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Highlights

• For any pair of integers m and n, define Km,n := {a2 + mab + nb2 | m,n ∈ Z}.
• Km,n is a semi-group, for any pair of integers m and n.
• A prime number p can be expressed as p = a2 ± ab− b2 with integers a and b, if and only if, p is congruent to 0, 1 and −1

modulo 5.
• A prime number p can be expressed as p = a2 ± ab + b2 with integers a and b, if and only if, p is congruent to 0 and 1

modulo 3.
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Abstract

Let p be a prime number. In this paper we show that p can be expressed as
p = a2 ± ab− b2 with integers a and b if and only if p is congruent to 0, 1 or −1
(mod 5) and p can be expressed as p = a2 ± ab+ b2 with integers a and b if and
only if p is congruent to 0, 1 (mod 3).
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1. Introduction

Fermat stated in 1640 that an odd prime p can represented by the binary
quadratic form a2 + b2 with integers a and b if and only if p is congruent to 1
(mod 4). This was first proved by Euler in two papers published in 1753 and
1755, (see [2] and [3]). But the standard simpler proof one can find in most in-
troductory books in number theory is essentially due to Lagrange, and is partly
similar to his proof of the four squares theorem, (see [1]). Since then, many
different proofs have been found. Among them, the Zagier’s short proof based
on involutions (see [7]), have appeared.

Binary quadratic forms and their prime representations have been studied
by several authors. Lagrange was the first to give a complete treatment of
the topic, and various mathematicians, including Legendre, Euler and Gauss,
contributed to the theory. In this paper we study the binary quadratic forms
a2 ± ab± b2. More precisely, we show that a prime number p can be expressed
as p = a2 ± ab − b2 with integers a and b if and only if p is congruent to 0, 1
or −1 (mod 5) and p can be expressed as p = a2 ± ab+ b2 with integers a and
b if and only if p is congruent to 0, 1 (mod 3). Our methods of proof in some
parts of it is based on adaptation of Lagrange’s technique for the two and four
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squares theorems.

For any unexplained notation and terminology, we refer to [1] and [4].

2. Preliminaries

The following results will be useful in the proof of Lemmata 3.1 and 3.6.

Lemma 2.1. Let m and n be two integers. Let ξ1, ξ2 be the roots of the equation
x2 +mx+ n = 0. Then for each pair of integers a and b we have

a2 +mab+ nb2 = (a− bξ1)(a− bξ2).

Proof. Put x = a
b in the relation x2 +mx+ n = (x− ξ1)(x− ξ2).

In the following result, we shall show that the set of all integers in Lagrange’s
quadratic form a2+mab+nb2, a, b ∈ Z, composes a semi-group with usual prod-
uct of integers.

Theorem 2.2. Let m and n be two integers and let Km,n := {a2+mab+nb2 :
a, b ∈ Z}. Then (Km,n,×) is a semi-group.

Proof. Let α and β be elements of Km,n. Then there are integers a, b, c, d such
that α = a2 +mab + nb2 and β = c2 +mcd + nd2. Let ξ1 and ξ2 be the roots
of the equation x2 +mx + n = 0. Then we have ξ2i = −mξi − n, for i = 1, 2.
Now, using Lemma 2.1 we have

αβ = (a2 +mab+ nb2)(c2 +mcd+ nd2)

= (a− bξ1)(c− dξ1)(a− bξ2)(c− dξ2)

= [(ac)− (bc+ ad)ξ1 + bdξ21 ][(ac)− (bc+ ad)ξ2 + bdξ22 ]

= [(ac)− (bc+ ad)ξ1 + bd(−mξ1 − n)]

×[(ac)− (bc+ ad)ξ2 + bd(−mξ2 − n)]

= [(ac− nbd)− (bc+ ad+mbd)ξ1][(ac− nbd)− (bc+ ad+mbd)ξ2]

= (ac− nbd)2 +m(ac− nbd)(bc+ ad+mbd) + n(bc+ ad+mbd)2,

which implies that αβ ∈ Km,n.

Lemma 2.3. Let p be a prime number such that p ≡ ±1 (mod 5). Then there
exists an integer a ∈ {1, 2, ..., p−1

2 }, such that a2 − a− 1 = tp, for some positive
integer 1 ≤ t < p .

Proof. Since by hypothesis we have p ≡ ±1 (mod 5) and each of the integers
1 and −1 are quadratic residue modulo 5, it follows from the Law of Quadratic
Reciprocity that there is an integer b such that b2 ≡ 5 (mod p). On the other
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hand there is an element c ∈ {0, 1, 2, ..., p − 1} such that c ≡ b (mod p). So,
we have c2 ≡ 5 (mod p) and (p − c)2 ≡ 5 (mod p). Since p is an odd number
it follows that one of the integers c or p − c is an odd number. So, there is
a positive integer a such that 2a − 1 ∈ {0, 1, 2, ..., (p − 1)} and (2a − 1)2 ≡ 5
(mod p). Therefore, 4a2 − 4a − 4 ≡ 0 (mod p). Since (4, p) = 1 it follows that
a2 − a − 1 ≡ 0 (mod p). So, there is an integer t such that a2 − a − 1 = tp.
Since a is an integer it follows that t �= 0. Moreover, since p ≥ 11, it follows
that a ≥ 4 and hence we have

a2 − a− 1 = (a− 1

2
)2 − 5

4
> 32 − 2 = 7 > 0.

Therefore, we have t ≥ 1. Moreover, since 1 ≤ 2a − 1 ≤ p − 2 then we have
1 ≤ a ≤ p−1

2 . Now, we have

t =
a2 − a− 1

p
<

(p2 )
2 + (p2 ) + 1

p
=

p

4
+

1

2
+

1

p
<

p

4
+ 1 < p.

Therefore, we have 1 ≤ t < p.

Lemma 2.4. Let p be a prime number such that p ≡ 1 (mod 3). Then there
exists an integer a ∈ {0,±1,±2, ...,±(p−1

2 )} such that a3 ≡ 1 (mod p), but
a �≡ 1 (mod p). In particular, there is a positive integer 1 ≤ t < p such that
a2 + a+ 1 = tp.

Proof. The group (Z×
p ,�) is of finite order ϕ(p) = p − 1, where ϕ is the

Euler’s function. Moreover, by hypothesis we have 3|(p− 1). Therefore, in view
of Cauchy’s theorem, (see [5]), the group Z

×
p contains an element c of order 3.

Now, there exists an integer a ∈ {0,±1,±2, ...,±(p−1
2 )} such that c ≡ a (mod

p). Now, it is clear that a3 ≡ 1 (mod p), but a �≡ 1 (mod p). Thus, using
the factorization a3 − 1 = (a − 1)(a2 + a + 1) and the fact that p � |(a − 1),
it follows that there is an integer t such that a2 + a + 1 = tp. But we have
a2 + a + 1 = (a + 1

2 )
2 + 3

4 > 0, which implies that t > 0 and hence t ≥ 1.

Moreover, since by hypothesis we have |a| ≤ p−1
2 , it follows that

t =
a2 + a+ 1

p
≤ (p2 )

2 + (p2 ) + 1

p
=

p

4
+

1

2
+

1

p
<

p

4
+ 1 < p.

Therefore, we have 1 ≤ t < p.

Remark 2.5. According to the referee’s suggestion, using the proof of Lemma
2.3, one can find an easy alternative proof for the Lemma 2.4, based on the Law
of Quadratic Reciprocity, instead of using Cauchy’s theorem. In fact, we need
just the following argument. If p ≡ 1 (mod 3), then −3 is a quadratic residue
modulo p, and thus there is an integer a ∈ {0,±1,±2, ...,±(p− 1)/2} such that
(2a+ 1)2 ≡ −3 (mod p).
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3. Main results

In this section we will prove our main results, Theorems 3.4 and 3.9. But,
first we need the following lemma.

Lemma 3.1. Let p be a prime number such that p ≡ ±1 (mod 5). Then there
are integers a, b such that p = a2 − ab− b2.

Proof. Let K−1,−1 be as in Theorem 2.2. By Lemma 2.3, there are integers
1 ≤ t < p and 1 ≤ d ≤ p−1

2 such that

tp = d2 − d− 1 = d2 − d(1)− (1)2 ∈ K−1,−1.

Let
B := {k ∈ N : 1 ≤ k < p and kp ∈ K−1,−1}.

Then as t ∈ B, it follows that B �= ∅. It is enough to prove 1 ∈ B. Assume
the opposite and let � be the smallest element of B. Then we have 1 < � < p
and there are integers e and f such that �p = e2 − ef − f2. Now, we can find
integers e0 and f0 such that

e0 ≡ e (mod �) and f0 ≡ f (mod �)

and

|e0| ≤ �

2
and |f0| ≤ �

2
.

In this situation we claim that it is impossible that we have e0 = f0 = 0.
Because, if we have this relation, then we have e ≡ f ≡ 0 (mod �) and so
e2 ≡ ef ≡ f2 ≡ 0 (mod �2). Thus, we must have �p = e2 − ef − f2 ≡ 0
(mod �2), which implies that �|p and this is a contradiction. Because, we have
1 < � < p. So, we have e0 �= 0 or f0 �= 0. Now, we claim that it is impossible
that we have e20−e0f0−f2

0 = 0. Assume the opposite and let s = (e0, f0). Then
there are integers e1 and f1 such that e0 = se1, f0 = sf1 and (e1, f1) = 1. Then
from the relation e20−e0f0−f2

0 = 0 we conclude the relation e21−e1f1−f2
1 = 0.

Now we consider the following two cases. In the first case, we may assume
e0 �= 0. Then we have e1 �= 0 and e1|f2

1 . So, we must have e1 = ±1. Then
we have 1 ± f1 − f2

1 = 0 which is impossible. In second case we may assume
f0 �= 0. Then we have f1 �= 0 and f1|e21. So, we must have f1 = ±1. Then we
have e21 ± e1 − 1 = 0 which is impossible. So, we have e20 − e0f0 − f2

0 �= 0. Now,
we consider the following two cases.

Case 1. Assume that e20 − e0f0 − f2
0 > 0. Then we have e20 − e0f0 − f2

0 ≥ 1.
On the other hand, we have

e20 − e0f0 − f2
0 ≡ e2 − ef − f2 ≡ 0 (mod �).

Therefore, there exists a positive integer m such that

e20 − e0f0 − f2
0 = �m.
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Moreover, we have

m =
e20 − e0f0 − f2

0

�

≤ e20 + |e0||f0|+ f2
0

�

≤ ( �2 )
2 + ( �2 )

2 + ( �2 )
2

�

=
3

4
� < �.

So, we have 1 ≤ m < �.
Next, by using the proof of Theorem 2.2, we have

�2mp = (�m)(�p) = −(e20 − e0f0 − f2
0 )(f

2 + fe− e2)

= −(e20 − e0f0 − f2
0 )(f

2 − f(−e)− (−e)2)

= −[(e0f − ef0)
2 − (f0f − e0e+ f0e)(e0f − ef0)

−(f0f − e0e+ f0e)
2].

Now, we have
e0f − ef0 ≡ ef − ef ≡ 0 (mod �)

and

f0f − e0e+ f0e ≡ f2 − e2 + ef = −(e2 − ef − f2) ≡ 0 (mod �).

Therefore,

α =
e0f − ef0

�
and β =

f0f − e0e+ f0e

�
,

are integers such that

mp = −[α2 − αβ − β2] = β2 − (−α)(β)− (−α)2 ∈ K−1,−1

and 1 ≤ m < �, which means m ∈ B and m is smaller than the smallest element
of B, which is a contradiction.

Case 2. Assume that e20 − e0f0 − f2
0 < 0. Then we have

−(e20 − e0f0 − f2
0 ) = f2

0 − (−e0)f0 − (−e0)
2 ≥ 1.

On the other hand, we have

f2
0 − (−e0)f0 − (−e0)

2 = −(e20 − e0f0 − f2
0 ) ≡ −(e2 − ef − f2) ≡ 0 (mod �).

Therefore, there exists a positive integer m such that

f2
0 − (−e0)f0 − (−e0)

2 = �m.
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Moreover, we have

m =
f2
0 − (−e0)f0 − (−e0)

2

�

≤ e20 + |e0||f0|+ f2
0

�

≤ ( �2 )
2 + ( �2 )

2 + ( �2 )
2

�

=
3

4
� < �.

So, we have 1 ≤ m < �.
Next, by using the proof of Theorem 2.2, we have

�2mp = (�m)(�p) = −(e20 − e0f0 − f2
0 )(e

2 − ef − f2)

= (f2
0 − (−e0)f0 − (−e0)

2)(e2 − ef − f2)

= [(f0e− e0f)
2 − (−e0e+ f0f + e0f)(f0e− e0f)

−(−e0e+ f0f + e0f)
2].

Now, we have
f0e− e0f ≡ fe− ef ≡ 0 (mod �)

and

−e0e+ f0f + e0f ≡ −e2 + f2 + ef = −(e2 − ef − f2) ≡ 0 (mod �).

Therefore,

α =
f0e− e0f

�
and β =

−e0e+ f0f + e0f

�
,

are integers such that

mp = α2 − αβ − β2 ∈ K−1,−1

and 1 ≤ m < �, which means m ∈ B and m is smaller than the smallest element
of B, which is a contradiction.

The following consequence of Lemma 3.1 is needed in the proof of Theorem
3.4.

Corollary 3.2. A prime number p can be expressed as p = a2 − ab − b2 with
integers a and b, whenever p is congruent to 0, −1 or 1 (mod 5).

Proof. If p ≡ 0 (mod 5), then p = 5 and we can find integers a = 3 and b = 1
with the desired property. Also, if we have p ≡ 1 or −1 (mod 5), then the
assertion holds by Lemma 3.1.

The next result is needed in the proof of our first main result.
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Lemma 3.3. Let p be a prime number and K−1,−1 be as in Theorem 2.2. If
p ∈ K−1,−1, then p ≡ 1, −1 or 0 (mod 5).

Proof. By hypothesis there are integers a, b such that p = a2−ab−b2. In this
situation we claim that it is impossible that we have a ≡ b (mod p). Assume
the opposite. Then we have a ≡ b (mod p). Therefore, we have −a2 ≡ −b2 ≡
a2 − ab− b2 = p ≡ 0 (mod p). So, we have p|a and p|b. Hence, we have

p2|(a2 − ab− b2) = p,

which is a contradiction. So, we have a �≡ b (mod p). Also, it is easy to see
that (a, p) = 1 = (b, p). Thus in the field (Zp,⊕,�), we have (c)2 − c − 1 = 0,
where c = a(b)−1 and so (2c − 1)2 ≡ 5 (mod p). Now, it follows from the Law
of Quadratic Reciprocity that p ≡ 1, −1 or 0 (mod 5).

Now we are ready to state and prove our first main result in this paper.

Theorem 3.4. A prime number p can be expressed as p = a2 − ab − b2 with
integers a and b, if and only if p is congruent to 0, 1 or −1 (mod 5).

Proof. The assertion follows from Corollary 3.2 and Lemma 3.3.

Remark 3.5. It is clear that a prime number p can be expressed as p = a2 −
ab−b2 with integers a and b, if and only if, p can be expressed as p = c2+cd−d2

with integers c and d. So, it follows from the Theorem 3.4 that, a prime number
p can be expressed as p = a2 + ab − b2 with integer a and b, if and only if p is
congruent to 0, 1 or −1 (mod 5).

According to the referee suggestion, the method used in the proof of Theorem
3.4 also can be applied for the prime numbers with representation by the binary
quadratic form a2 ± ab+ b2. This binary quadratic form for fist time has been
verified by U. P. Nair, (see [6]). In fact our proof for the Theorem 3.9 is an
alternative proof for his result.

Lemma 3.6. Let p be a prime number such that p ≡ 1 (mod 3). Then there
are integers a, b such that p = a2 + ab+ b2.

Proof. Let K1,1 be as in Theorem 2.2. By Lemma 2.4 there are integers 1 ≤
t < p and −(p−1

2 ) ≤ d ≤ p−1
2 such that

tp = d2 + d+ 1 = d2 + d(1) + (1)2 ∈ K1,1.

Let
B := {k ∈ N : 1 ≤ k < p and kp ∈ K1,1}.

Then as t ∈ B, it follows that B �= ∅. It is enough to prove 1 ∈ B. Assume
the opposite and let � be the smallest element of B. Then we have 1 < � < p

7



and there are integers e and f such that �p = e2 + ef + f2. Now, we can find
integers e0 and f0 such that

e0 ≡ e (mod �) and f0 ≡ f (mod �)

and

|e0| ≤ �

2
and |f0| ≤ �

2
.

In this situation we claim that it is impossible that we have e0 = f0 = 0.
Because, if we have this relation, then we have e ≡ f ≡ 0 (mod �) and so
e2 ≡ ef ≡ f2 ≡ 0 (mod �2). Thus, we must have �p = e2 + ef + f2 ≡ 0
(mod �2), which implies that �|p and this is a contradiction. Because, we have
1 < � < p. So, without loss of generality we may assume that f0 �= 0. Then,
since

e20 + e0f0 + f2
0 = (e0 +

f0
2
)2 +

3

4
f2
0 > 0,

it follows that e20 + e0f0 + f2
0 ≥ 1. On the other hand, we have

e20 + e0f0 + f2
0 ≡ e2 + ef + f2 ≡ 0 (mod �).

Therefore, there exists a positive integer m such that

e20 + e0f0 + f2
0 = �m.

Moreover, we have

m =
e20 + e0f0 + f2

0

�

≤ e20 + |e0||f0|+ f2
0

�

≤ ( �2 )
2 + ( �2 )

2 + ( �2 )
2

�

=
3

4
� < �.

So, we have 1 ≤ m < �.
Next, by using the proof of Theorem 2.2, we have

�2mp = (�m)(�p) = (e20 + e0f0 + f2
0 )(f

2 + fe+ e2)

= [(e0f − ef0)
2 + (f0f + e0e+ f0e)(e0f − ef0)

+(f0f + e0e+ f0e)
2].

Now, we have
e0f − ef0 ≡ ef − ef ≡ 0 (mod �)

and
f0f + e0e+ f0e ≡ f2 + e2 + ef ≡ 0 (mod �).
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Therefore,

α =
e0f − ef0

�
and β =

f0f + e0e+ f0e

�
,

are integers such that
mp = α2 + αβ + β2 ∈ K1,1

and 1 ≤ m < �, which means m ∈ B and m is smaller than the smallest element
of B, which is a contradiction.

The following consequence of Lemma 3.6 is needed in the proof of Theorem
3.9.

Corollary 3.7. A prime number p can be expressed as p = a2 + ab + b2 with
integers a and b, whenever p is congruent to 0 or 1 (mod 3).

Proof. If p ≡ 0 (mod 3), then p = 3 and we can find a = b = 1 with the
desired property. Also, if we have p ≡ 1 (mod 3), then the assertion holds by
Lemma 3.6.

The next result is needed in the proof of our second main result.

Lemma 3.8. Let p �= 3 be a prime number and K1,1 be as in Theorem 2.2. If
p ∈ K1,1, then p ≡ 1 (mod 3).

Proof. By hypothesis there are integers a, b such that p = a2+ab+b2. In this
situation we claim that it is impossible that we have a ≡ b (mod p). Assume
the opposite. Then we have a ≡ b (mod p). Therefore, we have 3a2 ≡ 3b2 ≡
a2 + ab + b2 = p ≡ 0 (mod p). So, as by hypothesis we have p �= 3, it follows
that p|a and p|b. Hence, we have

p2|(a2 + ab+ b2) = p,

which is a contradiction. So, we have a �≡ b (mod p). Also, it is easy to see
that (a, p) = 1 = (b, p). Thus in finite group (Z×

p ,�), we have a(b)−1 �= 1 and

(a(b)−1)3 = 1. So, the finite group Z
×
p has an element c = a(b)−1 of order 3.

So, it follows from the Lagrange’s theorem that 3|ϕ(p) = p− 1, where ϕ is the
Euler’s function. Hence, we have p ≡ 1 (mod 3).

Now we are ready to state and prove the second main result of this paper.

Theorem 3.9. A prime number p can be expressed as p = a2 + ab + b2 with
integers a and b, if and only if p is congruent to 0 or 1 (mod 3).

Proof. The assertion follows from Corollary 3.7 and Lemma 3.8.

Remark 3.10. It is clear that a prime number p can be expressed as p = a2 +
ab+b2 with integers a and b, if and only if, p can be expressed as p = c2−cd+d2

with integers c and d. So, it follows from the Theorem 3.9 that, a prime number
p can be expressed as p = a2 − ab + b2 with integer a and b, if and only if p is
congruent to 0, 1 (mod 3).
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