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ON THE NON-NEGATIVITY OF THE SPT-CRANK FOR

PARTITIONS WITHOUT REPEATED ODD PARTS

RENRONG MAO

Abstract In this paper, we establish the non-negativity of the spt-crank for
partitions without repeated odd parts which was first conjectured by Garvan and
Jennings-Shaffer. As corollaries, we prove inequalities between the positive rank
and crank moments of such partitions.
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1. Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers
that whose sum is n. In the study of integer partitions, people are often interested in
weighted counts of partitions (see [3, 4, 24, 22], for example). Recently, Andrews [6]
introduced the smallest parts function spt(n) as the weighted counting of partitions
of n with respect to the number of occurrences of the smallest part, i.e., spt(n) is the
total number of appearances of smallest parts in all the partitions of n. Andrews
proved

spt(5n+ 4) ≡ 0 (mod 5), (1.1)

spt(7n+ 5) ≡ 0 (mod 7), (1.2)

spt(13n+ 6) ≡ 0 (mod 13).

To give combinatorial interpretations of the above congruences, Andrews, Garvan
and Liang introduce the spt-crank of an S-partition. Let P denote the set of
partitions and D denote the set of partitions into distinct parts. For π ∈ P, we let
s(π) denote the smallest part of π with s(∅) =∞ for the empty partition, and �(π)
be the number of parts in π. Define

S := {(π1, π2, π3) ∈ D × P × P : π1 �= ∅ and s(π1) ≤ min s(π2), s(π3)} .
For −→π = (π1, π2, π3) ∈ S, we define the weight ω1(

−→π ) := (−1)�(π1)−1, the crank
(−→π ) := �(π2) − �(π3), and | −→π |:=| π1 | + | π2 | + | π3 | where | πj | is the sum
of the parts of πj . We say −→π is a vector partition of n if | −→π |= n. For an integer
n ≥ 1 and any integer m, let NS(m,n) denote the number of vector partitions of n
in S with crank m counted according to the weight ω1, that is,

NS(m,n) :=
∑

−→π ∈ S, | −→π |= n
crank(−→π ) = m

ω1(
−→π ).

Then Andrews, Garvan and Liang [10] show that, for integers n ≥ 0,

NS(k, 5, 5n+ 4) =
spt(5n+ 4)

5
, for 0 ≤ k ≤ 4, (1.3)

1
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and

NS(k, 7, 7n+ 5) =
spt(7n+ 5)

7
, for 0 ≤ k ≤ 6, (1.4)

where NS(m, t, n) :=
∑

k≡m (mod t) NS(k, n). Clearly, equation (1.3) (resp. (1.4))

implies (1.1) (resp. (1.2)). In the same paper, Andrews, Garvan and Liang also
show that

NS(m,n) ≥ 0,

for all integers m and n ≥ 1. We remark that Chen, Ji and Zang [21] found a
definition of spt-crank for the ordinary partitions. More studies on spt-function
and spt-crank of ordinary partitions can be found in [1, 11, 18, 26].

In this paper, we study the spt-crank for the partitions without repeated odd
parts. Recall that the spt-function for such partitions were first introduced by
Ahlgren, Bringmann and Lovejoy [2]. Let M2spt(n) denote the total number of
smallest parts in all partitions of n without repeated odd parts and the smallest

part is even. For an odd prime p, let
(
·
p

)
denote the Legendre symbol [28, p. 85].

Then the authors of [2] proved that for any prime l ≥ 3, any integer m ≥ 1, and
n ≥ 0 such that

(−n
l

)
= 1, we have

M2spt

(
l2mn+ 1

8

)
≡ 0 (mod lm).

In [27], Garvan and Jennings-Shaffer provided more congruences for M2spt(n). For
example, they proved that, for integers n ≥ 0,

M2spt(3n+ 1) ≡ 0 (mod 3), (1.5)

M2spt(5n+ 1) ≡ 0 (mod 5), (1.6)

M2spt(5n+ 3) ≡ 0 (mod 5). (1.7)

To obtain the above congruences, they introduced the spt-crank for partitions
without repeated odd parts as follows. Following the notations used in the def-
inition of the spt-crank of the S-partition, we let V := D × P × P × D. For −→π =
(π1, π2, π3, π4) ∈ V , we define the weight ω(−→π ) := (−1)�(π1)−1, the crank(−→π ) :=
�(π2)− �(π3), and the norm | −→π |:=| π1 | + | π2 | + | π3 | + | π4 |. Then S denotes
the subset of V defined by

S :=
{
(π1, π2, π3, π4) ∈ V : 1 ≤ s(π1) <∞, s(π1) ≤ s(π2), s(π1) < s(π4)

}
.

For π ∈ P , we also define no(π) and ne(π) to be the number of odd and even part
of π, respectively. Let S2 denote the subset of S given by

S2 :=
{
(π1, π2, π3, π4) ∈ S : no(π1) = no(π2) = no(π3) = ne(π4) = 0

}
.

Then, for an integer n ≥ 1 and any integer m, we denote NS2(m,n) to be the
number of vector partitions of n in S2 with crank m counted according to the
weight ω, that is

NS2(m,n) :=
∑

−→π ∈ S2, | −→π |= n
crank(−→π ) = m

ω(−→π ).
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By [27, Eq. (2.3)], we have the following generating function for NS2(m,n):

S2(z, q) :=

∞∑
n=1

∞∑
m=−∞

NS2(m,n)zmqn =

∞∑
n=1

q2n(q2n+2,−q2n+1; q2)∞
(zq2n, q2n/z; q2)∞

. (1.8)

In equation (1.8) and for the rest of this article, we use the notations

(x1, x2, . . . , xk; q)m :=

m−1∏
n=0

(1− x1q
n)(1− x2q

n) · · · (1− xkq
n),

for m ∈ N ∪ {∞} and we require |q| < 1 for absolute convergence.
Recall the q-binomial coefficient

[
L

K

]
q

:=

⎧⎨
⎩
0, if K < 0 or K > L,

(q; q)L
(q; q)K(q; q)L−K

, otherwise.

For L ≥ K ≥ 0, it is well known that
[
L
K

]
q
is a polynomial with non-negative

integral coefficients. See [5, p. 33].
For integers n ≥ 1 and 0 ≤ m ≤ t−1, letNS2(m, t, n) :=

∑
k≡m (mod t) NS2(k, n).

Then Garvan and Jennings-Shaffer showed in [27] that

NS2(k, 3, 3n+ 1) =
M2spt(3n+ 1)

3
, for 0 ≤ k ≤ 2,

NS2(k, 5, 5n+ 1) =
M2spt(5n+ 1)

5
, for 0 ≤ k ≤ 4,

and

NS2(k, 5, 5n+ 3) =
M2spt(5n+ 3)

5
, for 0 ≤ k ≤ 4,

which imply the congruences (1.5), (1.6) and (1.7), respectively. At the end of [27],
Garvan and Jennings-Shaffer made the following conjecture:

Conjecture 1.1. For n ≥ 1 and m ∈ Z, we have

NS2(m,n) ≥ 0.

The first result of this paper is the following theorem:

Theorem 1.2. Conjecture 1.1 is true. In particular, for m ∈ Z and n =| 2m | +2
or n ≥| 2m | +4, we have

NS2(m,n) > 0. (1.9)

Remark. Equation (1.8) implies NS2(m,n) = NS2(−m,n) for m ∈ Z and n ≥ 1.
Thus, we only consider NS2(m,n) with m ≥ 0 in the proof of Theorem 1.2.

In [27], Garvan and Jennings-Shaffer also defined another three spt-cranks in
terms of S-partitions. These objects are proved to be closely related to the spt-
functions of overpartitions (see [27, Section 3]). In particular, Garvan and Jennings-
Shaffer established the non-negativity for such spt-cranks. Armed with this result,
the author [34] proved inequalities between some rank and crank moments for
overpartitions. In this paper, as an application of Theorem 1.2, we prove inequalities
between rank and crank moments of partitions without repeated odd parts with the
same method adopted in [34]. We recall that Berkovich and Garvan [12] introduced
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what they called the M2−rank of such partitions. The M2-rank of a partition λ
without repeated odd parts is defined by

M2-rank(λ) :=

⌈
l(λ)

2

⌉
− ν(λ),

where l(λ) is the largest part of λ, ν(λ) is the number of parts of λ and �.� is
the ceiling function. In [27], Garvan and Jennings-Shaffer defined a residual crank
for partitions without repeated odd parts. Recall that the crank of an ordinary
partition is the largest part if there are no ones and is the number of parts larger
than the number of ones minus the number of ones otherwise. Then, for a partition
π of n with distinct odd parts, we define the residual crank as the crank of the
partition πe

2 obtained by takeing the subpartition πe, of the even parts of π, and
halving each part of πe. For an integer n ≥ 1 and any integer m, let N2(m,n)
(resp. M2(m,n)) denote the number of partitions of n without repeated odd parts
whose M2-rank (resp. residual crank) is m. Define the positive rank and crank
moments by

N2+k (n) :=

∞∑
m=1

mkN2(m,n), M2+k (n) :=

∞∑
m=1

mkM2(m,n),

and their generating functions by

N2k(q) :=

∞∑
n=1

N2+k (n)q
n, C2k(q) :=

∞∑
n=1

M2+k (n)q
n. (1.10)

Then Jennings-Shaffer constructed various quasimodular forms using N22k(q) and
M22k(q) (see [30, Theorem 1.1]). In [29], Jennings-Shaffer used the theory of Bailey
pairs to prove that

M2+2k(n) > N2+2k(n), (1.11)

for all k ≥ 1 and n > 4. For more inequalities between rank and crank moments of
partitions, see [8, 13, 17, 19, 25, 31, 32]. Studies on asymptotic formulas for these
combinatorial objects can be found [14, 15, 16, 33, 35].

The second result of this paper is a generalization of (1.11).

Theorem 1.3. For positive integers k, n, we have

M2+k (n) ≥ N2+k (n).

In particular, we have M2+k (n) > N2+k (n) when k ≥ 1, n ≥ 4.

The paper is organized as follows. In Section 2 and Section 3, we prove Theorem
1.2 and Theorem 1.3, respectively. At the end of this paper, we give a conjecture
on the monotonicity of NS2(m,n) in a short concluding section.

2. Proof of Theorem 1.2

The proof of Theorem 1.2 is motivated by the works in [10, Section 5].
For l ≥ 0, let Bl(q) :=

∑∞
n=1 NS2(l, n)q

n. Then we have

B0(q) +

∞∑
l=1

Bl(q)(z
l + z−l) = S2(z, q).
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Thus, to prove NS2(l, n) ≥ 0, it suffices to show that Bl(q) has non-negative coef-
ficients for all l ≥ 0.

First, we recall the q-binomial theorem [5, p. 17, (2.2.1)] and its finite form [5,
p. 36, (3.3.6)]:

∞∑
k=0

(a; q)k
(q; q)k

xk =
(ax; q)∞
(x; q)∞

, (2.1)

and

n−1∑
k=0

(−1)kqk(k−1)/2xk

[
n− 1

k

]
q

= (x; q)n−1. (2.2)

Next, using (1.8), we rewrite S2(z, q) as follows:

S2(z, q) =
∞∑

n=1

q2n(−q2n+1; q2)∞
(zq2n; q2)∞

∞∑
m=0

(zq2; q2)m(q2n/z)m

(q2; q2)m
(by (2.1))

=
∞∑

n=1

q2n(−q2n+1; q2)∞(zq2; q2)n−1

∞∑
m=0

(q2n/z)m

(q2; q2)m(zq2m+2; q2)∞

=

∞∑
n=1

q2n(−q2n+1; q2)∞
n−1∑
h=0

[
n− 1

h

]
q2
(−1)hqh(h+1)zh

×
∑

m,i≥0

(q2n/z)m(zq2m+2)i

(q2; q2)m(q2; q2)i
, (2.3)

where the last equality follows from (2.2) and (2.1). Rewriting the summations on
the right hand side of (2.3), we obtain

S2(z, q) =

∞∑
m=0

z−m

(q2; q2)m

∞∑
i=0

q(2m+2)izi

(q2; q2)i

∞∑
h=0

zh

×
∞∑

n=h+1

q2n(−q2n+1; q2)∞

[
n− 1

h

]
q2
(−1)hqh(h+1)+2nm

=

∞∑
m=0

z−m

(q2; q2)m

∞∑
j=0

zj

×
j∑

h=0

∞∑
n=h+1

q2n(−q2n+1; q2)∞

[
n− 1

h

]
q2
(−1)hqh(h+1)+2nm q(2m+2)(j−h)

(q2; q2)j−h
.

Extracting the coefficient in zl for l = j −m ≥ 0, this implies that we have

Bl(q) =

∞∑
j=l

j∑
h=0

∞∑
n=h+1

q2n(−q2n+1; q2)∞
[
n−1
h

]
q2
(−1)hqh(h+1)+2n(j−l)+(2(j−l)+2)(j−h)

(q2; q2)j−h(q2; q2)j−l

=

∞∑
j=0

j+l∑
h=0

∞∑
n=h+1

(−q2n+1; q2)∞

[
n− 1

h

]
q2

× (−1)hqh(h+1)+2n(j+1)+2(j+1)(j+l−h)

(q2; q2)j+l−h(q2; q2)j
. (2.4)
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Letting n→∞ and replacing q, x by q2,−q2n+1, respectively, in (2.2), we obtain

(−q2n+1; q2)∞ =

∞∑
k=0

qk
2+2kn

(q2; q2)k
.

Substituting the above equation into (2.4), we find that

Bl(q) =

∞∑
k=0

qk
2

(q2; q2)k

∞∑
j=0

j+l∑
h=0

(−1)hqh(h+1)+2(j+1)(j+l−h)

(q2; q2)j+l−h(q2; q2)j

×
∞∑

n=h+1

[
n− 1

h

]
q2
q2n(j+1+k). (2.5)

Replacing q by q2 and setting a = c = 0, b = q2(h+1), t = q2(k+1+j) in [5, p.19,
Corollary 2.3] which can be obtained from the q-binomial theorem (see (2.1)), we
find that

∞∑
n=0

[
n+ h

h

]
q2
q2n(k+1+j) =

(q2; q2)k+j

(q2; q2)h

∞∑
n=0

[
n+ j + k

n

]
q2
q2n(h+1).

This gives that

∞∑
n=h+1

[
n− 1

h

]
q2
q2n(k+1+j) =

q2(h+1)(k+j+1)(q2; q2)k+j

(q2; q2)h

∞∑
n=0

[
n+ j + k

n

]
q2
q2n(h+1),

which together with (2.5) implies that

Bl(q) =

∞∑
k=0

∞∑
j=0

∞∑
n=0

qk
2+2(j+1+k)+2n+2(j+1)(j+l)(q2; q2)j+k

(q2; q2)k(q2; q2)j

[
n+ j + k

n

]
q2

×
j+l∑
h=0

(−1)hqh(h+1)+2h(n+k)

(q2; q2)j+l−h(q2; q2)h
. (2.6)

Next, we note that

j+l∑
h=0

(−1)hqh(h+1)+2h(n+k)

(q2; q2)j+l−h(q2; q2)h

=
1

(q2; q2)j+l

j+l∑
h=0

(−1)hqh(h+1)+2h(n+k)(q2(j+l+1−h); q2)h
(q2; q2)h

=
1

(q2; q2)j+l

j+l∑
h=0

q2h(l+j+1+n+k)(q−2(j+l); q2)h
(q2; q2)h

=
(q2(n+k+1); q2)∞

(q2; q2)j+l(q2(n+k+1+j+l); q2)∞
(by (2.1))

=
(q2; q2)n+k+j+l

(q2; q2)j+l(q2; q2)n+k
. (2.7)
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Substituting (2.7) into (2.6), we obtain

Bl(q) =

∞∑
k=0

∞∑
j=0

∞∑
n=0

qk
2+2(j+1+k)+2n+2(j+1)(j+l)(q2; q2)j+k

(q2; q2)k(q2; q2)j

[
n+ j + k

n

]
q2

× (q2; q2)n+k+j+l

(q2; q2)j+l(q2; q2)n+k

=

∞∑
k=0

∞∑
j=0

∞∑
n=0

qk
2+2(j+1+k)+2n+2(j+1)(j+l)

×
[
j + k

k

]
q2

[
n+ j + k

n

]
q2

[
n+ j + k + l

j + l

]
q2
. (2.8)

Since the polynomial
[
L
K

]
q
has non-negative coefficients, equation (2.8) implies that

Bl(q) has non-negative coefficients. This proves the first statement in Theorem 1.2.
To prove (1.9), it suffices to show that, for l ≥ 0, the power series Bl(q) has

positive coefficients for qn when n = 2l + 2 or n ≥ 2l + 4.
We rewrite (2.8) as follows:

Bl(q) =

∞∑
n=0

q2n+2l+2

[
n+ l

l

]
q2

+

∞∑
n=0

q2n+2l+5

[
n+ 1

n

]
q2

[
n+ 1 + l

l

]
q2

+B′l(q),

(2.9)

where the first (resp. second) sum of the above equation is obtained by setting the
summation indexes k = 0, j = 0 (resp. k = 1, j = 0) in (2.8) and the power series
B′l(q) has non-negative coefficients. By the definition of the q-binomial coefficient,

it is easy to see that the constant term of the polynomial
[
L
K

]
q
is 1. This together

with (2.9) implies that

Bl(q) =

∞∑
n=0

q2n+2l+2 +

∞∑
n=0

q2n+2l+5 +B′′l (q), (2.10)

where the power series B′′l (q) has non-negative coefficients. Clearly, equation (2.10)
implies that the power series Bl(q) has positive coefficients for qn when n = 2l + 2
or n ≥ 2l + 4. This completes the proof of Theorem 1.2.

3. Inequalities between rank and crank moments

In this section, we prove Theorem 1.3. To do this, we need to establish some lem-
mas. First, we prove the following result on the generating function for NS2(m,n).

Lemma 3.1. For all non-negative integers m, we have
∞∑

n=1

NS2(m,n)qn =
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n+1qn(n+1)+2mn(1− qn
2

)

1− q2n
. (3.1)

Proof. From the proof of [27, Theorem 2.2], we find that

S2(z, q) =
(−q; q2)∞

(1− z)(1− z−1)(q2; q2)∞

(
1 +

∞∑
n=1

(1− z)(1− z−1)(−1)nqn(2n+1)(1 + q2n)

(1− zq2n)(1− z−1q2n)

)

− (−q, q2; q2)∞
(1− z)(1− z−1)(zq2, q2/z; q2)∞

. (3.2)
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In section 2 of [29], Jennings-Shaffer showed that

(−q, q2; q2)∞
(zq2, q2/z; q2)∞

=
(−q; q2)∞
(q2; q2)∞

(
1 +

∞∑
n=1

(1− z)(1− z−1)(−1)nqn(n+1)(1 + q2n)

(1− zq2n)(1− z−1q2n)

)
,

which together with (3.2) gives

S2(z, q) =
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)nqn(n+1)(1 + q2n)(qn
2 − 1)

(1− zq2n)(1− z−1q2n)
. (3.3)

It is easy to verify that

1

(1− zq2n)(1− z−1q2n)
=

1

1− q4n
+

∞∑
m=1

(zm + z−m)q2nm

1− q4n
.

Substituting the above equation into (3.3), we obtain

S2(z, q) =
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n+1qn(n+1)(1− qn
2

)

1− q2n
+

+
∞∑

m=1

(zm + z−m)
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n+1qn(n+1+2m)(1− qn
2

)

1− q2n
,

which implies (3.1) �

From the content of Section 5 of [7] (see also [31, Lemma 4.2]), we can deduce
the following lemma on the Euler polynomials.

Lemma 3.2. Let A1(t) = 1. Then, for k ≥ 1, we have(
z
∂

∂z

)k−1
z

(1− zq2n)2
=

zAk(zq
2n)

(1− zq2n)k+1

where the Euler polynomial

Ak(t) := Ak,0 +Ak,1t+ · · ·+Ak,kt
k−1

is a polynomial of degree k−1 whose coefficients Ak,m satisfy the recursive relation

Ak,m = (m+ 1)Ak−1,m + (k −m)Ak−1,m−1 (1 ≤ m ≤ k − 1);

Ak,0 = 1 (k ≥ 1); Ak,m = 0 (m ≥ k).

Remark: Using the recursion above, one can easily find that the coefficients of
Ak(t) are all positive. See [23] for more details on Euler polynomials.

Armed with Lemma 3.2, we find the following generating function for the positive
rank and crank moments.

Lemma 3.3. For all positive integers k, we have

C2k(q) =
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n+1qn(n+1)Ak(q
2n)

(1− q2n)k
, (3.4)

and

R2k(q) =
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n+1qn(2n+1)Ak(q
2n)

(1− q2n)k
. (3.5)
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Proof. We prove (3.4) first. Jennings-Shaffer [29] proved that

C2(z, q) : =

∞∑
n=0

∞∑
m=−∞

M2(m,n)zmqn

=
(−q; q2)∞
(q2; q2)∞

[
1 +

∞∑
n=1

(−1)nqn(n+1)

(
1− z

1− zq2n
+

1− z−1

1− z−1q2n

)]
. (3.6)

Extracting the coefficients in zl for l > 0 in (3.6) and recalling the definition of
C2k(q) in (1.10), we find that

C2k(q) = lim
z→1

(
z
∂

∂z

)k
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(1− z)(−1)nqn(n+1)

1− zq2n
. (3.7)

Applying Lemma 3.2, we find that(
z
∂

∂z

)k
1− z

1− zq2n
=

z(q2n − 1)Ak(zq
2n)

(1− zq2n)k+1
.

Substituting the above equation into (3.7), we obtain

C2k(q) =
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n+1qn(n+1)Ak(q
2n)

(1− q2n)k
.

This completes the proof of (3.4).
Using the following analog of (3.6) (see [29, p. 296]):

R2(z, q) : =

∞∑
n=0

∞∑
m=−∞

N2(m,n)zmqn

=
(−q; q2)∞
(q2; q2)∞

[
1 +

∞∑
n=1

(−1)nqn(2n+1)

(
1− z

1− zq2n
+

1− z−1

1− z−1q2n

)]
,

we can proceed as above to prove (3.5) with Lemma 3.2. �

Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. To proveM2+k (n) ≥ N2+k (n), it suffices to show that C2k(q)−
R2k(q) has non-negative coefficients. By Lemma 3.3, we find that

C2k(q)−R2k(q) =
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n+1qn(n+1)(1− qn
2

)Ak(q
2n)

(1− q2n)k
(3.8)

For k ≥ 1, we write

Ak(q
2n)

(1− q2n)k−1
=:

∞∑
m=0

bk(m)q2nm,

where the coefficients bk(m) are all non-negative, in particular, we have bk(0) =
1 since the constant term of the Euler polynomial is 1. Substituting the above
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equation into (3.8), we obtain

C2k(q)−R2k(q) =
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n+1qn(n+1)(1− qn
2

)

1− q2n

∞∑
m=0

bk(m)q2nm

=

∞∑
m=0

bk(m)
(−q; q2)∞
(q2; q2)∞

∞∑
n=1

(−1)n+1qn(n+1)+2mn(1− qn
2

)

1− q2n

=

∞∑
m=0

bk(m)

∞∑
n=1

NS2(m,n)qn, (3.9)

where the last equality follows from Lemma 3.1. Thus, Theorem 1.2 implies that
C2k(q) − R2k(q) has non-negative coefficients. This proves the first statement of
Theorem 1.3.

By (3.9), we have

C2k(q)−R2k(q) =

∞∑
n=1

NS2(0, n)q
n +

∞∑
m=1

bk(m)

∞∑
n=1

NS2(m,n)qn. (3.10)

Theorem 1.2 implies that NS2(0, n) > 0 when n ≥ 4. Thus, equation (3.10) together
with the non-negativity ofNS2(m,n) and bk(m) gives that the power series C2k(q)−
R2k(q) has positive coefficients for qn when k ≥ 1, n ≥ 4. This means that, for
k ≥ 1, n ≥ 4, we have M2+k (n) > N2+k (n). Hence the proof of Theorem 1.3 is
complete. �

4. Concluding Remark

Andrews, Dyson and Rhoades [9] conjectured that

NS(m,n) ≥ NS(m+ 1, n), (4.1)

for all m ≥ 0 and n ≥ 0. Chen, Ji and Zang [20] found a combinatorial proof of
(4.1). Computer evidence suggests that an analog of (4.1) might hold. Namely, we
made the following conjecture:

Conjecture 4.1. We have

NS2(m,n) ≥ NS2(m+ 1, n),

for all m ≥ 0 and n ≥ 0.
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