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1. Introduction

Let q = pa where p is a prime, and let Fq denote the finite field with q elements. Let 
C = C(Fq) be a projective smooth absolutely irreducible curve of genus g defined over 
Fq. For any n ≥ 1 let C(Fqn) = C(Fq) ⊗Fq

Fqn be the set of Fqn-rational points of C, 
and let #C(Fqn) be the cardinality of C(Fqn). Similarly, if Fq denotes a fixed algebraic 
closure of Fq, let C(Fq) = C(Fq) ⊗Fq

Fq.
The divisor group of C is the free abelian group generated by the points of C(Fq). 

Thus, a divisor is a formal sum 
∑

nPP over all P ∈ C(Fq), where all but finitely many 
nP are 0. The degree of a divisor is 

∑
nP . The divisor of a function in the function 

field Fq(C) must have degree 0, and is called a principal divisor. The quotient of the 
subgroup of degree 0 divisors by the principal divisors is denoted Pic0(C(Fq)), and is 
canonically isomorphic to the Jacobian of C, Jac(C)(Fq), after a point at infinity is 
chosen. The Galois group Gal(Fq/Fq) acts on divisors and divisor classes, and we define 
Jac(C) = Jac(C)(Fq) = Pic0(C) = Pic0(C(Fq)) to be the divisor classes that are fixed 
by every element of Gal(Fq/Fq). The Jacobian Jac(C) is an abelian variety of dimension 
g defined over Fq.

The Frobenius map π : x �→ xq on Fq induces a Frobenius map on C(Fq). The elements 
of C(Fqn) are the fixed points of πn. The Frobenius morphism π induces a map on divisor 
classes, and hence on the Jacobian, and hence a Frobenius endomorphism on the �-adic 
Tate module V�(Jac(C)). Let PC(t) denote the characteristic polynomial of the Frobenius 
endomorphism, which is known to have integer coefficients. An abelian variety defined 
over Fq is called Fq-simple if it is not isogenous over Fq to a product of abelian varieties 
of lower dimensions. An abelian variety is absolutely simple if it is Fq-simple. If Jac(C)
is Fq-simple then it can be shown that PC(X) = h(X)e where h(X) ∈ Z[X] is irreducible 
over Z and e ≥ 1. We refer the reader to Waterhouse [17] for these and further details 
about abelian varieties.

Given an abelian variety A of dimension g defined over Fq, for a prime � �= p one 
defines A[�] as the group of points on A (with values in an algebraic closure k) of order 
dividing �. Like in the classical case over C it can be shown that A[�] is a 2g-dimensional 
Z/�Z-vector space. Things are different when � = p. The p-rank of A is defined by

rp(A) = dimFp
A[p](k),

where A[p](k) is the subgroup of p-torsion points over the algebraic closure. The p-rank 
can take any value between 0 and g = dim(A). When rp(A) = g we say that A is ordinary. 
The number rp(A) is invariant under isogenies over k, and satisfies rp(A1 × A2) =
rp(A1) + rp(A2).

The zeta function of C is defined by

ZC(t) = exp
(∑

#C(Fqn) t
n

n

)
= exp

(∑
#Fix(πn) t

n

n

)
.

n≥1 n≥1
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It was shown by Artin and Schmidt (see Roquette [13]) that ZC(t) can be written in the 
form

LC(t)
(1 − t)(1 − qt)

where LC(t) ∈ Z[t] (called the L-polynomial of C) is of degree 2g. Weil showed that 
LC(t) = t2gPC(1/t), and therefore factorizations of PC(t) are equivalent to factorizations 
of LC(t).

The characteristic polynomial of Frobenius carries a lot of information about an 
abelian variety. In fact, the isogeny classes of abelian varieties are completely classified 
by their characteristic polynomials, as the following theorem of Tate shows.

Theorem 1 (Tate). Let A and B be abelian varieties defined over Fq. Then an abelian 
variety A is Fq-isogenous to an abelian subvariety of B if and only if PA(t) divides PB(t)
over Q[t]. In particular, PA(t) = PB(t) if and only if A and B are Fq-isogenous.

When Jac(C) is not Fq-simple it decomposes up to isogeny (by Poincare’s theorem) 
into a product of abelian varieties of smaller dimensions, and Tate’s theorem shows that 
the characteristic polynomial PC(t) is divisible by the characteristic polynomials of the 
subvarieties. In this paper we are interested in this phenomenon of the decomposition of 
Jac(C).

It follows from this discussion that decomposing the Jacobian up to isogeny, factorizing 
the characteristic polynomial, and factorizing the L-polynomial, are all equivalent.

The decomposition of Jac(C) has been studied in many papers before now, see 
Aubry–Perret [2], Paulhus [11] or Bauer–Teske–Weng [3] for example, and there are 
two well-known approaches. The first approach is to use the Kani–Rosen decomposition 
theorem [7], applicable for many groups G = Aut(C).

Theorem 2 (Kani–Rosen). Given a curve C, let G ≤ Aut(C) be a finite group such that 
G = H1 ∪ · · · ∪Ht where the Hi are subgroups of G such that Hi ∩Hj = {1} if i �= j. 
Then we have the following isogeny relation

Jac(C)t−1 × Jac(C/G)|G| ∼ Jac(C/H1)|H1| × · · · × Jac(C/Ht)|Ht|.

This usually yields a decomposition of the Jacobian and a factorization of LC(t). For 
example, in the special case where G is the Klein 4-group with subgroups H1, H2, H3, 
the Kani–Rosen theorem implies an isogeny

Jac(C)2 × Jac(C/G)4 ∼ Jac(C/H1)2 × Jac(C/H2)2 × Jac(C/H3)2

which implies the following L-polynomial relation

LC(t) LC/G(t)2 = LC/H1(t) LC/H2(t) LC/H3(t).
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An example of a paper applying the theorem in the case of the Klein-4-group is [10]. 
However, as pointed out in [11], the Kani–Rosen theorem will not apply when Aut(C)
is cyclic. Also, most curves have trivial automorphism group, so the theorem does not 
apply to them.

Related to this method is the fact that the L-polynomial of a fibre product C ×D is 
divisible by the L-polynomials of C and D.

The second well-known approach is to use a theorem of Kleiman [8], also sometimes 
attributed to Serre, which implies a decomposition of Jac(C) whenever there is a covering 
map C −→ C ′.

Theorem 3 (Kleiman–Serre). If there is a morphism of curves C −→ C ′ that is defined 
over Fq then LC′(t) divides LC(t).

These two approaches show that LC(t) is divisible by the L-polynomial of a curve that 
is a quotient of C or a morphic image of C. In this article we will add a third approach, 
which may apply to curves with no nontrivial automorphisms, and in situations where 
there are no nontrivial covering maps. We replace the hypotheses of algebraic structure 
with a hypothesis about the number of rational points, and show that the Jacobians of 
such curves can exhibit similar decomposition behaviour. Specifically, we will prove the 
following theorem.

Theorem 4. Let C and D be two smooth projective curves over Fq. Assume there exists 
a positive integer k such that

1. #C(Fqm) = #D(Fqm) for every m that is not divisible by k, and
2. the k-th powers of the roots of LC(t) are all distinct.

Then LD(t) = q(tk)LC(t) for some polynomial q(t) in Z[t].

The theorem of Tate (Theorem 1) when applied to two elliptic curves E1 and E2
defined over Fq says that when E1 and E2 have the same number of Fq-rational points, 
there must be an isogeny between the curves. Thus, two curves having the same number 
of points cannot be a combinatorial accident; it must happen because of an isogeny. 
Theorem 4 may be seen as a generalization of this result when curves C1 and C2 are of 
different genera. Theorem 4 says that if the two curves have the same number of points 
over all the prescribed extension fields, then this is not a combinatorial accident but 
is coming from a geometric relationship between their Jacobians. There may not be a 
relationship between the curves, such as a morphism, but there must be a relationship 
between their Jacobians.

In Section 2 we will recall some background that we need for the article. In Section 3
we will prove Theorem 4. In Section 4 we will apply our results to a family of curves, 
and state our own conjectures about this family. In Section 5 we give our motivation for 
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this work, which was a conjecture on exponential sums. Finally in Section 6 we prove 
equivalence of the conjectures.

2. Background

2.1. L-polynomials

It is traditional to write

LC(t) =
2g∏
i=1

(1 − αit), and PC(t) =
2g∏
i=1

(t− αi).

The αi are called the Frobenius eigenvalues of C (or of Jac(C)), because they are 
the eigenvalues of the Fq-Frobenius endomorphism action on the �-adic Tate module 
V�(Jac(C)). We briefly recall some further well-known facts about L-polynomials (see [16]
for example). If L(n)(t) denotes the L-polynomial of C(Fqn) then

L(n)(t) =
2g∏
i=1

(1 − αn
i t).

The number of rational points for all n ≥ 1 is given by

#C(Fqn) = qn + 1 −
2g∑
i=1

αn
i .

This means that the coefficient of t in L(n)(t) is equal to #C(Fqn) − (qn + 1).
The algebraic integers αi can be labelled so that αi = αi+g and αiαi+g = q, so 

|αi| =
√
q.

2.2. Morphisms

In this section first we recall some theorems which will be used later.

Theorem 5. (See [15, Theorem 2.3].) Let φ : C1 −→ C2 be a morphism of curves. Then 
φ is either constant or surjective.

Now let K be a field of characteristic p > 0 and let q = pr. If C is a curve defined by 
a single equation f = 0 over K, then we can define a new curve C(q) which is the zero 
set of the equation f (q) = 0 where f (q) is the polynomial obtained from f by raising its 
coefficients to the power q. It follows that there is a natural morphism between C and 
C(q) called the Frobenius morphism.
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Theorem 6. (See [15, Corollary 2.12].) Every map ψ : C1 −→ C2 of smooth curves over 
a field of characteristic p > 0 factors as

C1
φ−→ C

(q)
1

λ−→ C2

for some q where the map φ is the Frobenius map, and the map λ is separable.

The following is an immediate corollary of the above theorem as with the assumptions 
of the following corollary, C(q)

1 = C1.

Corollary 7. Let p be a prime number, Fp the finite field with p elements, and let C1, C2 be 
smooth curves defined over Fp. Furthermore suppose that there is a map ψ : C1 −→ C2. 
Then there is a map λ : C1 −→ C2 which is separable.

3. Divisibility of L-polynomials

In this section we prove our result on the divisibility relation between L-polynomials. 
Again q = pa where p is a prime. After proving the theorem we will then prove a partial 
converse.

3.1. Divisibility theorem

We begin with one preliminary lemma.

Lemma 8. Suppose that f(x), g1(x) and g2(x) are polynomials in Z[x] where f(0) �= 0
and f(x)n = g1(xk)/g2(xk) for positive integers k and n. Then there exists a polynomial 
h(x) in Z[x] so that f(x) = h(xk).

Proof. Let ζk be a primitive k-th root of unity. Then

f(ζkx)n = g1((ζkx)k)/g2((ζkx)k) = g1(xk)/g2(xk) = f(x)n.

Thus f(ζkx) = ζnf(x) for some n-th root of unity ζn. Since f(0) �= 0 we have ζn = 1
and f(ζkx) = f(x). Now the claim follows. �

We restate Theorem 4 and give the proof.

Theorem 9. Let C and D be two smooth projective curves over Fq. Assume there exists 
a positive integer k such that

1. #C(Fqm) = #D(Fqm) for every m that is not divisible by k, and
2. the k-th powers of the roots of LC(t) are all distinct.

Then LD(t) = q(tk)LC(t) for some polynomial q(t) in Z[t].
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Proof. Let LC(t) =
∏2g(C)

i=1 (1 − αit) and LD(t) =
∏2g(d)

j=1 (1 − βjt), then

#C(Fqm) = 1 + qm −
2g(C)∑
i=1

αm
i

and

#D(Fqm) = 1 + qm −
2g(D)∑
j=1

βm
j .

So, by hypothesis, there exists a positive integer k such that

2g(C)∑
i=1

αm
i =

2g(D)∑
j=1

βm
j

for every m with k � m. This gives an equality of certain zeta functions, namely

exp

⎛
⎝ ∑

m:k�m

2g(C)∑
i=1

αm
i

tm

m

⎞
⎠ = exp

⎛
⎝ ∑

m:k�m

2g(D)∑
j=1

βm
j

tm

m

⎞
⎠

Now

exp

⎛
⎝ ∑

m:k�m

2g(C)∑
i=1

αm
i

tm

m

⎞
⎠ = exp

⎛
⎝∑

m

2g(C)∑
i=1

αm
i

tm

m
−

∑
m:k|m

2g(C)∑
i=1

αm
i

tm

m

⎞
⎠

= exp

⎛
⎝∑

m

2g(C)∑
i=1

αm
i

tm

m
−
∑
m

2g(C)∑
i=1

αkm
i

tkm

km

⎞
⎠

=
∏2g(C)

i=1 (1 − αk
i t

k)1/k∏2g(C)
i=1 (1 − αit)

= L
(k)
C (tk)1/k

LC(t)

Therefore,

L
(k)
C (tk)1/k

LC(t) = L
(k)
D (tk)1/k

LD(t)
and, raising to the k-th power, we get a polynomial equality

LC(t)kL(k)
D (tk) = LD(t)kL(k)

C (tk) (1)

In particular, LC(t)k divides LD(t)kL(k)
C (tk). But

L
(k)
C (tk) =

2g(C)∏
(1 − (αit)k) =

2g(C)∏ ∏
k

(1 − ζαit)

i=1 i=1 ζ =1
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= LC(t)
2g(C)∏
i=1

∏
ζk=1,ζ �=1

(1 − ζαit)

so LC(t)k−1 divides LD(t)k
∏2g(C)

i=1
∏

ζk=1,ζ �=1(1 −ζαit). Since LC(t) and this last product 
are relatively prime by assumption, we conclude that LC(t)k−1 divides LD(t)k. Since 
LC(t) is square free, it must divide LD(t).

Having proved the divisibility of LD(t) by LC(t) we need to prove their quotient is of 
desired form. Using (1) and writing LD(t) = p(t)LC(t), we have

p(t)k = L
(k)
D (tk)/L(k)

C (tk).

Now the claim follows from Lemma 8 and there exists q(t) in Z[t] so that LD(t) =
q(tk)LC(t). �

We remark that the theorem becomes false when we replace the first hypothesis “for 
every m that is not divisible by k” with “for every m with gcd(m, k) = 1.” A counterex-
ample is given by the curves (defined over F3) D : y2+(x2+x +1)y = x5+x4+x2+x +1
which has L-polynomial 9t4+3t3−2t2+t +1 and the curve C : y2+(2x +1)y = x3+2x2+2
which has L-polynomial 3t2 + t +1. The curve C is an ordinary curve and it follows from 
Lemma 8 of [1] that L(n)

C (t) is an irreducible polynomial for every n and hence it has 
distinct roots. Furthermore, the curves C and D have the same number of rational points 
over F3m when gcd(m, 6) = 1 but there is no divisibility of L-polynomials. More gen-
erally, for a suitable a a curve with L-polynomial L1 : qt2 − at + 1 and a curve with 
L-polynomial L2 : q2t4 − aqt3 + (a2 − q)t2 − at + 1 have the same number of rational 
points over Fqm when gcd(m, 6) = 1 but there is no divisibility of L-polynomials. The 
existence of curves of genus one with L-polynomial equal to L1 for some a and curves of 
genus two with L-polynomial equal to L2 is guaranteed by the results on the classification 
of Weil polynomials of degree two and four [5,14].

3.2. A converse

We have the following theorem which is a partial converse of the theorem above.

Theorem 10. Let C and D be two smooth projective curves over Fq. Assume that there 
exists a positive integer k > 1 such that LD(t) = q(tk)LC(t) for some polynomial q(t) in 
Z[t]. Then #C(Fqm) = #D(Fqm) for every m that is not divisible by k.

Proof. Since

LC(t)
(1 − t)(1 − qt) = ZC(t) = exp

(∑
#C(Fqm) t

m

m

)
,

m≥1
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it follows that

logLC(t) =
∑
m≥1

(#C(Fqm) − 1 − qm) t
m

m

in Q[[t]]. Similarly, we have

logLD(t) =
∑
m≥1

(#D(Fqm) − 1 − qm) t
m

m
.

Now from LD(t) = q(tk)LC(t) we have logLD(t) = log q(tk) + logLC(t) in Q[[t]], and 
since log q(tk) is a power series in tk, the coefficients of tm in logLC(t) and logLD(t) are 
equal for m not a multiple of k, and so are #C(Fqm) and #D(Fqm) whenever m is not 
a multiple of k. �
4. Application to curves

We present a simple family of curves where our theorem (Theorem 4) applies, modulo 
a conjecture, and yet the Kani–Rosen and Kleiman–Serre theorems do not apply. Our 
family is a subfamily of a family considered by Poonen [12].

We let Dk be the hyperelliptic curve defined by the affine equation

Dk : y2 + y = x2k+1 + x−1

over F2. We make the following conjecture, where the L-polynomials stated are over F2.

Conjecture 11. The L-polynomial of Dk is divisible by the L-polynomial of D1.

In fact we will also make a more refined conjecture.

Conjecture 12. Let k = pa1
1 · · · pam

m be the prime factorization of k, where p1, . . . , pm are 
distinct primes. Then

LDk
(t) = q1(tp1) · · · qm(tpm)LD1(t)

for some polynomials qi(t) in Z[t].

We verified the conjectures for k ≤ 5 using MAGMA [4]. The first five L-polynomials 
are

D1 : 4t4 + 2t3 + t + 1
D2 : (4t4 + 2t3 + t + 1)(2t2 + 1)
D3 : (4t4 + 2t3 + t + 1)(8t6 − 4t3 + 1)
D4 : (4t4 + 2t3 + t + 1)(128t14 + 64t12 + 2t2 + 1)



O. Ahmadi et al. / Journal of Number Theory 156 (2015) 414–431 423
D5 : (4t4 + 2t3 + t + 1)(32768t30 + 4096t25 + 4t5 + 1)

Multiplying the curve equation by x2 and replacing xy by y shows that the curve Dk

is birational to

Ek : y2 + xy = x2k+3 + x.

Thus it follows that Dk is of genus 2k−1 + 1. Now considering the degree 2 map ψ :
Dk −→ P1 which maps the point (x, y) to x, the ramification points are P0 and P∞, 
where P0 is the point with x-coordinate 0 and P∞ is the point at infinity. It follows that 
the ramification divisor is 2gDk

P0 +2P∞. Using the Hurwitz genus formula this fact also 
shows that the genus of Dk is 2k−1 + 1. Notice that the curve Dk has one singularity at 
P∞.

Lemma 13. The 2-rank of Dk is 1.

Proof. By the Deuring–Shafarevitch formula, for an Artin–Schreier curve yp − y = f(x)
the p-rank is m(p − 1) where m + 1 is the number of poles of f(x). Our curves Dk have 
two poles, at 0 and ∞. �

Poonen [12] studied the following family of curves

Lg : y2 + y = x2g−1 + x−1

and showed that their automorphism group consists of the identity and the hyperelliptic 
involution. Notice that Lg is of genus g, and the family of curves Lg includes Dk. Com-
puter experiments show that the analogue of Conjecture 11 is false for the larger family 
of Lg curves. As we need the theorem of Poonen in the rest of this section we include its 
proof for the sake of completeness.

Theorem 14. (See [12].) The automorphism group of Lg consists of the identity and the 
hyperelliptic involution.

Proof. The ramification points of degree 2 map ψ : Lg −→ P1 which maps the point 
(x, y) to x are P0 and P∞. It is well known that the Weierstrass points of hyperelliptic 
curves are exactly the ramification points of the hyperelliptic involution and any auto-
morphism fixes the set of Weierstrass points. It is also well known that the automorphism 
of the hyperelliptic curves are lifts of the automorphisms of P1. Thus it follows that auto-
morphisms of Lg are lifts of the maps taking x to λx for some nonzero λ in the algebraic 
closure of F2. But according to Artin–Schreier theory the following two curves

y2
1 + y1 = x2g−1 + x−1
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and

y2
2 + y2 = (λx)2g−1 + (λx)−1

are distinct. �
A consequence of Theorem 14 is that the Kani–Rosen method (Theorem 2) will not 

work if we want to use it to prove Conjecture 11.

The second approach mentioned in the introduction that one might use to prove 
Conjecture 11 is the Kleiman–Serre theorem, Theorem 3. To apply this theorem one 
would have to show that there is a map Dk −→ D1 for any k > 1. If there were such 
a map, there would in particular be a map D2 −→ D1. However, the following theorem 
shows that there is no morphism from D2 to D1, and hence the Kleiman–Serre theorem 
does not apply to our case.

Theorem 15. There is no non-constant morphism from the curve Dk+1 to Dk, for any 
k ≥ 1.

Proof. Suppose there is a morphism

φ : Dk+1 −→ Dk.

Using Corollary 7, we can assume that φ is a separable map. Applying the Riemann–
Hurwitz genus formula [15, Theorem 5.9] we have

2gDk+1 − 2 ≥ deg(φ)(2gDk
− 2) +

∑
P∈Dk+1

(e(P ) − 1).

Since gDk+1 = 2k + 1 and gDk
= 2k−1 + 1, it follows that deg(φ) = 2 and ∑

P∈Dk+1
(e(P ) − 1) = 0. So Dk+1 is an unramified double cover of Dk. Now φ is a sepa-

rable map of degree 2. Thus Dk+1 is a Galois cover of Dk. This would imply that there 
is an involution other than the hyperelliptic involution in the automorphism group of 
Dk+1 which contradicts Theorem 14. Notice that here we need the separability of φ as 
our curves are defined over a field of characteristic two. �
Corollary 16. There is no non-constant morphism from the curve D2 to D1.

We have shown that the Kani–Rosen and Kleiman–Serre approaches will not apply 
to prove Conjectures 11 and 12.
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5. Motivation

In this section we will give our motivation for studying the curves Dk, which comes 
from a problem on certain exponential sums.

In [6], while studying the cross-correlation of m-sequences, Johansen, Helleseth and 
Kholosha considered the following exponential sums

G(k)
m =

∑
x∈F∗

2m

(−1)Trm(x2k+1+x−1)

where Trm(.) denotes the trace function from F2m to F2. In particular, G(1)
m =∑

x∈F∗
2m

(−1)Trm(x3+x−1). They made the following conjecture.

Conjecture 17. If gcd(k, m) = 1 then G(k)
m = G

(1)
m .

They also made a more general conjecture, that G(k)
m = G

(gcd(k,m))
m , i.e., that G(k)

m

depends only on gcd(k, m).
Now if Trm(u3 + u−1) = 0 for u ∈ F2m , then there are two points on the following 

curve considered over F2m

Dk : y2 + y = x2k+1 + x−1

with x-coordinate equal to u, and if Trm(u3 + u−1) = 1 then there is no point on Dk

with x-coordinate equal to u. Thus we have

#Dk(F2m) = 2m + 1 −G(k)
m .

Hence we may restate Conjecture 17 as follows.

Conjecture 18. When gcd(k, m) = 1 the curves D1 and Dk have the same number of 
rational points over F2m .

While investigating Conjecture 17, we looked at the zeta function of Dk and we 
observed empirically using MAGMA [4] that the L-polynomial of D1 over F2 divides the 
L-polynomial of Dk over F2, and we made Conjecture 11. In the next section we will 
prove that Conjecture 17 is equivalent to Conjecture 12.

6. Equivalence of conjectures

In this section we consider the relationship between Conjectures 11 and 12 and Con-
jecture 17.
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6.1. Conjecture 12 implies Conjecture 17

Theorem 19. For any k ≥ 1, Conjecture 12 implies Conjecture 17.

Proof. This follows from an argument similar to the proof of Theorem 10. Let k =
pa1
1 · · · pam

m be the prime factorization of k, and suppose

LDk
(t) = q1(tp1) · · · qm(tpm)LD1(t)

for some polynomials qi(t) in Z[t]. Taking the log on both sides leads to an equality of 
formal power series. Each of the terms log qi(tpi) is a polynomial in tpi , so for any m that 
is relatively prime to k the coefficient of tm in all these terms is 0. Therefore LDk

(t) and 
LD1(t) have the same coefficient of tm for any m with gcd(m, k) = 1, and Conjecture 17
is true. �
Corollary 20. Conjecture 17 is true for k ≤ 5.

Proof. Using Magma we computed the following L-polynomials:
D1 : 4t4 + 2t3 + t + 1
D2 : (4t4 + 2t3 + t + 1)(2t2 + 1)
D3 : (4t4 + 2t3 + t + 1)(8t6 − 4t3 + 1)
D4 : (4t4 + 2t3 + t + 1)(128t14 + 64t12 + 2t2 + 1)
D5 : (4t4 + 2t3 + t + 1)(32768t30 + 4096t25 + 4t5 + 1).
Since Conjecture 12 is then clearly true for k ≤ 5, the result follows from Theo-

rem 19. �
6.2. Conjecture 17 implies Conjecture 11

We shall prove that Conjecture 17 implies Conjecture 11 for general k, and Conjec-
ture 12 if k has at most 2 prime powers. First we consider the case where k is a prime 
power.

Theorem 21. Let k = pa be a prime power. Then Conjecture 17 implies Conjecture 12.

Proof. This follows from Theorem 4 (applied to k = p) with C = D1 and D = Dk. The 
first condition in Theorem 4 holds by the hypotheses, since being relatively prime to pa

is equivalent to not being divisible by p. To show the second condition in Theorem 4 it 
suffices to show that the L-polynomial of D1(F2r) for each r is irreducible. Since D1 has 
genus 2, its L-polynomial has degree 4 and the L-polynomial for F2 is easily calculated 
to be 4t4 + 2t3 + t + 1 which is irreducible. This implies that the Jacobian of D1(F2) is 
simple. By [9] any simple abelian surface of 2-rank 1 is absolutely simple, so the Jacobian 
is absolutely simple. By Lemma 2.12 of [9] the L-polynomial of D1(F2r ) for each r is 
therefore irreducible. �
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For general k we will first prove that Conjecture 17 implies Conjecture 11, after a small 
lemma.

Lemma 22. Let P ∈ 1 +tZ[t] be the L-polynomial of a curve with p-rank 0. Let Q ∈ 1 +tZ[t]
be the L-polynomial of a curve with p-rank > 0. Then Q(t) does not divide P (t).

Proof. A theorem of Manin states that the p-rank is equal to the degree of the mod p
reduction of the L-polynomial. Therefore the mod p reduction of P (t), denoted P (t), 
is 1.

Let d(t) = gcd(P (t), Q(t)). Then d(t) = 1, and Q(t) �= 1, so d(t) �= Q(t). �
Theorem 23. Conjecture 17 implies Conjecture 11.

Proof. We proceed by induction on the number of prime divisors of k. If k = pa for some 
prime p, then this follows from Theorem 21. Let k = pa1

1 · · · pam
m where p1, . . . , pm are 

distinct primes, and let k′ = k/pam
m .

Conjecture 17 implies that #Dk(F2r) = #Dk′(F2r ) for every r which is not divisible 
by pm. An argument similar to the proof of Theorem 4 shows that

LDk
(t)pmL

(pm)
Dk′ (tpm) = LDk′ (t)pmL

(pm)
Dk

(tpm).

By induction hypothesis, LDk′ (t) = LD1(t) · P (t) for some P ∈ 1 + tZ[t]. Note that, 
since both LDk′ and LD1 have p-rank 1, P must have p-rank 0. Then we have

LDk
(t)pmL

(pm)
D1

(tpm)P (pm)(tpm) = LD1(t)pmP (t)pmL
(pm)
Dk

(tpm).

Since the pm-th powers of the roots of LD1 are distinct, we can deduce as in the proof of 
Theorem 4 that LD1(t)pm−1 divides LDk

(t)pmP (pm)(tpm). However LD1(t) cannot divide 
P (tpm), as the latter has p-rank 0, by Lemma 22. Therefore, since LD1(t) is irreducible 
it must divide LDk

(t). �
Before extending the argument to show that Conjecture 17 implies Conjecture 12

when k has at most 2 prime factors, we prove two lemmas.

Lemma 24. Suppose that f1(x), f2(x), g1(x) and g2(x) are polynomials in Z[x] where 
fi(0) �= 0 for i = 1, 2 and (f1(x)/f2(x))n = g1(xk)/g2(xk) for positive integers k and n. 
Then there are polynomials h1(x) and h2(x) in Z[x] so that f1(x)/f2(x) = h1(xk)/h2(xk).

Proof. Without loss of generality we may assume that f1 and f2 are coprime. Let ζk be 
a primitive k-th root of unity. Then

(f1(ζkx)/f1(ζkx))n = g1((ζkx)k)/g2((ζkx)k)

= g1(xk)/g2(xk)

= (f1(x)/f2(x))n.
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Thus

f1(x)
f2(x) = ζn

f1(ζkx)
f2(ζkx)

for some n-th root of unity ζn. If we let x = 0, from the fact that fi(0) �= 0 for i = 1, 2
we derive that ζn = 1, and hence

f1(x)
f2(x) = f1(ζkx)

f2(ζkx)

which is equivalent to

f1(x)f2(ζkx) = f2(x)f1(ζkx).

Now we know that f1 and f2 have no common root, so from the equation above it follows 
that a is a root of f1 with multiplicity l if and only if ζka is a root of f1 with multiplicity 
l. Thus f1(x) = h1(xk) for some h1. Similarly, f2(x) = h2(xk) for some h2. �
Lemma 25. Let f ∈ 1 + T · Z[T ] and let p, q be relatively prime integers such that there 
exist polynomials g1, g2, h1, h2 ∈ 1 + T · Z[T ] with

f(t) = g1(tp)g2(tq)
h1(tp)h2(tq)

.

Then there exist polynomials f1, f2 ∈ 1 + T · Z[T ] such that f(t) = f1(tp)f2(tq).

Proof. We may assume without loss of generality that g1, h1 are relatively prime (if they 
have a common factor, then they have a common factor of the form P (tp)). Similarly 
with g2, h2.

We proceed by induction on n = deg(f) + deg(h1) + deg(h2), the case n = 0 being 
obvious. Let α be a (reciprocal) root of f(t). Then α is a root of either g1(tp) or of g2(tq). 
Without loss of generality, let us assume that it is a root of the former. Then ζipα is also 
a root for every i = 0, . . . , p − 1, where ζp is a primitive p-th root of unity. We now 
distinguish two cases:

If ζipα is a root of f(t) for every i = 0, . . . , p − 1, then f(t) and g1(tp) are divisible 
by 

∏
i(1 − ζipαT ) = 1 − αpT p. Let a(tp) ∈ 1 + T pZ[T p] be the product of all Galois 

conjugates of 1 − αptp. Then f(t) and g1(tp) are divisible by a(tp), and we have

f(t)
a(tp) =

g1(tp)
a(tp) g2(tq)
h1(tp)h2(tq)

.

By induction hypothesis there exist f̂1, f̂2 ∈ 1 + T · Z[T ] such that f(t)
a(tp) = f̂1(tp)f̂2(tq), 

and we take f1(t) = a(t)f̂1(t), f2(t) = f̂2(t).
Now suppose that there exists some i0 such that ζi0p α is not a root of f(t). Then from 

f(t)h1(tp)h2(tq) = g1(tp)g2(tq) we get that ζi0p α is a root of h2(tq), and then so is ζjqζi0p α
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for every j = 0, . . . , q − 1, where ζq is a primitive q-th root of unity. Since g2 and h2 are 
relatively prime, ζjqζi0p α is a root of g1(tp) for every j = 0, . . . , q−1. Then ζjqζ

i
pα is a root 

of g1(tp) for every i, j, so g1(tp) is divisible by 1 −αpqtpq. Let b(tpq) be the product of all 
Galois conjugates of 1 −αpqtpq, then g1(tp) is divisible by b(tpq), let g1(tp) = g′1(tp)b(tpq). 
We have

f(t)h1(tp)h2(tq) = g′1(tp)(b(tpq)g2(tq)).

If b(tpq) and h2(tq) are not relatively prime, then they have a common factor of the 
form p(tq). Dividing both of them by that factor we get f(t)h1(tp)h′

2(tq) = g′1(tp)g′2(tq), 
and we conclude by induction hypothesis since deg(h′

2) < deg(h2). Otherwise, b(tpq)
must divide f(t). Writing f(t) = f ′(t)b(tpq) we get

f ′(t)h1(tp)h2(tq) = g′1(tp)g2(tq)

and again we conclude by induction. �
Finally we prove the main result of this section.

Theorem 26. If k has at most 2 prime factors, Conjecture 17 implies Conjecture 12.

Proof. The prime power case is Theorem 21, so suppose that k = pa1
1 pa2

2 .
Following the proof of Theorem 23, and assuming that

LDk′ (t) = P (t)LD1(t)

and

LDk
(t) = Q(t)LD1(t)

from the main equation in Theorem 23 we get that

Q(t)p2P (t)(p2)(tp2) = P (t)p2Q(t)(p2)(tp2).

This is equivalent to (
Q(t)
P (t)

)p2

= Q(p2)(tp2)
P (p2)(tp2)

.

Applying Lemma 8, we have that

Q(t)
P (t) = h1(tp2)

h2(tp2) .

From this and Theorem 21 we have

LDk
(t) = Q(t)LD1(t) = h1(tp2)

h2(tp2)P (t)LD1(t) = h1(tp2)
h2(tp2)q1(t

p1)LD1(t)

for some q1(t) ∈ Z[t]. By Lemma 25 the proof is complete. �
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When k has more than 2 prime factors, it is not hard to see that the proofs of the 
theorem above and Theorem 23 along with an induction can be used to prove that 
Conjecture 17 implies a weaker version of Conjecture 12 where the polynomials in Con-
jecture 12 are replaced with ratios of polynomials. More precisely, we have the following 
theorem. Notice that the proof of the converse claim in the following is similar to the 
proof of Theorem 10.

Theorem 27. Let k = pa1
1 · · · pam

m be the prime factorization of k, where p1, . . . , pm are 
distinct primes. Then Conjecture 17 implies that

LDk
(t) = qm,1(tpm)

qm,2(tpm)
qm−1,1(tpm−1)
qm−1,2(tpm−1) · · ·

q2,1(tp2)
q2,2(tp2)q1(t

p1)LD1(t)

for some polynomials qi,1(t), qi,2(t) and q1(t) in Z[t]. Conversely, if LDk
(t) is in the above 

form, then Conjecture 17 is true.
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