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1. Introduction

Let p be a prime, let n � 1 be an integer, let q = pn and let ζ be a complex primitive pth root of
unity. We let Fq denote the finite field with q elements, and let Tr denote the absolute trace function

Tr : Fq → Fp , defined by Tr(a) = a + ap + ap2 + · · · + apn−1
. The q-ary Kloosterman sum is defined by

Kq(a) =
∑
x∈Fq

ζ Tr(x−1+ax)

for any a ∈ Fq , where we interpret 0−1 as 0. We remark that in some papers the summation is over
all nonzero x ∈ Fq .
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1.1. Characteristic polynomials of Kloosterman sums

For p = 2 and p = 3, Kloosterman sums are always integers, while if p > 3 Kloosterman sums are
not necessarily integers (also they are never 0, as was recently shown in [17]). Thus it is of interest
to study the characteristic polynomial of Kq(a) over Q. It is clear that Kq(a) is an algebraic integer
in the cyclotomic field Q(ζ ), because ζ is an algebraic integer and the algebraic integers form a ring.
The Galois group of this extension is

Gal
(
Q(ζ )/Q

) = {
ζ �→ ζ i

∣∣ i ∈ (Z/pZ)∗
}
,

and it is easy to show (see [17]) that the Galois automorphism ζ �→ ζ i has the effect Kq(a) �→
Kq(i2a), for any integer i. If we let

ca(x) =
p−1

2∏
i=1

(
x − Kq

(
i2a

))
it follows that ca(x) is the characteristic polynomial of Kq(a) over Q. If ma(x) is the minimal polyno-
mial of Kq(a) over Q, then ca(x) = ma(x)ea for some ea dividing p−1

2 . For most a we have ea = 1.
Moisio [23] considered the reduction of the minimal polynomial ma(x) modulo p. He showed that

all coefficients, apart from the leading coefficient, are divisible by p. In this paper, our first result
concerns the reduction of the characteristic polynomial ca(x) modulo p2. We prove the following
result.

Theorem 1. Let p be an odd prime, and let ( ·
p ) be the Legendre symbol. Then

p−1
2∏

i=1

Kq
(
i2a

) ≡ p

(
Tr(a)

p

) (
mod p2).

One corollary is that the constant term of the characteristic polynomial, which is

(−1)
p−1

2

p−1
2∏

i=1

(
Kq

(
i2a

))
,

is always congruent to either 0 or ±p mod p2.
These results are similar to those of Wan [28], who showed that the coefficients of the minimal

polynomial
∑k

i=0 ai xi of a Gauss sum over Fp are divisible by p, and that a0,ak−2 are not divisible
by p2.

1.2. Divisibility by the characteristic prime

Divisibility properties of exponential sums by rational primes are often of interest. Different tech-
niques are normally used depending on whether the prime under consideration is the characteristic
or not. We previously used the methods of this paper to characterise divisibility by powers of 2 for bi-
nary Kloosterman sums in [9]. The second result of this paper is to prove a ternary analogue. We give
a modulo 27 characterisation of the ternary Kloosterman sum using some simple finite field functions
which are generalisations of the well-known trace function (see Section 2.2 for definitions of the finite
field functions TX and TY ).
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Theorem 2. Let n � 3, and let q = 3n.

Kq(a) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (mod 27) if Tr(a) = 0 and TY (a) + 2TX (a) = 0,

3 (mod 27) if Tr(a) = 1 and TY (a) = 2,

6 (mod 27) if Tr(a) = 2 and TY (a) + TX (a) = 2,

9 (mod 27) if Tr(a) = 0 and TY (a) + 2TX (a) = 1,

12 (mod 27) if Tr(a) = 1 and TY (a) = 0,

15 (mod 27) if Tr(a) = 2 and TY (a) + TX (a) = 0,

18 (mod 27) if Tr(a) = 0 and TY (a) + 2TX (a) = 2,

21 (mod 27) if Tr(a) = 1 and TY (a) = 1,

24 (mod 27) if Tr(a) = 2 and TY (a) + TX (a) = 1.

As a corollary we get an if and only if criterion for K3n (a) to be divisible by 27, namely, that
Tr(a) = 0 and TY (a) + 2TX (a) = 0.

1.3. Further remarks

Kloosterman sums are fascinating exponential sums with a large literature and many interesting
properties. Weil showed that Kq(a) satisfies |Kq(a)| � 2

√
q. If p = 2 Kloosterman sums are integers

and can take any value within the Weil interval that is divisible by 4 (see Lachaud and Wolfmann
[18]). If p = 3 they take any value divisible by 3 (see Katz and Livné [16]). For p > 3, generalising the
results of Lachaud and Wolfmann and Katz and Livné is an interesting open problem.

Kloosterman sums have applications in coding theory [18] and cryptography. They have found
applications to sum-product estimates [13], and to proving existence of primitive elements in finite
fields with certain properties [4].

One open problem for Kloosterman sums over finite fields is a characterisation of Kloosterman
zeros, which are the a such that Kq(a) = 0. As well as being part of the general p-divisibility of ex-
ponential sums question, determining when Kq(a) is divisible by powers of various primes also gives
insight into the Kloosterman zeros question. There are many divisibility results concerning binary and
ternary Kloosterman sums. For binary Kloosterman sums modulo powers of 2 see [14,27,2,21,11,9],
modulo 3 (and multiples of 3, i.e., 3 · 2i ) see [3,6,22]. For ternary Kloosterman sums modulo 3 and 9
see [27,21,10], modulo 2 and 4 see [5,8]. We state again that one of the results in this paper is a
characterisation of ternary Kloosterman sums modulo 27.

This paper is set out as follows. In Section 2 we present all the background we need. This section
has few parts because we are combining a few results from different areas. Section 3 has the proof of
Theorem 1, and Section 4 has the proof of Theorem 2.

2. Background

In this section we present the background information that is used in our proofs.

2.1. Teichmüller characters and Gauss sums

Consider multiplicative characters of Fq taking their values in an algebraic extension of Qp . Let ξ

be a primitive (q − 1)th root of unity in a fixed algebraic closure of Qp . The group of multiplicative

characters of Fq (denoted F̂×
q ) is cyclic of order q − 1. The group F̂×

q is generated by the Teichmüller
character ω : Fq → Qp(ξ), which, for a fixed generator t of F×

q , is defined by ω(t j) = ξ j . We set ω(0)

to be 0. An equivalent definition is that ω satisfies ω(a) ≡ a (mod p) for all a ∈ Fq .
Let ζ be a fixed primitive pth root of unity in the fixed algebraic closure of Qp . Let μ be the

canonical additive character of Fq , μ(x) = ζ Tr(x) .
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The Gauss sum (see [20,30]) of a character χ ∈ F̂×
q is defined as

τ (χ) = −
∑
x∈Fq

χ(x)μ(x).

We define g( j) := τ (ω− j). For any positive integer j, let wtp( j) denote the p-weight of j, i.e.,
wtp( j) = ∑

i ji where
∑

i ji pi is the p-adic expansion of j.

2.2. Trace and similar objects

Consider again the trace function Tr : Fq → Fp , Tr(c) = c + cp + cp2 + · · · + cpn−1
. We wish to

generalise this definition to a larger class of finite field sums, which includes the usual trace function
as a special case.

Definition 3. Let p be a prime, let n � 1 be an integer and let q = pn . For any S ⊆ Z/(q−1)Z satisfying
S p = S where S p := {sp | s ∈ S}, we define the function TS : Fq → Fp by

TS(c) :=
∑
s∈S

cs.

Definition 4. Let p be a prime, let n � 1 be an integer and let q = pn . For any S ⊆ Z/(q−1)Z satisfying
S p = S where S p := {sp | s ∈ S}, we define the function T̂S : Fq →Qp(ξ) by

T̂S(c) :=
∑
s∈S

ωs(c)

where ω is the Teichmüller character.

Remark 5. For the set W = {pi | i ∈ {0, . . . ,n − 1}}, TW is the usual trace function.

Remark 6. By the definition of the Teichmüller character, for any set S we have

T̂S ≡ TS (mod p).

Thus we may consider T̂S to be a lift of TS , and this explains the notation. For the set W defined in
the previous remark, we let T̂r denote the function T̂W . Sometimes we call T̂r the lifted trace.

Other than the set W , for the case p = 3, we will be particularly concerned with the following
sets:

X := {
r ∈ {0, . . . ,q − 2} ∣∣ r = 3i + 3 j} (i, j not necessarily distinct),

Y := {
r ∈ {0, . . . ,q − 2} ∣∣ r = 3i + 3 j + 3k, i, j,k distinct

}
,

Z := {
r ∈ {0, . . . ,q − 2} ∣∣ r = 2 · 3i + 3 j, i, j distinct

}
.
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2.3. The p-adic gamma function

The p-adic gamma function Γp , introduced in [25], is defined over N by

Γp(k) = (−1)k
∏
t<k

(t,p)=1

t,

and extends to Γp : Zp → Zp according to Theorem 8 below.
The following are two classical results which can be rephrased in terms of the p-adic gamma

function.

Theorem 7 (Wilson’s theorem). (See [7].) Let p be an odd prime. Then Γp(p − 1) ≡ 1 (mod p).

Theorem 8 (Generalised Wilson’s theorem). (See [7,25].) Let p be a prime, and suppose x ≡ y (mod pk) for
some integer k. If pk 	= 4, then Γp(x) ≡ Γp(y) (mod pk).

2.4. Stickelberger’s theorem and the Gross–Koblitz formula

Let π be the unique (p − 1)th root of −p in Qp(ξ, ζ ) satisfying π ≡ ζ − 1 (mod π2). We will first
give the Gross–Koblitz formula and then a generalised version of Stickelberger’s theorem.

Theorem 9 (Gross–Koblitz formula). (See [12].) Let 1 � j < q − 1 be an integer. Then

g( j) = πwtp( j)
n−1∏
i=0

Γp

({
pi j

q − 1

})

where {x} is the fractional part of x, and Γp is the p-adic gamma function.

Wan [29] noted that the following generalisation of Stickelberger’s theorem is a direct consequence
of the Gross–Koblitz formula (Theorem 9).

Theorem 10 (More general version of Stickelberger’s theorem). (See [29].) Let 1 � j < q − 1 be an integer and
let j = j0 + j1 p + · · · + jn−1 pn−1 . Then

g( j) ≡ πwtp( j)

j0! · · · jn−1!
(
mod πwtp( j)+p−1).

Stickelberger’s theorem, as usually stated, is the same congruence modulo πwtp( j)+1.
We have (see [12,26]) that (π) is the unique prime ideal of Qp(ζ, ξ) lying above p. Since Qp(ζ, ξ)

is an unramified extension of Qp(ζ ), which is a totally ramified (degree p − 1) extension of Qp , it
follows that (π)p−1 = (p) and νp(π) = 1

p−1 . Here νp denotes the p-adic valuation.
Theorem 10 implies that νπ (g( j)) = wtp( j), and because νp(g( j)) = νπ (g( j)) · νp(π) we get

νp
(

g( j)
) = wtp( j)

p − 1
. (1)

Our proof in Section 3 studies the π -adic expansion of the Kloosterman sum, and uses the Gross–
Koblitz formula to get information on the coefficients.
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2.5. Fourier coefficients

Recall that μ(x) = ζ Tr(x) . The Fourier transform of a function f : Fq →C at a ∈ Fq is defined to be

f̂ (a) =
∑
x∈Fq

f (x)μ(ax).

The complex number f̂ (a) is called the Fourier coefficient of f at a.
Consider monomial functions defined by f (x) = μ(xd). When d = −1 we have f̂ (a) = Kpn (a). By

Fourier analysis [15,19] we have for any d

f̂ (a) = q

q − 1
+ 1

q − 1

q−2∑
j=1

τ
(
ω̄ j)τ (

ω jd)ω̄ jd(a)

and hence

f̂ (a) ≡ −
q−2∑
j=1

τ
(
ω̄ j)τ (

ω jd)ω̄ jd(a) (mod q).

Putting d = −1 = pn − 2, this congruence becomes

Kq(a) ≡ −
q−2∑
j=1

(
g( j)

)2
ω j(a) (mod q). (2)

We will use this in Section 4.

3. Proof of first theorem

Moisio considered the reduction of the minimal polynomial ma(x) modulo p, and proved the fol-
lowing.

Theorem 11. (See [23].) For a ∈ Fq, let ma(x) be the minimal polynomial of Kq(a) over Q and let t be the
degree of ma. Then ma(x) ≡ xt (mod p).

Our first result (Theorem 1 in Section 1) concerns the reduction of the characteristic polynomial
ca(x) modulo p2.

Theorem 1. Let p be an odd prime, and let ( ·
p ) be the Legendre symbol. Then

p−1
2∏

i=1

Kq
(
i2a

) ≡ p

(
Tr(a)

p

) (
mod p2).

Proof. For j ∈ {1, . . . ,q − 2}, Theorem 10 implies that

νπ

(
g( j)2) = 2 wtp( j), (3)

so taking Eq. (2) mod π4 gives
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Kq(a) ≡ −
∑

wtp( j)=1

g( j)2 ω j(a)
(
mod π4)

≡ −g(1)2T̂r(a)
(
mod π4).

Eq. (3) implies that νπ (g(1)2) = 2. Therefore we can write Kq(a) π -adically as

Kq(a) = a1π
2 + a2π

4 + · · · ,

where

a1 = −
(

g(1)

π

)2

T̂r(a)

= −
(

n−1∏
i=0

Γp

(
pi

q − 1

))2

T̂r(a)

by Theorem 9. Reducing this expression modulo p gives that

a1 ≡ −
(

Γp

(
1

q − 1

))2

Tr(a) (mod p)

≡ −(
Γp(p − 1)

)2
Tr(a) (mod p)

≡ −Tr(a) (mod p),

by Theorems 8 and 7. Since π p−1 = −p we certainly have a1 ≡ −Tr(a) (mod π4). Thus

Kq(a) ≡ −π2 Tr(a)
(
mod π4).

We can rewrite this as an equation

Kq(a) = −π2 Tr(a) + X(a)π4,

where X(a) is some element of Qp(ξ, ζ ) that will drop out in the end, and Tr(a) is considered as an
integer. Then we get equations

Kq
(
i2a

) = −π2 Tr
(
i2a

) + X
(
i2a

)
π4

for i = 1,2, . . . , (p − 1)/2. We may also write

Kq
(
i2a

) = −π2i2 Tr(a) + X
(
i2a

)
π4

because of the mod p congruence this equation comes from. Multiplying these equations together
and taking the result modulo π p+1, only the lowest degree term in π survives, and we obtain
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p−1
2∏

i=1

(
Kq

(
i2a

)) ≡
p−1

2∏
i=1

π2(−i2 Tr(a)
) (

mod π p+1)

≡ −p Tr(a)
p−1

2

p−1
2∏

i=1

(−i2) (
mod π p+1)

since π p−1 = −p. But
∏ p−1

2
i=1 (Kq(i2a)) ∈ Z by the remarks in Section 1, so we may raise the modulus

and write

p−1
2∏

i=1

(
Kq

(
i2a

)) ≡ −p Tr(a)
p−1

2

p−1
2∏

i=1

(−i2) (
mod p2).

Using Wilson’s theorem (as usually stated), we have that

p−1
2∏

i=1

(−i2) =
p−1∏
i=1

i ≡ −1 (mod p).

Thus

p−1
2∏

i=1

(
Kq

(
i2a

)) ≡ p Tr(a)
p−1

2 = p

(
Tr(a)

p

) (
mod p2). �

Corollary 12. The constant term of the characteristic polynomial ca(x) is always congruent to either 0 or ±p
mod p2 .

The following result is due to Wan.

Theorem 13. (See [29].) Let a ∈ Fq. If Tr(a) 	= 0, then ma(x) has degree p−1
2 , and so ma(x) = ca(x).

Corollary 14. Let a ∈ Fq. If Tr(a) 	= 0, then the constant term of ma(x) is ≡ p(
Tr(a)

p ) (mod p2), and so is

always congruent to either 0 or ±p mod p2 .

The same statement can be made in the case that deg(ma(x)) = p−1
2 where Tr(a) = 0.

If Tr(a) = 0 and deg(ma(x)) <
p−1

2 , then the result in Theorem 1 is implied by Theorem 11. In this
case, our result gives us no extra information about the constant term of the minimal polynomial.

3.1. The p = 5 case

When p = 5 we will give the other (nontrivial) coefficient modulo 25 of the characteristic polyno-
mial of 5-ary Kloosterman sums. The details of the following can be found in the PhD thesis of the
third author [24]. For p > 5 computing the other coefficients modulo p2 is an open problem.

In the case of 5-ary Kloosterman sums, the characteristic polynomial of Kq(a) is

x2 − (
Kq(a) + Kq(−a)

)
x + Kq(a)Kq(−a).
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By Theorem 1 we have

Kq(a)Kq(−a) ≡ 5
(
Tr(a)

)2
(mod 25).

Detailed calculations (see [24]) show

Kq(a) + Kq(−a) ≡ 5
(
Tr(a)

)2 + 10 Tr
(
a2) (mod 25).

To show a few concrete examples we give the characteristic polynomial of Kq(a), computed using
Magma [1], for the following elements of F54 , with generator t satisfying t4 + 4t2 + 4t + 2 = 0.

a ca(x) Tr(a) Tr(a2)

t112 x2 + 30x + 205 1 4
t453 x2 + 20x − 305 2 1
t371 x2 + 40x + 355 4 3
t297 x2 + 30x − 495 1 4
t432 x2 − 15x + 45 3 2

4. Proof of second theorem

In this section we will use the same techniques (Gross–Koblitz formula, etc.) to improve the mod-
ulo 9 Kloosterman sum characterisation previously proved in [10,27] to a modulo 27 characterisation.
The modulo 9 characterisation states that K3n (a) ≡ 3 Tr(a) (mod 9). We remark that in the case that
p = 3, Theorem 1 reduces to this modulo 9 characterisation.

First let us prove a lemma on evaluations of the p-adic gamma function. This lemma will allow us
to evaluate Gauss sums for higher moduli and find Kloosterman congruences modulo 27.

Lemma 15. Let n � 3, q = 3n, and let i be an integer in the range 0, . . . ,n − 1. Then

Γ3

({
3i

q − 1

})
≡

{
13 (mod 27) if i = 1,

1 (mod 27) if i > 1.

Proof. For any 3 � j � n, we have 3 j � q, and

{
3i

q − 1

}
= 3i

q − 1
≡ 3i(3 j − 1

) (
mod 3 j),

so

Γ3

({
3i

q − 1

})
≡ Γ3

(
26 · 3i) (mod 27).

If i � 3, then 26 · 3i ≡ 0 (mod 27), and Γ3({ 3i

q−1 }) ≡ 1 (mod 27). Now Γ3(26 · 3) ≡ Γ3(24) (mod 27)

using Theorem 8. And Γ3(24) ≡ 13 (mod 27). Similarly Γ3(26 · 9) ≡ 1 (mod 27). �
Lemma 15 allows us to compute the square of a Gauss sum modulo 27:
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Lemma 16. Let n � 3 and let q = 3n. Then

g( j)2 ≡

⎧⎪⎨⎪⎩
6 (mod 27) if wtp( j) = 1,

9 (mod 27) if wtp( j) = 2,

0 (mod 27) if wtp( j) � 3.

Proof. Suppose wt3( j) = 1. By Theorem 9 and Lemma 15, g( j) ≡ 13π (mod 27). Let g( j) = 27A+13π
for some A ∈ Z3[ζ, ξ ]. Then

g( j)2 = 272 A2 + 2 · 27 · 13A + 169π2

≡ 169π2 (mod 27)

≡ 6 (mod 27)

since π2 = −3. Now suppose wt3( j) = 2. By Theorem 9, g( j) ≡ −3 (mod 9). Thus g( j) = 9B − 3 for
some B ∈ Z3[ζ, ξ ], so g( j)2 = 81B2 − 54B + 9 ≡ 9 (mod 27).

It is clear from Theorem 9 that if wt3( j) > 2, then 27|π2 wt3( j)|g( j)2. �
Now we are ready to prove our result on Kloosterman sums modulo 27.

Theorem 17. Let n � 3, q = 3n and let T̂r and T̂X be as defined in Section 2.2. Then

K3n(a) ≡ 21T̂r(a) + 18̂TX (a) (mod 27). (4)

Proof. Using (2) and Lemma 16, we get

Kq(a) ≡ −
q−2∑
j=1

g( j)2 ω j(a) (mod q)

≡ −
∑

wt3( j)=1

g( j)2ω j(a) −
∑

wt3( j)=2

g( j)2ω j(a) (mod 27)

≡ −6
∑

wt3( j)=1

ω j(a) − 9
∑

wt3( j)=2

ω j(a) (mod 27)

≡ 21T̂r(a) + 18̂TX (a) (mod 27). �
Next we shall express the above result in terms of operations within Fq itself, i.e., using functions

TS directly, and not their lifts. Note that in (4) we only need T̂r(a) modulo 9 and T̂X (a) modulo 3.
We have TX (a) ≡ T̂X (a) (mod 3) so this takes care of the T̂X (a) term. For the other term we need to
find a condition for T̂r(a) modulo 9 using functions from Fq to F3. We will do that in the proof of
the following corollary.

Corollary 18. Let n � 3, q = 3n, a ∈ Fq and let TX , TY and TZ be as defined in Section 2.2. Let Tr(a) be the
trace of a, but considered as an integer. Then

Kq(a) ≡ 21 Tr(a)3 + 18TZ (a) + 9TY (a) + 18TX (a) (mod 27).
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Proof. First recall that T̂X (a) ≡ TX (a) (mod 3).
To determine T̂r(a) mod 9, we compute

T̂r(a)3 =
∑

i, j,k∈{0,...,n−1}
ω

(
a3i+3 j+3k)

= T̂r(a) + 3̂TZ (a) + 6̂TY (a),

and note the elementary fact that if x ≡ y (mod m), then xm ≡ ym (mod m2). This means that
T̂r(a)3 mod 9 is given by T̂r(a) mod 3 = Tr(a), i.e. T̂r(a)3 mod 9 = Tr(a)3. Since T̂Z (a) ≡ TZ (a) (mod 3)

and T̂Y (a) ≡ TY (a) (mod 3) we have that T̂r(a) ≡ Tr(a)3 − 3TZ (a) − 6TY (a) (mod 9), proving the re-
sult. �

Theorem 2 (see Section 1) combines Corollary 18 and Theorem 17 and enumerates the possible
values of ternary Kloosterman sums mod 27.

Proof of Theorem 2. Note that Tr(a)TX (a) = Tr(a) + 2TZ (a). Thus Corollary 18 can be rewritten as

Kq(a) ≡ 21 Tr(a)3 + 18 Tr(a) + 18TX (a) + 9 Tr(a)TX (a) + 9TY (a) (mod 27). (5)

The result is an enumeration of the cases in Eq. (5). �
We remark that a characterisation like in Theorem 2 of Kloosterman sums modulo p3 for p > 3

does not seem to be straightforward. The estimates given by the Gross–Koblitz formula are weaker.

Supplementary material

The online version of this article contains additional supplementary material.
Please visit http://dx.doi.org/10.1016/j.jnt.2012.09.026.
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[5] Kseniya Garaschuk, Petr Lisoněk, On ternary Kloosterman sums modulo 12, Finite Fields Appl. 14 (4) (2008) 1083–1090.
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