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In [12], McCarthy defined a function ,Gyp|[---] using the Te-
ichmiiller character of finite fields and quotients of the p-adic
gamma function, and expressed the trace of Frobenius of ellip-

tic curves in terms of special values of 2G»[- - -]. We establish
two different expressions for the traces of Frobenius of ellip-
tic curves in terms of the function 2Gsl---]. As a result, we

obtain two transformation formulas of the function 2Gal- -]
with different parameters.
© 2014 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let ¢ = p” be a power of an odd prime, and let F; be the finite field of ¢ elements. Let
Z,, denote the ring of p-adic integers. Let I,(.) denote the Morita’s p-adic gamma func-

tion, and let w denote the Teichmiiller character of F,. We denote by & the inverse of w.
For € Q we let |z denote the greatest integer less than or equal to x and (x) denote
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the fractional part of z, i.e. x — |z]. Also, we denote by ZT and Z the set of positive
integers and non negative integers, respectively. In [12], McCarthy defined a function
nGrl -] as given below which can best be described as an analogue of hypergeometric
series in the p-adic setting.

Definition 1.1. (See [12, Definition 5.1].) Let ¢ = p", for p an odd prime and r € Z*, and
let t € F,. Forn € ZT and 1 < i < n, let a;,b; € QN Z,. Then the function ,G,[ -] is
defined by

nG |:a’1aa'2a~-~7an t:|
b17 b2,...7bn q
-1 =2 n r—1 . »
Z &) T] [L(—p)~ Hes#m il =it
q—1
1=1k=0

/\Q

Lp({(ai = g15)p%)) To({(=bi + )k>).

q—1 q—1
Iy ({aip >) F(<b>)

X

This function has many interesting properties. For further details, see [12]. For an
earlier version of this G-function, see [11]. In [5], Greene introduced the notion of hyper-
geometric functions over finite fields. Since then, many interesting connections between
hypergeometric functions over finite field and algebraic curves have been found. But these
results are restricted to primes satisfying certain congruence conditions. For example,
see [1,2,4,9,10]. Let E/F, be an elliptic curve given in the Weierstrass form. Then the
trace of Frobenius a,(E) of E is given by

aq(E) :=q+1—#E(F,), (1)

where #E(F,) denotes the number of F-points on E including the point at infinity. Let
j(E) denote the j-invariant of the elliptic curve E. Let ¢ be the quadratic character of
Fy extended to all of Fy by setting ¢(0) := 0. Using the function »Gsl- - -], McCarthy
expressed the trace of Frobenius of elliptic curves defined over F,, without any congruence
condition on the prime. The statement of his result is given below.

Theorem 1.2. (See [12, Theorem 1.2].) Let p > 3 be a prime. Consider an elliptic curve
E,/F, of the form Es: y* = 23 + ax + b with j(Es) # 0,1728. Then

ap(Es) = ¢(b) - p - 2Ga \—ﬁ] . (2)

4a3

W= »MH
S RN

In [2], the first author and Kalita gave two formulas for the trace of Frobenius of the
elliptic curve E, : y?> = 23 + ax + b defined over F, under the conditions ¢ = 1 (mod 6)
and ¢ = 1 (mod 4), respectively. In this paper, we prove the following two expressions
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for the trace of Frobenius of the elliptic curve E,/F, in terms of special values of the
function 2Gs[- - -] without any congruence conditions on g.

Theorem 1.3. Let ¢ = p”, p > 3 be a prime. Consider an elliptic curve E,,/F, of the
form Eup: y* = 2° + ax + b with j(E,p) # 0. If (—a/3) is a quadratic residue in F,
then

)

‘_kz?’—l—ak‘—i-b
4k3

)

aq(Eap) = ¢(k* +ak +b) - q-2Go [
q

Wl N
Wi N

where 3k% +a = 0.

Theorem 1.4. Let ¢ = p”, p > 3 be a prime. Consider an elliptic curve E,,/F, of the
form E,p: y? = 2% + ax + b with j(E.p) # 1728. If 23 + ax + b = 0 has a non zero
solution in F,, then

b

2
0a(Eus) = 6(-307 —a) - q-aG| T2 | 2L L)

9h?

Bl ol
Bl Nle

where h® 4+ ah + b= 0.

McCarthy proved Theorem 1.2 over F,,. Along the proof of Theorem 1.3 and Theo-
rem 1.4 (which are proved for Fy), we have verified that Theorem 1.2 is also true for Fy.
Hence, we have the following corollary which gives nice transformation formulas between
special values of the function 3Gs[- -] with different parameters. Apart from the trans-
formations which can be implied from the analogous hypergeometric functions over finite
fields, no proper transformations for ,,G,[- - -| have been shown to date.

Corollary 1.5. Let ¢ = p", p > 3 be a prime. Let a,b € F and _247(11732 % 1. Then

. I 272
222 ‘_4a3
373 q
SO
¢(b(k3+ak+b))-202lj’§ ]—%] if a = —3k%;
_ 33 q
- 11 ,
3(~b(3h2 +a)) - 2G| ? §\%] if h® 4+ ah +b=0.
1 q
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2. Preliminaries

—

Let F; denote the group of multiplicative characters of Fy. We extend the domain of
each x € F toFy by setting x(0) := 0 including the trivial character €. The orthogonality
relations for multiplicative characters are listed in the following lemma.

Lemma 2.1. (See [7, Chapter 8].) We have

) S ={g7

z€F, ifX#E'

q-1 ifz=1

@) Z;x(x) - {0 ifo#1.
x€Fg

Let Z, denote the ring of p-adic integers, Q, the field of p-adic numbers, @ the
algebraic closure of Q,, and C, the completion of Q,. Let Z, be the ring of integers in
the unique unramified extension of Q, with residue field IF,. Recall that Z; contains all
(g — 1)-th root of unity. Therefore, we can consider multiplicative characters of F,* to be
maps x : Fy' — Z;.

We now introduce some properties of Gauss sums. For further details, see [3]. Let (,
be a fixed primitive root of unity in @. Then the additive character 6 : Fy — Q,(¢p) is
defined by

0(c) = ¢,
where tr : Fy — I, is the trace map given by
tr(a) =a+of + o 4o

For x € Fy, the Gauss sum is defined by

Gx) =Y x(z)0(x).

z€F,

We let T' denote a fixed generator of Fy . The Gauss sum G(T™) is denoted by G,,. The
following lemma provides a formula for the multiplicative inverse of a Gauss sum.

Lemma 2.2. (See [5, Eq. 1.12].) If k € Z and T* # ¢, then
GrG_ = qu(—l).

Using orthogonality, we can write 6 in terms of Gauss sums as given in the following
lemma.
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Lemma 2.3. (See [/, Lemma 2.2].) For all « € F,

1 = -
() = 1 mz::OG_mT ()

Theorem 2.4 (Davenport-Hasse relation). (See [8].) Let m be a positive integer and
let ¢ = p" be a prime power such that ¢ = 1 (mod m). For multiplicative characters
X,V € By, we have

I ¢ow) =-Gwm ™ 11 ¢t (3)

m_l m_l

We now recall the definition of p-adic gamma function. For n € Z*, the p-adic gamma
function I',(n) is defined as

0<j<n, ptj

and one extends it to all € Z,, by setting I,(0) := 1 and

() = lim I, (n)
for x # 0, where n runs through any sequence of positive integers p-adically approach-
ing x. This limit exists, is independent of how m approaches z, and determines a
continuous function on Z, with values in Z .

We now state a product formula for the p-adic gamma function from [6, Theorem 3.1].
Let w: Fy — Z; be the Teichmiiller character. For a € F;, the value w(a) is just the
(¢ — 1)-th root of unity in Z, such that w(a) = a (mod p). We denote by @ the inverse
ofw.If meZ%, ptm and z € Q satisfies 0 <z < 1 and (¢ — 1)z € Z, then

:liﬁr <<<x+h) Z>) :w(mu—x)(l—q))Epp(@pi»:ﬁllrp« }Zi» (4)

We note that the argument of w, namely, m(1—#)(1-9) ¢ F)* and oJ|F; is the Teichmiiller

character on )’ with values in Z. Also,
Ly(@) (1 —2) = (=1)™, (5)

where 29 € {1,2,...,p} satisfies 29 = = (mod p).

The Gross—Koblitz formula allows us to relate the Gauss sums and the p-adic
gamma function. Let m € C, be the fixed root of 2P~! + p = 0 which satisfies 7 =
¢p — 1 (mod (¢, — 1)?). Then we have the following result.
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Theorem 2.5. (See Gross, Koblitz [6].) Fora € Z and ¢ =1p",

o= (1)

3. Proof of the results

We first prove a lemma which we will use to prove the main results. This lemma is a
generalization of Lemma 4.1 in [12] and the proof proceeds along similar lines.

Lemma 3.1. Let p be a prime and q =p". For 0 < j < q—2 andt € ZT with ptt, we

() (- 2) o

o I ((G29) e ()

ST -2%) g

=0 h=0

have

and

Proof. Fix 0 < j < ¢—2, and let k € Z>( be defined such that

k(%) <j<(k+1)<%). (8)

Putting m = ¢ and z = -~ — k in (4), we obtain
e <<< B
e L) ECHI

We observe that 0 < k < t. Therefore, we have
r—1t—1 .
h—k .
(5 755))
=0 h=0 a
r—1k—1 . t—1 .
t+h—%k . h—k .
I A5+ 75 )0)) I ({5 + 250 )7)
q—1 t q—1
i=0 h=0 h=k
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r—1 t—1 . t—k—1 j
I (G 22)) oG iZa))
i=0 h=t—k ¢-1 h=0 tog=1
r—1t—1 .
J i
I 2)) w
i=0 h=0

Again by our choice of k, for any nonnegative integer i we have

(25~ (52
()G o

Now substituting (10) and (11) into (9) we obtain (6).
We prove (7) following [12, Lemma 4.1] and using similar arguments as given in the
proof of (6). O

This gives us

Lemma 3.2. For 1 <I<q¢g—2and 0<i<r—1, we have
Ipt N 21p° N 20p? _ 3lp _
qg—1 qg—1 qg—1 qg—1
i l i @ l @ It l 7
= 2|({L L [ P I P (2
2 qg—1 3 qg—1 3 q—1
Proof. Since Lﬁlplj can be written as 6u + v, for some u,v € Z such that 0 < v < 5,
(12) can be verified by considering the cases v = 0,1,...,5. For the case v = 0 we have

Lﬁlp | = 6u, and then it is easy to check that both the sides of (12) are equal to zero.
Sumlarly, for other values of v one can verify the result. O

Lemma 3.3. For0<I<q¢g—2and 0<1<r—1, we have
20p’ —Ip? —2Ip? 4lp?
L I A I T A B BV
q—1 q—1 q—1 q—1
P’ Ip’ P’ Ip’ 3p’ Ip’
=2(= — (== — (- . 1
(5) -5 [ R ] w
Proof. Since L4lp | can be written as 4u + v, for some w,v € Z such that 0 < v < 3,
(13) can be Verlﬁed by considering the cases v = 0,1, 2,3. For the case v = 0 we have

L‘”” | = 4u, and then it is easy to verify that both the sides of (13) are equal to zero.
Slmllarly, for other values of v we can verify the result. O
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Now, we are going to prove Theorem 1.3. The proof will follow as a consequence of
the next theorem. We consider an elliptic curve F; over F, in the form

Ei: =2+ ca?+d,

where ¢ # 0. We express the trace of Frobenius endomorphism on the curve E; as a
special value of the function 3Gs[- - -] in the following way.

Theorem 3.4. Let ¢ = p”, p > 3 be a prime. The trace of Frobenius on E is given by

|z
4¢3 |
q

Proof. We have #F1(F,) — 1 = #{(z,y) € Fy x F: y? = 23 + ca® + d}.
Let P(x,y) = 23 + cx® + d — y?. Using the identity

)

aq(Er) = q- ¢(d) - 2Go

Wl Nl
Wi N

)

_ ¢ it P(zy)=0;
ZGZF 0(zP(z,y)) = {0’ it P(r.y) 40, (14)

we obtain

¢.(#E:1(Fy) —=1) = Y 0(2P(z,y))

z,y,2€F

— P+ Z 0(zd) + Z 0(zd)0(—2y2) + Z 0(zd)9(zm3)9(zcx2)

ZGF; y,zE]F;< r,zG]F;(

+ Y 0(=d)8(=2%)0(zca)0(—2y7)

z,y,2€F5

=>4+ A+B+C+D. (15)

From the proof of [2, Theorem 3.1], we have A = -1, B = 1+ qTq_gl(d) and D =
—C' 4+ Dg—1, where
2

1 =2 g—1
Do = 1P Y GGGy G THAT™ ()T (-1)

l,m,n=0

~ Z T3m+2n(x) Z Tl+m+n+qTfl(Z),

z€FY 2€Fy
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S . 1
which is non zero only if m = —%n and n = -3l — q 3@=1 Gince G3l+3<q;1) = G3l+%
and G_g_(4—1) = G_21, we have

1 =2 q—1 g—1
Do = o lz_;G,ZG,QZG?,H%G%Tl(d)T_?’HT(c)TT(—l). (16)
Replacing [ by | — 5= we obtain
1 =2 ]—a=1 —3 q—1
DqT—l = HZG7I+%G_21G31G%T = ()T ()T = (-1)
d) S G_91G3G o1 TH(d)T ™3 17
D Z it G-2G31ba (d) (). (17)
1=0

Using Davenport-Hasse relation (Theorem 2.4) for m = 2, 1 = T~!, we deduce that

Gur Gy T'(4)

G—l-‘rq—;1 = G_, (18)
Substituting (18) into (17) and using Lemma 2.2 we find that
o(d) L2 G_pG_0G 4d
Doy = 2l 2G5l .
Putting the values of A, B, C and D in (15) we obtain
q- (#E1(Fq) —1) = ¢* + q¢(d) + Dys,
which yields
¢(d) 2 G G G,y (Ad
ag(E0) = ~o(d) - 2D 3 GGy (?3) (19)

=0

We take T to be the inverse of the Teichmiiller character, that is, 7' = @ and use the
Gross—Koblitz formula (Theorem 2.5) to convert the above expression to an expressing
involving the p-adic gamma function. This gives

2 ) )
31pt i

q— i iy
0o(Er) = —(d) — d)l 3 (—p) B U+ e —(350)
=0

T (22 (22
<11 e

>)>>F W) (4d>
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Ly (SRt Bty <;lTp1i>}7 then the above equation becomes

1,
If we put s = >, {( quI{ q—1

Calculating s we deduce that

S 3 I R e | R

By (5), for 0 <1 < ¢ — 2, we have

(b)) o

Therefore,
48(d) _ ad(d) NS e (270
aq( ) - q— 1 -1 ; ( 463>
UG = EPDLAG = 25
L))

Now using the following relation for 0 <1 < ¢ — 2
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({3 )52
(o) e

and Lemma 3.2, we deduce that

qg—2r—1 ) ) ) ) ) ) ) )
ay(Er) = _%@? 3 [T (-p)H5) 00 L= =L B+ 3+ 425
=0 i=0
DG~ EPLG - )
L,(EN((5)
D5+ NG5 + 75)pY) l( 27d)
L((=5ENT,((=%5) 4c?
11
g o) 2Ga| 2 j—”]
3. 3 g

This completes the proof of the theorem. O

Proof of Theorem 1.3. We have j(E, ;) # 0. Hence a # 0. Since (—a/3) is a quadratic
residue in Fgy, we find k € F) such that 3k* + a = 0. A change of variables (x,y) —
(z + k, h) takes the elliptic curve E,;: y?> = 23 + az + b to

E': y? =2+ 3ka® + (K + ak +b). (25)

Clearly aq(Eq ) = aq(E’). Using Theorem 3.4 for the elliptic curve E’, we complete the
proof. O

Now, we are going to prove Theorem 1.4. The proof will follow as a consequence of
the next theorem. We consider an elliptic curve Fy over Iy in the form

Ey: y? =2+ fa? + gu,

where f # 0. We express the trace of Frobenius endomorphism on the curve Fy as a
special value of the function oGs[- - -] in the following way.

Theorem 3.5. Let g = p”, p > 3 be a prime. The trace of Frobenius on Ey is given by

ag(E2) = q- ¢(—g) - 2G2 %1 :

= m\)—t
EN[SAR NI
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Proof. We recall that #E>(F;) — 1 = #{(x,y) € Fy x Fy: y? = 23 + fz? + gx}.
Let P(x,y) = 23 + fz? + gx — y?. Using the identity

_J% ifP(.]j,y):O;
ZEZF:(ZG(ZP(JC,:V)) = {0, it Plx ) 0. (26)

we obtain

q- (#Eg(Fq) - 1) = Z H(ZP(x,y))

x,y,2€F,;
=q¢* + Z 6(0) + Z 0(—zy?) Z 0(z2%)0(zf2*)0(zg2)
2€Fy y,z€EFY x,2€FF
+ Z 0(zfx ) (zgx)@(—zyQ)
z,y,2€Fy
=@+ (g-1)+A+B+C. (27)

From [2, Theorem 3.2] we have A= —(¢—1) and C = —B + C%, where

Gq;l q—2 »
Cap = 05 2 GuiGon G (T (@)T'F (-1)
q l,m,n=0
x Y sERmEn () 3 Tlmant izt ().
z€FY 2€F
which is non zero only if n = [ and m = —2[ 4 %5=. This gives

Ge—1¢(—1) 1= 2
Co :ﬁZG 1Gopy a1 G lTl<f2>

=0

Substituting the values of A, B and C in (27) we obtain
Gaz1p(—1) L2
q- (#EQ(]Fq) — 1) = q2 + ZT Z G*lGQZJ'_LglelTl (%) . (28)
1=0

Replacing [ by [ — % we deduce that

Ga1g(—1) &

—az1 (g
q~(#E2(Fq)—1) :q2+qTZG 1+951 1G2l+q 1G_ 1451 T <F>

Gad(—9) &

g
:q2+?ZG I+952 1G2l+q 1G o 1Tl(f> (29)
1=0
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Using Davenport—Hasse relation (Theorem 2.4) for m = 2, ¢ = T=! and ¢ = T%
successively, we have

G s G_yTH4)
G 2

—lpt T G,
and
GuGa 7! (16)
Gy g-1 = 2
2 G .

Putting these values in (29) and using Lemma 2.2, we obtain

q 2

GGG, i)
1 Z G_1G_1Gy (f2 )

=0

q- (#E(Fg) —1) =¢° +1

We now put 7' = @. Then (1) and Gross—Koblitz formula (Theorem 2.5) yield

9B(=0) (i ol 2y () (2e0))
aq(Ez) = — (=p)=i= a1 -

; (30)

where s = Y7 _ {2< —2p ) + <3lTpi> - 2<;l_p1i> - <%>}

Next we use Lemma 3.1 and after simplification we obtain

__q(b(fg) _ SU_JZ 4_g
R I )

(31)
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We simplify the expression for s and find that
= 21p? —Ip' —2lp? 4lpt
= 2 -2 — . 32
xS @
The following relation for 0 <1 < g — 2
r—1
1 l . 3 l -
I" - _ 2 F _ - 3
(G 7o) (G a)n)

({3 5 )n((3e55))

and Lemma 3.3 yield

Il
i

i i

9—27r— i i i i ;
0y(Bs) = _q8(—9) H(_p)ﬂ(%)*Lfi’iJfH%%%Jﬂ(*%H%J*L(*Bi y L2 |

This completes the proof of the theorem. O

Proof of Theorem 1.4. Here j(E,p) # 1728 and hence b # 0. Let h € F; be such
that h3 + ah +b = 0. A change of variables (z,y) — (z + h,y) takes the elliptic curve
Eqp: y2=x3+ax+0bto

E": y*=2"+43ha® + (3h° + a)a. (33)

Clearly ay(E, ) = aq(E") and 3h # 0. Using Theorem 3.5 for the elliptic curve E”, we
complete the proof. O

Acknowledgments

We appreciate the careful review, comments and corrections made by the referee which
helped to correct and improve the paper. We thank Dipendra Prasad and Ken Ono for
careful reading of a draft of the manuscript. We also thank Paul Young for clarifying a
query on Teichmiller character.



R. Barman, N. Saikia / Journal of Number Theory 140 (2014) 181-195 195

References

[1] R. Barman, G. Kalita, Elliptic curves and special values of Gaussian hypergeometric series, J. Num-
ber Theory 133 (2013) 3099-3111.

[2] R. Barman, G. Kalita, Hypergeometric functions over F, and traces of Frobenius for elliptic curves,
Proc. Amer. Math. Soc. 141 (2013) 3403-3410.

[3] B. Berndt, R. Evans, K. Williams, Gauss and Jacobi Sums, Canad. Math. Soc. Ser. Monogr. Adv.
Texts, A Wiley—Interscience Publication, John Wiley & Sons, Inc., New York, 1998.

[4] J. Fuselier, Hypergeometric functions over F,, and relations to elliptic curve and modular forms,
Proc. Amer. Math. Soc. 138 (2010) 109-123.

[5] J. Greene, Hypergeometric functions over finite fields, Trans. Amer. Math. Soc. 301 (1) (1987)
77-101.

[6] B.H. Gross, N. Koblitz, Gauss sum and the p-adic I'-function, Ann. of Math. 109 (1979) 569-581.

[7] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, Springer International
Edition, Springer, 2005.

[8] S. Lang, Cyclotomic Fields I and II, Grad. Texts in Math., vol. 121, Springer-Verlag, New York,
1990.

[9] C. Lennon, Gaussian hypergeometric evaluations of traces of Frobenius for elliptic curves, Proc.
Amer. Math. Soc. 139 (2011) 1931-1938.

[10] C. Lennon, Trace formulas for Hecke operators, Gaussian hypergeometric functions, and the mod-
ularity of a threefold, J. Number Theory 131 (12) (2011) 2320-2351.

[11] D. McCarthy, Extending Gaussian hypergeometric series to the p-adic setting, Int. J. Number
Theory 8 (7) (2012) 1581-1612.

[12] D. McCarthy, The trace of Frobenius of elliptic curves and the p-adic gamma function, Pacific J.
Math. 261 (1) (2013) 219-236.


http://refhub.elsevier.com/S0022-314X(14)00071-7/bib424B31s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib424B31s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib424B32s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib424B32s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6576616E73s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6576616E73s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib467573656C696572s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib467573656C696572s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib677265656E65s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib677265656E65s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib67726F7373s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6972656C616E64s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6972656C616E64s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib4C616E67s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib4C616E67s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6C656E6E6F6Es1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6C656E6E6F6Es1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6C656E6E6F6E32s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6C656E6E6F6E32s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6D6363617274687933s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6D6363617274687933s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6D6363617274687932s1
http://refhub.elsevier.com/S0022-314X(14)00071-7/bib6D6363617274687932s1

	p-Adic gamma function and the trace of Frobenius of elliptic curves
	1 Introduction and statement of results
	2 Preliminaries
	3 Proof of the results
	Acknowledgments
	References


