölder’s inequality when q > 1 and triangle inequality when q = 1, one obtains

∣∣∣∣∑
n

∑
s

bsne
2πisj

k

∣∣∣∣ � ϕ(k)
1
q′

(∑
n

∣∣∣∣∑
s

bsne
2πisj

k

∣∣∣∣
q) 1

q

, (42)

where 1
q + 1

q′ = 1. Combining (41), (42) and using the fact that w is nonnegative, the
left side of (41) is

� ϕ(k)
q
q′

k∑
j=1

w(j)
∑
n

∣∣∣∣∑
s

bsne
2πisj

k

∣∣∣∣
q

= ϕ(k)
q
q′
∑
n

k∑
j=1

w(j)
∣∣∣∣∑

s

bsne
2πisnnj

k

∣∣∣∣
q

, (43)

where n is the inverse of n modulo k. For each fixed 1 � n � k with (n, k) = 1, the
numbers nj run over a complete residue system modulo k and the numbers sn run
over a reduced residue system modulo k. Noting that the number of such n is ϕ(k) and
1 + q

q′ = q, we see that the right side of (43) equals

ϕ(k)q
k∑

w(j)
∣∣∣∣∑ bne

2πinj
k

∣∣∣∣
q

. (44)

j=1 n
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The desired inequality now follows from (41), (43) and (44). Indeed taking w(j) = jr for
some integer r � 2 and q = 1, one has

k∑
j=1

jr
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣ � |
∑

n bn|
ϕ(k)

k∑
j=1

jr
∣∣ck(j)∣∣ � |

∑
n bn|

ϕ(k)

∣∣∣∣∣
k∑

j=1
jrck(j)

∣∣∣∣∣. (45)

Therefore, the desired inequality follows from (37) when k � 2 and from (28) when
k = 1. If w(j) = j and q = 1, then we have

k∑
j=1

j

∣∣∣∣∑
n

bne
2πinj

k

∣∣∣∣ � |
∑

n bn|
ϕ(k)

k∑
j=1

j
∣∣ck(j)∣∣. (46)

Using evaluation of Ramanujan sum and the fact that Q1(d) = dϕ(d)
2 when d � 2, one

obtains

k∑
j=1

j
∣∣ck(j)∣∣ = kϕ(k)

∑
d|k

μ2(d)
dϕ(d)Q1(d) = kϕ(k)

(
1 + 1

2
∑
d|k
d>1

μ2(d)
)

= 1
2
(
2ω(k) + 1

)
kϕ(k). (47)

Combining (46) and (47) gives

k∑
j=1

j

∣∣∣∣∑
n

bne
2πinj

k

∣∣∣∣ � 1
2

∣∣∣∣∑
n

bn

∣∣∣∣(2ω(k) + 1
)
k.

When r ∈ {2, 3, 4, 5, 6}, using (45), one has

k∑
j=1

jr
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣ �
( |

∑
n bn|

ϕ(k)

)∣∣ar(k)
∣∣kr+1

and

k∑
j=1

jr
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣ > cr

( |
∑

n bn|
ϕ(k)

)
kr+1

is a consequence of Corollary 2. To show the next inequality, one can use an idea of the
proof of Corollary 1. Indeed if N is large enough and k is not divisible by the first N

primes 2, 3, . . . , pN , then for any given r � 2

1
(r + 1)

[ r2 ]∑ (
r + 1
2m

)
B2m

J2m(k)
k2m
m=1
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can be made arbitrarily close to 1
2 − 1

r+1 . Since 1
2 − 1

r+1 � 1
6 for r � 2, we may safely

assume that

1
(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

J2m(k)
k2m >

1
7 (48)

for any k not divisible by the first N primes and N is large enough only in terms of r.
It is well-known that record low values of ϕ(k) occur when k is a product of the first R

consecutive primes, where R is a parameter. Moreover,

ϕ(k) � k

log log k (49)

for these specific values of k. When k is not divisible by the first N primes, the record
low values of ϕ(k) occur when k is a product of the first R consecutive primes coming
after pN , namely pN+1, pN+2, . . . , pN+R. Since

∏
p�pN

(
1 − 1

p

)

is a constant depending only on r, it follows from (49) that

ϕ(k) �r
k

log log k (50)

when k is a product of the first R consecutive primes coming after pN . Therefore, com-
bining (37), (45), (48) and (50), we deduce that there exists a positive constant Mr

depending only on r and infinitely many k not divisible by the first N primes and satis-
fying (50) such that

k∑
j=1

jr
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣ �
∣∣∣∣∑

n

bn

∣∣∣∣
∣∣∣∣∣12 +

(
1

(r + 1)

[ r2 ]∑
m=1

(
r + 1
2m

)
B2m

J2m(k)
k2m

)
k

ϕ(k)

∣∣∣∣∣kr

> Mr

∣∣∣∣∑
n

bn

∣∣∣∣kr log log k.

To complete the proof, note that by the Cauchy–Schwarz inequality,

k∑
j=1

jr
∣∣∣∣∑

n

bne
2πinj

k

∣∣∣∣ �
(

k∑
j=1

j2r

) 1
2
(

k∑
j=1

∣∣∣∣∑
n

bne
2πinj

k

∣∣∣∣
2
) 1

2

(51)

holds. Clearly, we have

(
k∑

j2r

) 1
2

�r kr+
1
2 , (52)
j=1
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where the implied constant depends only on r. Using the observation

k∑
j=1

∣∣∣∣∑
n

bne
2πinj

k

∣∣∣∣
2

=
∑
m,n

bnbm

k∑
j=1

e
2πi(n−m)j

k = k
∑
n

|bn|2 (53)

and gathering (51), (52) and (53), one may obtain the desired upper bound.

9. Proof of Theorem 5

First using the definition of Ramanujan sum, we may write

k∑
j=1

jrck(j) = krϕ(k) +
k−1∑
j=1

jrck(j) = krϕ(k) +
∑

1�m�k
(m,k)=1

k−1∑
j=1

jre
2πijm

k . (54)

It is shown in [2] that

k−1∑
j=1

jre
2πijm

k =
r∑

j=1

(
r

j

)
kj lim

w→e
2πim

k

dr−j

dwr−j

(
1

ew − 1

)
(55)

for k � 2 and r � 1. Again from [2], recall that when j � r − 1,

dr−j

dwr−j

(
1

ew − 1

)
=

r−j+1∑
s=1

Ar−j,s

(ew − 1)s (56)

holds, where Aq,j ’s are integers defined uniquely by the conditions given in the statement
of the theorem. Combining (54), (55) and (56), we see that

k∑
j=1

jrck(j) = krϕ(k) +
r−1∑
j=1

r−j+1∑
s=1

(
r

j

)
Ar−j,sk

j
∑

1�m�k
(m,k)=1

1
(e 2πim

k − 1)s

+ kr
∑

1�m�k
(m,k)=1

1
(e 2πim

k − 1)
. (57)

Since the left hand side of (57) is a real number, it is enough to keep only the real part
of the right hand side of (57). Thus we get

k∑
j=1

jrck(j) = krϕ(k)
2 +

r−1∑
j=1

r−j+1∑
s=1

(
r

j

)
Ar−j,sk

jR

( ∑
1�m�k
(m,k)=1

1
(e 2πim

k − 1)s

)
. (58)

Clearly, we have
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R

( ∑
1�m�k
(m,k)=1

1
(e 2πim

k − 1)s

)
= R

( ∑
1�m�k
(m,k)=1

e−
πims

k

(2i sin(πmk ))s

)

=
∑

1�m�k
(m,k)=1

g(k,m, s)
(2 sin(πmk ))s , (59)

where g(k,m, s) is defined modulo 4 as in the statement of the theorem. Changing the
order of j and s in (58) imposes the conditions 1 � s � r and 1 � j � min(r−1, r−s+1).
Combining (1), (58) and (59), we complete the proof of Theorem 5.
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