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Let n > 1, e ≥ 0 and a prime number p ≥ 2n+2+2e + 3, 
such that the index of regularity of p is ≤ e. We show that 
there are infinitely many irreducible Galois representations 
ρ : Gal(Q̄/Q) → GLn(Qp) unramified at all primes l �= p. 
Furthermore, these representations are shown to have image 
containing a fixed finite index subgroup of SLn(Zp). Such rep-
resentations are constructed by lifting suitable residual repre-
sentations ρ̄ with image in the diagonal torus in GLn(Fp), for 
which the global deformation problem is unobstructed.
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1. Introduction

Let p be an odd prime and n an integer. There is much interest in the study of 
continuous Galois representations

ρ : GQ → GLn(Q̄p)

which are geometric, in the sense of Fontaine-Mazur (cf. [3]). Prototypical examples 
include Galois representations associated to abelian varieties over Q and Siegel modular 
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forms. The Galois representations associated to abelian varieties have p-adic monodromy 
GSp2g(Qp). On the other hand, Galois representations with big image in GLn(Zp) for 
n > 2 are not expected to arise from automorphic forms.

In this article we study the following question:

Question 1.1. Let p be a prime and n > 1. Does there exist a continuous Galois repre-
sentation ρ : GQ → GLn(Zp) with suitably large image? If so, can one control the set of 
primes at which it may ramify?

A parallel may be seen in the study of geometric Galois representations, where 
in the GL2 case, the ramification may be controlled via Ribet’s level lowering argu-
ment. For certain (p, n), Greenberg systematically constructed Galois representations 
GQ,{p} → GLn(Zp) with image containing a finite index subgroup of SLn(Zp). Let M
be the maximal pro-p extension of Q(μp) which is unramified outside p. A theorem of 
Shafarevich shows that is p is a regular prime, then Gal(M/Q) is a free pro-p group with 
p+1
2 generators. Greenberg makes use of this to construct such Galois representations 

GQ,{p} → GLn(Zp) when p is a regular prime greater than or equal to 4�n/2� +1 (see [4, 
Proposition 1.1]). Cornut-Ray [2] further generalized Greenberg’s results to more general 
algebraic groups, without relaxing the regularity assumption on p. In [10], Tang relaxed 
the regularity assumption of Greenberg, by constructing certain mod-p representations 
which lift to characteristic zero when they are allowed to ramify at an auxiliary set of 
primes. This relies on deformation techniques pioneered by Ramakrishna [8,9]. Thus, 
Tang provides an affirmative answer to the first part of Question 1.1. Our goal in this 
article is to control ramification. The residual representation is chosen to be unramified 
away from p so that the associated global deformation problem is unobstructed. This al-
lows us to produce characteristic zero lifts without adding further ramification away from 
p. The construction in this paper is brief and self contained, relying only on well-known 
results in Galois cohomology. Let ep denote the index of regularity, see Definition 3.1.

Theorem 1.2. Let n > 1, e ≥ 0 and p be a prime number such that

(1) p ≥ 2n+2+2e + 3,
(2) the index of regularity ep ≤ e.

There are infinitely many continuous representations ρ : GQ,{p} → GLn(Zp) such that 
the image of ρ contains ker

(
SLn(Zp) → SLn(Z/p4)

)
.

It is noted, for instance in [1], that if the numerators of Bernoulli numbers are uni-
formly random modulo odd primes, then the density of irregular primes with index of 
irregularity equal to r should equal e−1/2/(2rr!). This heuristic is supported by evidence, 
indeed, it is shown in [1] that among the first million primes, the highest index of irreg-
ularity observed is 6, and the only prime less than a million with index of irregularity 
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equal to 6 is 527377. The density e−1/2/(2rr!) drops rather fast. The density of regular 
primes is expected to be e−1/2 = 0.60653065..., whilst the density of irregular primes 
with index of regularity 6 is expected to be 0.00001316.... In [5], it is shown that the 
maximum irregularity index for primes p < 231 is 9. Also note that it is known that 
Vandiver’s conjecture is satisfied for all primes less than 219. Specializing the above to 
primes less than 231, we have the following:

Theorem 1.3. Let n be such that 2 ≤ n ≤ 10 and p a prime such that 2n+20 < p < 231. 
There are infinitely many continuous representations ρ : GQ,{p} → GLn(Zp) such that 
the image of ρ contains ker

(
SLn(Zp) → SLn(Z/p4)

)
.

When n and p are specified, it is indeed possible to check if the method in this article 
can be used to construct a Galois representation. One may try and construct the sequence 
k1, . . . , kn satisfying the properties of Theorem 3.3. However, the author was not able to 
realize a more refined statement which applies in suitable generality, than Theorem 1.2. 
It is natural to ask if the results in this manuscript can be generalized to split reductive 
algebraic groups over Zp, as is done in [2,10]. The author intentionally chooses a less 
general framework in which the inherent simplicity of the underlying ideas comes across
easily.
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2. The global deformation problem

In this section, we introduce some preliminary notions. Fix an odd prime p and a 
number n > 1. For each prime number l, denote by GQl

the absolute Galois group of 
Ql. Choosing an embedding Q̄ → Q̄l, we have an inclusion GQl

↪→ GQ of Galois groups. 
Denote by χ the p-adic cyclotomic character and χ̄ its mod-p reduction. For m ≥ 1, 
denote by Um ⊆ SLn(Zp) the kernel of the mod-pm reduction map.

Fix a sequence of integers k1, k2, . . . , kn and set ρ̄ to denote the mod-p Galois repre-
sentation which is a direct sum of characters χ̄k1 ⊕ · · · ⊕ χ̄kn . In other words, we have 
the residual representation

ρ̄ =

⎛⎜⎜⎜⎜⎝
χ̄k1

χ̄k2

. . .
χ̄kn

⎞⎟⎟⎟⎟⎠ : GQ,{p} → GLn(Fp).
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In order to produce characteristic zero lifts of ρ̄ with big image, we study the deformations 
of ρ̄. For an introduction to the deformation theory of Galois representations, the reader 
may consult [6].

For a local ring R with maximal ideal mR, let ĜLn(R) be the group

ĜLn(R) := ker
{

GLn(R) modmR−−−−−→ GLn(R/mR)
}
.

Definition 2.1. Let m be an integer such that m ≥ 1. A mod-pm lift of ρ̄ is a continuous 
homomorphism ρm : GQ → GLn(Z/pm) such that ρ̄ = ρm mod p. Two lifts ρm, ρ′m :
GQ → GLn(Z/pm) of ρ̄ are strictly equivalent if ρ′m = AρmA−1 for some matrix A ∈
ĜLn(Z/pm). A deformation is a strict equivalence class of lifts.

It was shown by Mazur that the global deformation functors associated to absolutely 
irreducible mod-p Galois representations are indeed representable by universal deforma-
tions. In this article, ρ̄ is far from irreducible. We adopt a step by step lifting approach 
which does not rely on the existence of a universal deformation.

Let τ denote the determinant of ρ̄ and τ̃ : GQ,{p} → GL1(Zp) denote the Teichmüller 
lift of τ . For any character φ : GQ → GL1(Zp), let φm denote the mod-pm reduction 
of φ. When there is no cause for confusion, we shall simply use φ in place of φm. Fix a 
character ψ which is unramified outside {p} such that ψ2 = (τ̃)2. For instance, ψ can be 
taken to be τ̃χp2−p.

Convention 2.2. Let us note once and for all that all deformations of ρ̄ are stipulated to 
have determinant equal to ψ.

In order to prove Theorem 1.2, it is shown that for a suitable choice of k1, . . . , kn it is 
shown that ρ̄ lifts to a characteristic zero irreducible representation which is unramified 
at all primes l 
= p.

(1) First, it is shown that there is a mod-p5 lift ρ5 : GQ,{p} → GLn(Z/p5) such that the 
image of ρ5 contains

ker
{
SLn(Z/p5) → SLn(Z/p4)

}
.

(2) Next, it is shown that the (unramified outside {p}) infinitesimal lifting problem is 
unobstructed. This implies that any mod-pm deformation

ρm : GQ,{p} → GLn(Z/pm)

of ρ̄ lifts one more step as depicted:
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GQ,{p} GLn(Fp).

GLn(Z/pm)

GLn(Z/pm+1)

ρ̄

ρm

ρm+1

It follows that ρ5 lifts to a characteristic zero continuous representation ρ : GQ,{p} →
GLn(Zp).

(3) It is shown that the image of ρ contains U4.

Let us describe the infinitesimal deformation problem.

Definition 2.3. Set Ad ρ̄ to denote the Galois module whose underlying vector space 
consists of n × n matrices with entries in Fp. Let Ad0 ρ̄ be the Galois stable submodule 
of trace zero matrices. The Galois action is as follows: for g ∈ GQ,{p} and v ∈ Ad ρ̄, set 
g · v := ρ̄(g)vρ̄(g)−1.

The module Ad ρ̄ is equipped with a Lie bracket [X, Y ] := XY −Y X. The underlying 
vector space of Ad ρ̄ (resp. Ad0 ρ̄) is the Lie algebra of GLn/Fp

(resp. SLn/Fp
). Let 

ei,j ∈ Ad0 ρ̄ denote the matrix with 1 at the (i, j) entry and 0 at all other entries. The 
adjoint Galois-module Ad0 ρ̄ is a direct sum

Ad0 ρ̄ = t⊕

⎛⎝ ⊕
(i,j),i�=j

Fp(χ̄ki−kj )

⎞⎠ ,

where t is the submodule of diagonal matrices and the sum runs over (i, j) with i 
= j. 
The Galois action on t is trivial.

Suppose that m ≥ 1 and ρm : GQ,{p} → GLn(Z/pm) is a deformation of ρ̄. A con-
tinuous lift (not necessarily a homomorphism) � : GQ,{p} → GLn(Z/pm+1) of ρm with 
determinant ψm+1 does always exist. Identify Ad0 ρ̄ with the kernel of the mod-pm map 
SLn(Z/pm+1) → SL(Z/pm) by associating a vector X ∈ Ad0 ρ̄ with Id +pmX. Let O(ρm)
be the cohomology class in H2(GQ,{p}, Ad0 ρ̄) defined by the 2-cocycle

(g, h) �→ �(gh)�(h)−1�(g)−1.

The associated cohomology class O(ρm) so defined is independent of the lift �. The 
following is easy to check.
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Fact 2.4. A mod-pm deformation ρm does lift one more step to a Galois representation 
which is unramified outside {p}

ρm+1 : GQ,{p} → GLn(Z/pm+1)

if and only if O(ρm) = 0.

The next fact states that the set of deformations ρm+1 of ρm have the structure of an 
H1(GQ,{p}, Ad0 ρ̄)-pseudotorsor.

Fact 2.5. Suppose that there exist deformations ρm+1, ρ′m+1 : GQ,{p} → GLn(Z/pm+1)
of ρm. Then there is a unique class h ∈ H1(GQ,{p}, Ad0 ρ̄) such that

ρ′m+1 = (Id +pmh)ρm+1.

We say that the “unramified outside {p}” deformation problem for ρ̄ is unobstructed
if H2(GQ,{p}, Ad0 ρ̄) is equal to zero. For future reference, we take note of the following, 
which follows from the previous discussion.

Lemma 2.6. Suppose that H2(GQ,{p}, Ad0 ρ̄) = 0 and suppose that we are given a defor-
mation ρm : GQ,{p} → GLn(Z/pm) of ρ̄. There exists a deformation

ρ : GQ,{p} → GLn(Zp)

such that ρm = ρ mod pm.

In the next section, appropriate choices of ρ̄ are shown to be unobstructed outside 
{p} in the sense described. The results proven in the remainder of this section are used 
in showing that the characteristic zero lifts thus constructed do indeed have big image 
in SLn(Zp). Suppose that ρ : GQ,{p} → GLn(Zp) is a lift of ρ̄. For m ≥ 1, set ρm to be 
the mod-pm reduction ρ mod pm.

Definition 2.7. For m ≥ 1, set Φm(ρ) := ρm+1(ker ρm). Note that Φm(ρ) is isomorphic to 
ker ρm/ ker ρm+1 and shall be viewed as a submodule of Ad ρ̄. Here, Id +pmv = ρm+1(g)
for g ∈ ker ρm, is identified with v ∈ Ad ρ̄.

Recall from Definition 2.3 that the Galois action on Ad ρ̄ is from composing ρ̄ with 
the adjoint action. Note that if σ ∈ GQ,{p} and v ∈ Ad ρ̄, then

ρm+1(σ)(Id +pmv)ρm+1(σ)−1 = (Id +pmρ̄(σ)vρ̄(σ)−1) = (Id +pm(σ · v)).

It is easy to check that since ker ρm is a normal subgroup of GLn(Zp), it follows that 
Φm(ρ) ⊆ Ad ρ̄ is a Galois-stable submodule. Recall that the determinant of ρ is stipulated 
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to be equal to the character ψ, which is chosen to be congruent to τ̃ modulo-p2. As a 
result, for g ∈ ker ρ̄, it follows that det ρ2(g) = 1. Writing ρ2(g) = Id+pX, we have that

det ρ2(g) = 1 + p trX,

and hence trX = 0 in Z/pZ. It thus follows that Φ1(ρ) ⊆ Ad0 ρ̄.

Lemma 2.8. Let ρ be as above. For l, m ≥ 1, we have that [Φl(ρ), Φm(ρ)] ⊆ Φl+m(ρ).

Proof. Set Gk denote the kernel of the mod-pk map

Gk := ker
{
GLn(Z/pk+1)) → GLn(Z/pk)

}
.

Let c ∈ Φl(ρ) and d ∈ Φm(ρ), consider the elements Id+plc ∈ Gl and Id+pmd ∈ Gm. Let 
c̃, d̃ be such that A = Id +plc̃ ∈ GLn(Z/pl+m+1) and B = Id +pmd̃ ∈ GLn(Z/pl+m+1)
lift Id +plc and Id +pmd respectively. Assume without loss of generality that l ≤ m. 
Since we are working mod-pl+m+1, it follows that (plc̃)m+2 = 0 and (pmd̃)3 = 0. We 
have that

ABA−1B−1 =(Id +plc̃)(Id +pmd̃)(Id +plc̃)−1(Id +pmd̃)−1

=(Id +pmd̃)−1 + (Id +plc̃)pmd̃(Id +plc̃)−1(1 + pmd̃)−1

=(Id−pmd̃ + (pmd̃)2)

+ (Id +plc̃)pmd̃(Id−plc̃ + · · · + (−1)m+1(plc̃)m+1)(Id−pmd̃ + (pmd̃)2)

=(Id−pmd̃ + (pmd̃)2) + (Id +plc̃)pmd̃(Id−plc̃)(Id−pmd̃)

=(Id−pmd̃ + (pmd̃)2) + (Id +plc̃)pmd̃(Id−plc̃) − (pmd̃)2

=(Id−pmd̃ + (pmd̃)2) + pmd̃ + pm+l[c, d] − (pmd̃)2

=Id+pm+l[c, d]. �
The following Lemma will be applied to show that the representations we construct 

contain a finite index subgroup of SLn(Zp).

Lemma 2.9. Let ρ : GQ,{p} → GLn(Zp) be a continuous Galois representation lifting ρ̄. 
Let m ≥ 1 be such that Φm(ρ) contains Ad0 ρ̄. Then we have the following:

(1) Φk(ρ) contains Ad0 ρ̄ for k ≥ m,
(2) the image of ρ contains Um.

Proof. It is easy to check that [Ad0 ρ̄, Ad0 ρ̄] = Ad0 ρ̄. Part (1) follows from Lemma 2.8. 
Let H be the image of ρ. Since ρ is continuous and GQ,{p} is compact, it follows that H
is closed. For l ≥ 1, let Hl be the projection of H to GLn(Z/pl). Since H is closed, we 
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may identify it with the inverse limit lim←−−l
Hl. Thus for part (2), we only need to check 

that Hk contains Ad0 ρ̄ for k ≥ m. This follows from part (1). �
Lemma 2.10. Let ρ : GQ,{p} → GLn(Zp) be a continuous Galois representation lifting 
ρ̄. Assume that Φ1(ρ) contains an element w :=

∑
i aiei,i such that a1, . . . , an are all 

distinct. Furthermore, assume that it contains ei,j for all tuples (i, j) such that (i + j) is 
odd. Then we have the following:

(1) Φ4(ρ) contains Ad0 ρ̄,
(2) the image of ρ contains U4.

Proof. First consider the case n = 2. Lemma 2.8 asserts that [Φ1(ρ), Φ1(ρ)] is contained 
in Φ2(ρ). The relations [w, e1,2] = (a1 − a2)e1,2 and [w, e2,1] = (a2 − a1)e2,1 imply that 
e1,2 and e2,1 are contained in Φ2(ρ). The relation [e1,2, e2,1] = 2(e1,1 − e2,2) implies that 
e1,1 − e2,2 is also contained in Φ2(ρ). Thus Φ2(ρ) contains Ad0 ρ̄ and the conclusion 
follows from Lemma 2.9.

Consider the case n > 2. Let (i, j) be a tuple with i 
= j and i + j even. Since n ≥ 3, 
we can pick l such that l+ i and l+ j are both odd. The relation ei,j = [ei,l, el,j ] implies 
that Φ2(ρ) contains ei,j . Let (i, j) be a pair with i 
= j and i + j is odd. The relation 
[ei,j , w] = (aj − ai)ei,j implies that ei,j is contained in Φ2(ρ).

Since [Φ1(ρ), Φ2(ρ)] is contained in Φ3(ρ), the relation [w, ei,j ] = (ai − aj)ei,j implies 
that Φ3(ρ) contains all ei,j , where (i, j) runs through pairs such that i 
= j. One more 
iteration of the same tells us that Φ4(ρ) contains all ei,j where (i, j) runs through pairs 
such that i 
= j. Next, we note that [Φ2(ρ), Φ2(ρ)] is contained in Φ4(ρ). The relation 
[ei,j , ej,i] = ei,i − ej,j implies that all elements ei,j − ej,j ∈ t are contained in Φ4(ρ). We 
have thus shown that Φ4(ρ) contains Ad0 ρ̄. The conclusion follows from Lemma 2.9. �
3. Proof of main results

Recall that ρ̄ is the representation

ρ̄ =

⎛⎜⎜⎜⎜⎝
χ̄k1

. . .
χ̄kn−1

χ̄kn

⎞⎟⎟⎟⎟⎠ : GQ,{p} → GLn(Fp).

Let A be the Class group of Q(μp) and let C denote the mod-p class group C := A ⊗Fp. 
The Galois group Gal(Q(μp)/Q) acts on C via the natural action. Since the order of 
Gal(Q(μp)/Q) is prime to p, it follows that C decomposes into eigenspaces

C =
p−2⊕

C(χ̄i),

i=0
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where C(χ̄i) = {x ∈ C | g · x = χ̄i(g)x}.

Definition 3.1. The index of regularity ep is the number of eigenspaces C(χ̄i) which are 
non-zero.

Note that Vandiver’s conjecture predicts that C(χ̄i) = 0 for i even (cf. [11, Chapter 8]). 
For a GQ,{S}-module M , which is a finite dimensional Fp-vector space, we denote by 
Xi

{p}(M), the kernel of the restriction map

Xi
{p}(M) := ker

(
Hi(GQ,{p},M) → Hi(GQp

,M)
)
.

Let M∗ := Hom(M, μp), where μp is the Galois module of p-th roots of unity. Note that 
μp 
 Fp(χ̄). Global duality for X-groups states that there is a natural isomorphism 
X2

{p}(M) 
 X1
{p}(M∗)∨.

Lemma 3.2. For 0 ≤ i ≤ p − 2,

(1) the group X1
{p}(Fp(χ̄i)) is zero if C(χ̄i) is zero,

(2) the group X2
{p}(Fp(χ̄i)) is zero if C(χ̄p−i) is zero.

Proof. Let L be the subfield of the Hilbert Class field of Q(μp) such that Gal(L/Q(μp))
is isomorphic to C. Since the order of Gal(Q(μp)/Q) is prime to p, it follows that 
Hj(Gal(Q(μp)/Q), Fp(χ̄i)) = 0 for j = 1, 2. It follows that the restriction map 
H1(GQ, Fp(χ̄i)) → Hom(GQ(μp), Fp(χ̄i))Gal(Q(μp)/Q) is an isomorphism. Via this iso-
morphism X1

{p}(Fp(χ̄i)) consists homomorphisms Hom(Gal(L/Q(μp)), Fp(χ̄i)) that are 
unramified outside {p} and trivial when restricted to the prime of Q(μp) above p. The 
conclusion of the first part follows. The second part follows from the first part and global 
duality. �
Theorem 3.3. Let k1, . . . , kn and ρ̄ be as above. Assume that the following are satisfied:

(1) 0 < ki <
p−1
2 ,

(2) ki is odd for i even and even for i odd,
(3) χ̄ki−kj is not equal to χ̄.
(4) The characters χ̄ki−kj for i 
= j are all distinct.
(5) For (i, j) such that i 
= j, we have that C(χ̄p−(ki−kj)) = 0.

Then there exists a continuous lift ρ : GQ,{p} → GLn(Zp) of ρ̄ such that the image of ρ
contains U4.

Proof. First, we exhibit a characteristic zero lift of ρ̄ which is unramified outside {p}. 
We show that the unramified outside {p} deformation problem is unobstructed, i.e., 
H2(GQ,{p}, Ad0 ρ̄) = 0. Note that H2(GQp

, Ad0 ρ̄) decomposes into
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H2(GQp
,Ad0 ρ̄) = H2(GQp

, t) ⊕

⎛⎝⊕
(i,j)

H2(GQp
,Fq(χ̄ki−kj ))

⎞⎠ ,

where (i, j) runs through pairs for which i 
= j. By local duality, we have that

H2(GQp
, t) 
 H0(GQp

, t∗)∨, and H2(GQp
,Fq(χ̄ki−kj )) 
 H0(GQp

,Fq(χ̄p−(ki−kj)))∨.

By assumption, χ̄ki−kj 
= χ̄. As a result, we have that H0(GQp
, Fq(χ̄p−(ki−kj))) = 0. On 

the other hand, the Galois action on t is trivial and the dual acquires a twist by χ̄, hence, 
H0(GQp

, t∗) = 0. Thus, the local cohomology group H2(GQp
, Ad0 ρ̄) is zero and hence,

H2(GQ,{p},Ad0 ρ̄) = X2
{p}(Ad0 ρ̄).

By global duality, we have that

X2
{p}(t) 
 X1

{p}(t∗)∨.

It is a well known fact that C(χ̄) is zero (cf. Proposition 6.16 of [11]). It follows (from 
Lemma 3.2) that X1

{p}(Fp(χ̄)) is zero, and thus, X1
{p}(t∗) is zero. By assumption, 

C(χ̄p−(ki−kj)) is zero, and hence, by Lemma 3.2,

X2
{p}(Fq(χ̄ki−kj )) = 0.

It has thus been shown that H2(GQ,{p}, Ad0 ρ̄) = 0.
Recall that χ2 is χ mod p2, let ρ′2 be the lift

ρ′2 =

⎛⎜⎜⎜⎜⎝
χk1

2
. . .

χ
kn−1
2

χkn
2

⎞⎟⎟⎟⎟⎠ : GQ,{p} → GLn(Z/p2).

Let (i, j) be a pair such that i + j is odd. Since H2(GQ,{p}, Fp(χ̄ki−kj )) = 0 and 
H0(GQ∞ , Fp(χ̄ki−kj )) = 0, it follows from the Global Euler characteristic formula (see [7, 
Theorem 8.7.4]) that H1(GQ,{p}, Fp(χ̄ki−kj )) is one-dimensional. Let fi,j be a generator 
of H1(GQ,{p}, Fp(χ̄ki−kj )). Let F ∈ H1((GQ,{p}, Ad0 ρ̄) be the sum of all fi,j where (i, j)
ranges over all i 
= j such that i + j is odd. Let ρ2 be the twist (Id +pF )ρ′2 : GQ,{p} →
GLn(Z/p2). Since H2(GQ,{p}, Ad0 ρ̄) = 0, it follows from Lemma 2.6 that ρ2 lifts to a 
characteristic zero Galois representation ρ : GQ,{p} → GLn(Zp).

In order to show that the image of ρ contains U4, it suffices (by Lemma 2.10) to show 
that Φ1(ρ) contains:

• ei,j for all tuples (i, j) such that i + j is odd,
• an element w =

∑
aiei,i in t such that the ai are distinct.
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The image of ρ̄ is prime to p and as a result, any Galois-submodule M of Ad0 ρ̄ decom-
poses into

M = M1 ⊕

⎛⎝⊕
(i,j)

Mχ̄ki−kj

⎞⎠
where Mχ̄ki−kj is the submodule

Mχ̄ki−kj := {x ∈ M | g · x = χ̄ki−kj (g)x}

and M1 the GQ-invariant submodule. Note that it is assumed that all characters χ̄ki−kj

are distinct for i < j. It follows from the bounds on ki that all characters χ̄ki−kj are 
distinct for all tuples (i, j) with i 
= j. It is also clear that none of these is the trivial 
character. As a result, the above decomposition makes sense and Mχ̄ki−kj , if non-zero, 
is the one-dimensional space generated by ei,j. Since the order of Q(μp) over Q is prime 
to p, it follows that

H1(Gal(Q(μp)/Q),Fp(χ̄ki−kj )) = 0.

It follows from the inflation restriction sequence that the restriction of fi,j to GQ(μp) is 
non-zero. Hence, there exists g ∈ ker ρ̄ such that fi,j(g) 
= 0. The element ρ2(g) ∈ Φ1(ρ)
has non-zero ei,j-component. It follows from the decomposition

Φ1(ρ) = Φ1(ρ)GQ ⊕

⎛⎝⊕
(i,j)

Φ1(ρ)χ̄ki−kj

⎞⎠
that ei,j ∈ Φ1(ρ) for all tuples (i, j) for which i + j is odd. Note that the cyclotomic 
character χ induces an isomorphism

χ : Gal(Q(μp∞)/Q(μp))
∼−→ 1 + pZp.

Let γ ∈ GQ(μp) be chosen such that χ(γ) = 1 + p. With respect to the identification 
of 1 + pX ∈ Φ1(ρ) with X ∈ Ad0 ρ̄, the element ρ2(γ) coincides with w :=

∑
kiei,i. 

We have thus shown that Φ1(ρ) satisfies the required conditions, and this completes the 
proof. �
Proof of Theorem 1.2. Consider the t := n +2e numbers m1, . . . , mt, where mj = 2j+1+
εj and

εj :=
{

0 if j is odd,
1 if j is even.
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Note that 4 = m1 < m2 < · · · < mt <
p−1
2 . Suppose that (i, j) and (k, l) are such that 

i 
= j, k 
= l and

mi −mj ≡ mk −ml mod p− 1.

Then we show that i = k and j = l. Since |mi−mj | and |mk −ml| are less than p−1
2 , we 

have that mi −mj = mk −ml. Assume without loss of generality that i > j, and thus 
mi −mj > 0. This implies that mk > ml and thus k > l. We have that

2i+1 − 2j+1 = 2k+1 − 2l+1 + α,

where −2 ≤ α ≤ 2. Since i, j, k, l ≥ 1, we deduce that 4 divides α, and thus α = 0. It 
thus suffices to show that i = k. Suppose not, assume without loss of generality that 
i > k. Then we have

2i+1 = 2j+1 + 2k+1 − 2l+1 ≤ 2i + 2i − 2l+1 < 2i+1.

Thus, it follows that (i, j) = (k, l). It follows that the characters χ̄p−(mi−mj) are all 
distinct as (i, j) ranges over all tuples such that i 
= j. Let Si be the set of characters 
χ̄p−(mi−mj) as j ranges from 1 to t such that j 
= i. Since the index of regularity ep
is less than or equal to e, it follows that there is a subset {i1, . . . , in+e} of {1, . . . , t}
such that for each character β ∈

⋃
Sij , the eigenspace C(β) = 0. There is a subset of n

numbers {k1, . . . , kn} of {i1, . . . , in+e} such that ki is odd if i is odd and even if i is even. 
Set ai to be equal to mki

. Note that ai is even for i odd and odd for i even. Moreover, 
the characters χ̄p−(ai−aj) are all distinct and C(χ̄p−(ai−aj)) = 0. It is clear from the 
definition of the original sequence {mi} that ai − aj is not equal to 1. The result follows 
from Theorem 3.3. In fact, there are infinitely many Galois representations since there 
are infinitely many choices of

ψ : GQ,{p} → GL1(Zp)

such that ψ2 = (τ̃)2. �
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