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We disprove, by means of numerical examples and theoretical 
arguments, illustrated with p = 3, the existence of a Riemann–
Hurwitz formula for the p-ranks of relative class groups in 
a p-ramified p-extension K/k of number fields of CM-type 
containing μp in contradiction with a result published in 1996. 
In the cyclic case of degree p, under some assumptions on the 
p-class group of k and the decomposition of the p-places, we 
prove some results on the structure of the p-class group of K
and justify that some theoretical structures do not exist in 
this particular situation. In this context, an analogue of Kida’s 
formula is valid for the p-ranks if and only if the p-class group 
of K is reduced to the group of ambiguous classes, which is 
not always the case, as shown by a numerical table for p = 3.
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1. Generalities

In [Ki, 1980], Y. Kida proved an analogue of the Riemann–Hurwitz formula for the 
minus part of the Iwasawa λ-invariant (under the nullity of the μ-invariant) of the 
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cyclotomic Zp-extension k∞ of an algebraic number field k of CM-type containing the 
group μp of pth roots of unity:

λ−(K) − 1 = [K : k] · (λ−(k) − 1) +
∑

v+

(
ev+(K+

∞/k+
∞) − 1

)
, (1)

where K/k is a finite p-extension of CM-fields (the maximal totally real subfields of k and 
K are denoted k+ and K+, respectively; to simplify we have supposed K∩k∞ = k); then 
v+ ranges over all non-p-places of K+

∞, split in K∞/K+
∞, ev+ being the corresponding 

ramification index. See also [Iw, § 9] giving again this formula.
When K/k is p-ramified (i.e., unramified outside p) the formula reduces to:

λ−(K) − 1 = [K : k] · (λ−(k) − 1). (2)

Many generalizations of Kida’s formula were given as for instance in [Sch]. In [FOO]
it is shown (for the primes 2, 3, and 5) the existence of Zp-extensions with prescribed 
Iwasawa λ-invariant by using Kida’s formula.

A general formula was established at the origin by Iwasawa [Iw, 1981, Theorem 6] for 
the whole λ-invariant; for instance, when K/k is cyclic of degree p and the μ-invariant 
is 0, one gets:

λ(K) − 1 = p · (λ(k) − 1) + (p− 1) · (χ(G,EK∞) + 1) +
∑

w

(
ew(K∞/k∞) − 1

)
,

where w ranges over all non-p-places of K∞, where pχ(G,EK∞ ) is the Herbrand quotient 
H2(G,EK∞)
H1(G,EK∞) of the group EK∞ of units of K∞ and G = Gal(K∞/k∞) (see [Sch, The-

orem 1.5 and Theorem 1.9] for some generalizations). For generalized class groups with 
ramification and decomposition, see [JaMa,JaMi].

Of course, in the CM-fields case for relative class groups, the units of infinite or-
der “disappear” as is well known, and one obtains Kida’s formula using only obvious 
parameters from K/k (still assuming the nullity of the μ-invariant).

Definitions 1.1. (i) For any number field F , let C�F be its p-class group and let C�±F be 
its two usual components when F is a CM-field, so that C�F = C�+F ⊕C�−F (to simplify, we 
shall suppose p �= 2).
(ii) We denote by HF the p-Hilbert class field of F .
(iii) The p-rank of a Zp-module M is the Fp-dimension of the Fp-space M/Mp.

An interesting question is to ask if a Kida’s formula can be valid, in a p-extension K/k

of CM-fields, for the p-ranks (r−K and r−k ) of the relative class groups C�−K and C�−k . If so, 
such a formula should be (in the simplest case where K/k is p-ramified and contains μp) 
analogous to formula (2), that is to say:

r−K − 1 = [K : k] · (r−k − 1). (3)
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Indeed, in a work using Iwasawa theory and published by K. Wingberg [W, 1996], it is 
proposed, in a very general framework, an analog of Kida’s formula for the p-ranks of 
relative S-class groups in some S-ramified p-extensions containing μp, for a set of finite 
places S containing the p-places [W, Corollary 2.2 (i)] and applied to the following data 
(taking for S the set of p-places):

k is a CM-field containing μp such that no prime of k+ above p splits in k, and K+

is a totally real p-ramified p-extension of k+; then K := K+(μp) = K+k.

This leads, for K/k, exactly to formula (3) that we intend to disprove (see [W, Corol-
lary 2.2 (ii) & Remark 2.3]).

We can be astonished by a result which is not really “arithmetical” since many of 
our class group investigations show that such a “regularity” only happens at infinity 
(Iwasawa theory). The analytic proof of Kida’s formula given by W. Sinnott [Sin, 1984], 
using p-adic L-functions, is probably the most appropriate to see the transition from one 
aspect to the other giving the λ-invariants as “ultimate p-ranks” of class groups in the 
cyclotomic Zp-extensions.

Indeed, finding a relation between the p-ranks of p-class groups (e.g., in K/k cyclic of 
degree p with Galois group G), depends on non-obvious structures of finite Zp[G]-modules 
M (= C�K) provided with an arithmetical norm NK/k and a transfer map iK/k (with 
iK/k ◦ NK/k = νK/k := 1 + σ + · · · + σp−1 where σ is a generator of G), the filtration 

of the Mi :=
{
h ∈ M, h(1−σ)i = 1

}
playing an important non-algebraic role because all 

the orders #(Mi+1/Mi) depend on arithmetical local normic computations by means of 
formulas, given in [Gr3, 1973] and systematized in [Gr2, 1994] or [Gr4, 2016], similar to 
that of the case i = 0 of Chevalley’s ambiguous class number formula (see § 4.1).

To be more convincing, we shall give numerical computations and we shall see that 
it is not difficult to conjecture that there are infinitely many counterexamples to the 
formula (3) which may be true in some cases.

2. A numerical counterexample

Using PARI (from [P]), we give in § 4.2 a program which can be used by the reader 
to compute easily, for the case p = 3, the 3-ranks of class groups in some 3-ramified 
cubic cyclic extensions K/k over a biquadratic field k containing a primitive 3rd root of 
unity ζ, and such that its 3-class group is (for instance) of order 3.

2.1. Definitions and assumptions

Consider the following diagram:
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Q

k+=Q(
√

3·d )

t

k−=Q(
√
−d)

Q(ζ)=Q(
√
−3)

k=k+(ζ)

K+ K=k( 3
√
α )

[K : k]=3

s

Recall, in this particular context about the 3-class group of k, the hypothesis of 
[W, Corollary 2.2 (ii)]; we shall suppose these conditions satisfied in all the sequel.

Hypothesis 2.1. (i) d > 0, d squarefree, d �≡ 0 (mod 3),
(ii) p = 3 does not split in k/Q (hence d ≡ 1 (mod 3)),
(iii) K+/k+ is a 3-ramified cubic cyclic extension and K = K+(ζ),
(iv) K+ is not contained in the cyclotomic Z3-extension of k+,1
(v) C�k+ = 1 & C�k− � Z/3Z (equivalent to C�k � Z/3Z).

From (v), the ambiguous class number formula shall give C�K+ = C�+K = 1, so that 
C�−K = C�K (Lemma 2.3); this is convenient for numerical calculations because this avoids 
the computation of C�+K since PARI gives the whole class group. Moreover, in spite of 
appearances, this context is rich enough for our purpose.

2.2. Recalls on Kummer and class field theories

Starting from a 3-ramified cubic cyclic extension K+/k+, the associated Kummer 
extension K/k is k( 3

√
β)/k, for β ∈ k× \ k×3, (β) = b3, up to a power of p = (

√
−3), for 

an ideal b of k, and βs+1 ∈ k×3, where s ∈ Gal(K/K+) is the complex conjugation (usual 
decomposition criterion of a Kummer extension over a subfield) which gives (β) = b3

where we can choose b prime to p. More precisely:

Lemma 2.2. Under the above conditions, a system of solutions β giving independent 
extensions k( 3

√
β)/k is for instance 

{
α, α·ζ, α·ζ2, ζ

}
, the number α ∈ k− being obtained 

from the non-trivial 3-class of k−.

Proof. The Kummer extension K/k is 3-ramified if and only if β ∈ 〈3, ζ, ε, α〉Z · k×3, 
where ε is the fundamental unit of k+. But the cubic subextensions of k( 3

√
3, 3

√
ε) are 

1 Conditions (iii) and (iv) imply that the “minimal” base field k ⊃ μ3 is a suitable biquadratic field.
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not decomposed over k+ and k( 3
√
ζ) is decomposed over k+ but is not allowed for our 

purpose because of the condition (iv) (the 3-rank of the Galois group of the maximal 
Abelian 3-ramified 3-extension of k+ is r− + 1 = 2 because 3 does not split in k; see 
[Gr1, Proposition III.4.2.2] for the general statement).

So, β ∈ 〈ζ, α〉Z · k×3 with α in k− such that (α) = a3 (a must be a non-principal 
ideal since Ek− is trivial); this defines a canonical 3-ramified cubic cyclic extension K+

of k+ and the numbers α·ζ, α·ζ2 define the two other 3-ramified cubic cyclic extensions 
K+

1 , K+
2 of k+, distinct from the first step of k+

∞ defined by ζ (which explains the 
“dimension 2”). �

In all our numerical examples, we shall only use the canonical “pseudo-unit” α since 
the Galois group of K+/Q is the dihedral group D6 while the Galois group of the Galois 
closure of K+

1 /Q or of K+
2 /Q is of order 18 (group F18(6) = [32]2 = 3 wr 2, from [KM]). 

For instance, with k = Q(
√
−211, 

√
−3), α = 17+

√
−211

2 (example of the § 2.3 below), 
a polynomial defining K+/Q is x3 − 15 x + 17 (the discriminant of K+/Q is 33 · 211) 
while a polynomial defining the Galois closure of K+

1 /Q is given by x6 − 30 x4 + 17 x3 +
225 x2 − 255 x − 86 (the discriminant of K+

1 /Q is 39 · 2113).

Lemma 2.3. We have #C�K+ = 1, hence C�K = C�−K since C�+K � C�K+ = 1, #C�GK =
#C�k = 3. We have #C�Hk

= 1.

Proof. Using Chevalley’s formula in K+/k+ (see e.g. [Gr1, Lemma II.6.1.2]) with a 
trivial 3-class group for k+, the formula reduces to

#C�GK+ = 3
3 · (Ek+ : Ek+ ∩ NK+/k+K+×) = 1,

since the product of ramification indices is equal to 3 (C�k+ = 1 implies that K+/k+ is 
totally ramified at the single prime of k+ above 3). The same formula in K/k is

#C�GK = #C�k · 3
3 · (Ek : Ek ∩ NK/kK×)

with Ek = 〈ε, ζ〉, where ε is the fundamental unit of k+; but, as for K+/k+, there is by 
assumption a single prime ideal of k ramified in K/k, thus, using the product formula, 
the Hasse norm theorem shows that all these units are local norms everywhere hence 
global norms. So #C�GK = 3 since #C�k = #C�k− = 3.

With G′ := Gal(Hk/k) � Z/3Z, we get #C�G′

Hk
= #C�k

3 · (Ek : Ek ∩ NHk/kH
×
k )

= 1. �

2.3. Numerical data for a first counterexample

We have a first counterexample with d = 211 ≡ 1 (mod 3) and α = 17+
√
−211

2 where 
(α) = p3

5 for a non-principal prime ideal dividing 5 in k−. The class number of k+
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is 1 and that of k− is 3, which is coherent with the fact that the fundamental unit 
ε = 440772247 + 17519124

√
3·211 of k+ is 3-primary (ε ≡ 1 + 3

√
3·211 (mod 9)), which 

implies that Hk−/k− is given via k( 3
√
ε)/k, decomposed over k−.

So all the five conditions (i) to (v) of Hypothesis 2.1 are fulfilled.
The PARI program gives in “component (H, 5)” the class number and the structure 

of the whole class group of K; the program needs an irreducible polynomial defining K; 
it is given by “P = polcompositum (x2 + x + 1, Q)” where Q = x6 − 17 x3 + 53 is the 
irreducible polynomial of 3

√
α over Q, from the general formula:

Q = x6 − Trk−/Q(α)x3 + Nk−/Q(α);

one obtains P = x12 − 6 x11 + 21 x10 − 84 x9 + 243 x8 − 432 x7 + 1037 x6 − 1896 x5 −
204 x4 − 966 x3 + 5949 x2 + 4905 x + 11881. The program gives

C�K = C�−K � Z/9Z
⊕

Z/3Z, i.e., rK = 2,

for a whole class number equal to 27. This yields, from Lemma 2.3, the 3-rank r−K = 2
for C�−K when the 3-rank r−k of C�−k is 1, which is incompatible with formula (3):

r−K − 1 = 3 · (r−k − 1).

We do not know if the problem in [W] comes from the “group theory and cohomology” 
part or from the “number fields” part. But this “Riemann–Hurwitz formula” is valid if 
and only if C�−K = (C�−K)G � Z/3 Z (no exceptional 3-classes). Such a case is also very 
frequent (see § 4.3). From [DFKS], we get λ−(k) = 2 (for p = 3) whence λ−(K) = 4
from (2), which illustrates the difference of nature between λ− and r−.

3. Some structural results

Denote by M a finite Zp[Γ]-module, where we assume that Γ is an Abelian Galois group 
of the form G ×g, where G = Gal(K/k) =: 〈σ〉 is cyclic of order p and g � Gal(k/k0) (of 
order prime to p), where k0 is a suitable subfield of k (so that K = kK0 with K0 := Kg). 
The existence of g allows us to take isotypic components of M (as the ±-components 
when the fields are of CM-type). In our example, p = 3, g = 〈s〉, k0 = k+ and K0 = K+.

For our purpose we shall have M = C�−K = C�K since C�+K = 1; to simplify, we shall 
use the notations C�k, C�K instead of the minus parts. By class field theory, K/k being 
totally ramified at the unique prime ideal p = (

√
−3) | 3 of k, the arithmetical norm 

NK/k : C�K −→ C�k is surjective. Another important fact for the structure of C�K in 
our particular context, is that the class of order 3 of k capitulates in K because the 
equality (α) = a3 becomes ( 3

√
α) = (a)K in K (the transfer map iK/k : C�k −→ C�K is 

not injective). This has the following tricky consequence for ν := νK/k = iK/k ◦ NK/k:

NK/k(C�K) = C�k & (C�K)ν = 1.



G. Gras / Journal of Number Theory 171 (2017) 213–226 219
3.1. Structure of Zp[G]-modules M such that Mν = 1 and #MG = p

Return to the cyclic case G of order p (for any prime p) with a Zp[G]-module M of 
finite p-power order, and suppose Mν = 1 for the algebraic norm ν = 1 +σ+ · · ·+σp−1, 
and #MG = p. So M is a module over

Zp[G]/(ν) � Zp[X]/(1 + X + · · · + Xp−1) � Zp[ζ],

where ζ is a primitive pth root of unity. We have, canonically M �
m⊕
j=1

Zp[ζ]/(1 − ζ)nj , 

1 ≤ n1 ≤ n2 ≤ · · · ≤ nm, m ≥ 0, and the exact sequence 1 → MG −→ M
1−σ−→M1−σ → 1

which becomes in the Zp[ζ]-structure:

1 →
m⊕
j=1

(1 − ζ)nj−1 Zp[ζ]/(1 − ζ)nj −→

m⊕
j=1

Zp[ζ]/(1 − ζ)nj
1−ζ−→

m⊕
j=1

(1 − ζ)Zp[ζ]/(1 − ζ)nj → 1.
(4)

Since #MG = p, we get m = 1 and M � Zp[ζ]/(1 − ζ)n, n ≥ 1 (M is Zp[ζ]-monogenic).

Lemma 3.1. Put n = a (p − 1) + b, a ≥ 0 and 0 ≤ b ≤ p − 2. Then

M � Zp[ζ]/(1 − ζ)n � (Z/pa+1Z)b
⊕

(Z/paZ)p−1−b.

Proof. We have Zp[ζ]/(1 − ζ)n � Zp[ζ]/pa (1 − ζ)b. So, to have the Abelian group struc-
ture, it is sufficient to compute the pr-ranks for all r ≥ 1 (i.e., the dimensions over Fp

of Mpr−1
/Mpr), which is immediate since this pr-rank is p − 1 for r ≤ a, b for r = a + 1

and 0 for r > a + 1. �
This implies that the p-rank of M is R = p − 1 if a ≥ 1 and R = b if a = 0 (i.e., 

b = n ≤ p −2). So the parameters a and b will be important in a theoretical and numerical 
point of view.

3.2. The structure C�−K � Z/3aZ 
⊕

Z/3aZ does not exist

We shall prove that in our particular example of the case p = 3, we always have b = 1
in Lemma 3.1 (i.e., M := C�−K � Z3[ζ]/3a (1 − ζ), a ≥ 0).

Theorem 3.2. Under the Hypothesis 2.1, there exists a ≥ 0 such that

C�K = C�−K � Z3[ζ]/3a (1 − ζ) � Z/3a+1Z
⊕

Z/3aZ.

The case a = 0 is equivalent to C�K = C�GK .
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Proof. Suppose that M � Z3[ζ]/(3a) = Z3[ζ]/(1 − ζ)2a � Z/3aZ 
⊕

Z/3aZ, a ≥ 1. 
Consider the following diagram; since Gal(HK/KHk) � NM and since M1−σ ⊆ NM is 
of index #MG = 3 in M , we get Gal(HK/KHk) � M1−σ:

3

M =〈h〉

M1−σ

HKKHkK

k Hk

G=〈σ〉

Let IK be the group of ideals of K (by abuse of notation, some writings may be 
sometimes in IK ⊗ Zp). Let h = c �(A), A ∈ IK , be a 3-class generating M as G-module. 
Then we have (as Abelian group) M = 〈h〉Z

⊕
〈hω〉Z, where ω = σ(1 − σ) in Z3[G] (or 

ω = ζ (1 − ζ) in Z3[ζ] so that ω2 = −3 in Z3[ζ]). Let h1 = c �(A1), A1 ∈ IK , be a class 
generating MG. We know from (4) that we can suppose h1 = hω2a−1 = h(−3)a−1ω.

(i) Action of s and t on M (see the first schema in § 2). Let s be the complex conjuga-
tion on K and let t be an extension to K of the generator of Gal(k/k−) (t is non-unique 
modulo Gal(K/k), but t is of order 2 since Gal(K/k−) = D6; moreover, we shall see that 
the calculations do not depend on this choice).2 Thus s and t operate by conjugation on 
Gal(HK/K) since HK/Q is Galois (if τh ∈ Gal(HK/K) is the Artin symbol of h ∈ M , 
then τhϕ = ϕ · τh · ϕ−1 for any ϕ ∈ Gal(K/Q)). We have

t · σ · t−1 = σ−1 & hs = h−1 for all h ∈ M.

The key fact is the action of t on M . Since h generates M and N(C�K) = C�k, we have 
N(h) = h0, the class of order 3 of k− seen in k; of course ht

0 = h0, thus (N(h))t = N(h). 
Since t · νK/k = νK/k · t and νK/k = iK/k ◦ NK/k, we get easily that N(ht) = N(h), and 
it follows that ht−1 ∈ NM = M1−σ. So we can put

ht = h1+Ω, Ω ∈ ω ·A,

where A and ω mean Z3[G] or Z3[ζ] and σ (1 − σ) or ζ(1 − ζ) =
√
−3, respectively. We 

must have ht2 = h, whence h = (h1+Ω)t := ht·(1+Ω) (law of left modules). We have to 
compute, in general, ht·(a+bσ+cσ2), but t · (a + bσ + cσ2) = (a + bσ2 + cσ) · t, which can 
be translated into ht·(1+Ω) = h(1+Ω)·t, where Ω is the “conjugate” of Ω in an obvious 
meaning. So we finally obtain h = h(1+Ω)·t = (h1+Ω)1+Ω = h(1+Ω)(1+Ω), which implies 
(1 + Ω)(1 + Ω) ≡ 1 (mod ωn), where #M = 3n; in the local ring Z3[ζ] this defines a 
principal unit u ≡ 1 (mod 3), but we do not need its precise value.

2 One can find similar Galois operations in [L] in a dihedral context and some generalizations.
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(ii) Computation of (hωk)t = ht·ωk for any k ≥ 0, k = 2 � or 2 � + 1.
– If hωk = h(−3)� , then (h(−3)�)t = h(−3)�·(1+Ω) = hωk·(1+Ω);
– if hωk = h(−3)� ω, then (h(−3)� ω)t = h(−3)� ω (1+Ω) = h−ωk·(1+Ω) since ω = −

√
−3.

(iii) Direct computation of ht
1. We have h1 = c �(A1) such that A1−σ

1 = (x), x ∈ K×, 
with N(x) = η ∈ Ek; since we are in relative class groups, the only solution is η = ζ

(indeed, if η ∈ Ek+ , this implies A1 ∈ IGK , hence h1 = 1 (absurd)). Then the relation 
N(x) = ζ yields (N(x))t = N(xt) = ζ−1, hence N(xt) = N(x−1) whence

xt = x−1 · y1−σ, y ∈ K×,

so

(A1−σ
1 )t = A

t·(1−σ)
1 = A

−(1−σ)
1 · (y)1−σ,

but

A
t·(1−σ)
1 = A

(1−σ2)·t
1 = (At

1)1−σ2
= A

−(1−σ)
1 · (y)1−σ;

then “suppressing” 1 − σ and writing ∼ for equivalence modulo principal ideals:

(At
1)1+σ ∼ A

−1
1 · (a0)K ·Pe ∼ A

−1
1 , a0 ∈ Ik,

because the class of any a0 capitulates in K and the ramified prime ideal P | 3 in K
is invariant but principal (see Remark (i) below). The element 1 + σ is invertible with 

inverse 1
2 (1 − σ + σ2) giving At

1 ∼ A
− 1

2 (1−σ+σ2)
1 ∼ A1, i.e., ht

1 = h1, since we have 
−1

2 (1 − σ + σ2) ≡ 1 (mod (3, 1 − σ)). But the case h1 = h(−3)a−1ω would give (from the 
second case of (ii))

ht
1 = h−(−3)a−1ω·(1+Ω) = h

−(1+Ω)
1 = h−1

1

since hΩ
1 = 1 (absurd). �

Remarks 3.3. (i) Since 3 is non-split in k/Q, the prime ideal P | 3 in K is 3-principal: 
indeed, P1+s = P2 gives the extension of P+ | 3 in K+ which is 3-principal (Lemma 2.3); 
so c �K(P) = 1 in C�K . By class field theory, P splits completely in HK/K.

(ii) The parameter a can probably take any value; we have for instance obtained the 
following examples:

For d = 12058, #C�k+ = 2, C�k− � Z/3Z, α = 989 + 26
√
−d of norm 2093,

C�−K � Z/34Z 
⊕

Z/33Z. A polynomial defining K is:

P = x12 − 6 x11 + 21 x10 − 4006 x9 + 17892 x8 − 35730 x7 + 22212821 x6 − 66531354 x5 −
113482743 x4− 35777798264 x3+ 54059937672 x2 + 54106942656 x + 83308554531904.

For d = 86942, #C�k+ = 4, C�k− � Z/3Z, α = 557 + 3
√
−d of norm 1033,

C�−K � Z/35Z 
⊕

Z/34Z. A polynomial defining K is:
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P = x12 − 6 x11 + 21 x10 − 2278 x9 + 10116 x8 − 20178 x7 + 3449985 x6 − 10289502 x5 −
8954865 x4 − 2399550304 x3 + 3642928674 x2 + 3641624304 x + 1191621124996.

For d = 954163, #C�k+ = 2, C�k− � Z/3Z, α = 1
2 (691 +

√
−d) of norm 713,

C�−K � Z/36Z 
⊕

Z/35Z. A polynomial defining K is:

P = x12 − 6 x11 + 21 x10 − 1432 x9 + 6309 x8 − 12564 x7 + 1207955 x6 − 3586254 x5 −
2509908 x4 − 483644468 x3 + 739433307 x2 + 738375807 x + 127606842841.

4. Numerical results and heuristic aspects

4.1. A filtration for the computation of the invariants a and b

We briefly recall some theoretical computations showing that, in an heuristic point of 
view, there is a large degree of possibilities for the values of the p-ranks in a more general 
situation of a p-extension K/k with arbitrary C�k (the fields k and K are not assumed 
of CM-type). To simplify the approach, we consider M = C�K in a cyclic extension K/k

of degree p with Galois group G = 〈σ〉 and we suppose K/k totally ramified at a single 
place q (not necessarily above p). Then we assume that Mν = 1 & #MG = p, which 
is equivalent to #C�k = p and jK/k(C�k) = 1.

Put Mi :=
{
h ∈ M, h(1−σ)i = 1

}
, i ≥ 0, and let n be the least integer i such that 

Mi = M . We have Mi ⊂ Mi+1 for i = 0, . . . , n − 1. From the exact sequence:

1 −→ M1 = MG −−−→ Mi+1
1−σ−−−→M1−σ

i+1 ⊆ Mi −→ 1,

with #M1 = p by assumption, we obtain M1−σ
i+1 = Mi and #(Mi+1/Mi) = p, for 

i = 0, . . . , n − 1, which gives immediately #M = pn and the structure theorem
M � (Z/pa+1Z)b

⊕
(Z/paZ)p−1−b, n = a (p − 1) + b, a ≥ 0 and 0 ≤ b ≤ p − 2.

We use the general formula [Gr2, Corollaire 2.8]:

#
(
M/Mi

)G = #
(
Mi+1/Mi

)
= #C�k ·

∏
ev(K/k)

[K : k] · #NK/k(Mi) · (Λi : Λi ∩ NK/k(K×)) ,

where NK/k(Mi) := c �k(NK/k(Ii)) for a suitable ideal group Ii such that c �K(Ii) = Mi, 
and where Λi =

{
x ∈ k×, (x) ∈ NK/k(Ii)

}
.

In our particular case there is a single prime ideal q ramified in K/k, and the el-
ements of Λi, being norms of ideals, are everywhere local norms except perhaps at q; 
so (Λi : Λi ∩ NK/k(K×)) = 1 by the product formula and the Hasse norm theorem; this 
yields #

(
Mi+1/Mi

)
= p

#NK/k(Mi)
which is trivial as soon as NK/k(Mi) = C�k.

So, in this case where the p-rank of NK/k(M) = C�k � Z/p Z is rk = 1 and that of 
M = C�K is rK , we have the Riemann–Hurwitz formula rK − 1 = p · (rk − 1) if and only 
if b = n = 1, which is equivalent to M = MG. Otherwise, rK can take a priori any value 
in [1, p − 1] since it depends only on local data with computable probabilities.
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For structural results, when Mν �= 1, see [Gr3, Chapter IV, § 2, Proposition 4.3]
valid for any p ≥ 2, or [Gr4, Theorem 4.3]. With our biquadratic case and p = 3, we 
obtain interesting structures for which a theoretical study should be improved. From the 
general PARI program of § 4.2 we have obtained the following numerical examples with 
#C�k+ = 1 (hence #C�K+ = 1) but C�k− cyclic of 3-power order larger than 3:

(i) For d = 1759, C�k− � Z/27Z, α = 37 + 20
√
−d of norm 893,

C�−K � Z/27Z (i.e., C�−K = (C�−K)G).
(ii) For d = 2047, C�k− � Z/9Z, α = 332 + 11

√
−d of norm 713,

C�−K � Z/9Z 
⊕

Z/3Z 
⊕

Z/3Z.
(iii) For d = 1579, C�k− � Z/9Z, α = 1

2 (115 + 3
√
−d) of norm 193,

C�−K � Z/27Z 
⊕

Z/9Z 
⊕

Z/3Z.

In conclusion, the structure of C�−K strongly depends on the order of C�−k and not only 
of its p-rank (here the 3-rank is 1 but we have chosen orders larger than 3).

4.2. PARI program

We keep the same assumptions ((i) to (v)) of Hypothesis 2.1 about k = Q(
√
−d, ζ)

and the 3-class groups of k+ = Q(
√

3·d) and k− = Q(
√
−d) (especially C�k+ = 1, 

C�k− � Z/3Z), the non-splitting of 3 in k/Q, and the Kummer construction of the 
3-ramified cubic cyclic extension K/k decomposed over k+. We give explicit numerical 
computations of C�K , for various biquadratic fields k.

The following PARI program gives in “component (H, 5)” the class number and the 
structure of the whole class group C�K of K in the form:

class group : [#C�K , [c1, . . . , cλ]]

such that C�K � ⊕λ
i=1Z/ciZ.

For simplicity we compute an α ∈ k− = Q(
√
−d) being an integer without non-trivial 

rational divisor; so (α) is the cube of an ideal if and only if Nk−/Q(α) ∈ Q×3. Then the 
irreducible polynomial defining K is given by P = polcompositum(x2 + x + 1, Q) where 
Q = x6 − 2 u x3 + u2 + d v2 where α = u + v

√
−d (u, v integers or half-integers). If by 

accident, α ∈ k×3, PARI gives a list of three polynomials of degree 4. But the program 
uses the least odd A ∈ N such A3 is the norm of an integer α as above; so if α = β3, then 
A = Nk−/Q(β) which may be very rare (or impossible) because of the inequality A > d

4 .

{d = 1; while(d < 106, d = d + 3; if(core(d) == d, D = 3 ∗ d; if(Mod(D, 4)! = 1, D = 4 ∗ D);
h = qfbclassno(D); if(Mod(h, 3)! = 0, K = bnfinit(x2 + d); hm = bnrinit(K, 1);
hm = component(component(hm, 5), 1); if(Mod(hm, 3) == 0&Mod(hm, 9)! = 0, A = 1; Test = 0;
while(Test == 0, A = A + 2; Z = bnfisintnorm(K, A3);
if(component(matsize(Z), 2) > 1, Y = component(Z, 2); u = component(Y, 1); v = component(Y, 2);
if(gcd(u, v) <= 1, Test = 1; T = 2 ∗ u; N = u2 + d ∗ v2; Q = x6 − T ∗ x3 + N ;
P = polcompositum(x2 + x + 1, Q); R = component(P, 1);
H = bnrinit(bnfinit(R, 1), 1); F = component(H, 5); G = component(F, 1);
if(Mod(G, 3) == 0&Mod(G, 9)! = 0, print(””); print(”d = ”, d); print(”u = ”, u); print(”v = ”, v);
print(”hm = ”, hm, ”h = ”, h); print(P ); print(”classgroup : ”, F )))))))))}
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The condition “Mod (G, 3)==0 & Mod (G, 9)!=0 ” must be adapted to the relevant 
needed structure (3a+1, 3a) (i.e., write “Mod (G, 32a+1)==0 & Mod (G, 32a+2)!=0 ”); 
here we test the case a = 0. We give below an extract of the examples we have obtained 
from another program giving others u, v (but the same K) with prescribed a ≥ 0; for a 
more complete table up to 105, please use the link:
https://www.dropbox.com/s/6rlwrt34ami4383/TABLE-Riemann-Hurwitz.pdf?dl=0

4.3. Case C�K � Z/3Z (a = 0), equivalent to C�K = C�GK � Z/3Z

d = 31, u = 1/2, v = 1/2, #C	k− = 3, #C	k+ = 1
P = x12 − 6 x11 + 21 x10 − 52 x9 + 99 x8 − 144 x7 + 179 x6 − 186 x5 − 33 x4 + 268 x3 − 87 x2 − 24 x + 64
classgroup : [3, [3]]
d = 61, u = 8, v = 1, #C	k− = 6, #C	k+ = 2
P = x12−6 x11+21 x10−82 x9+234 x8−414 x7+983 x6−1788 x5−393 x4−506 x3+5394 x2+4620 x +12100
classgroup : [12, [6, 2]]

. . .

d = 913, u = 321, v = 4, #C	k− = 12, #C	k+ = 8
P = x12−6 x11+21 x10−1334 x9+5868 x8−11682 x7+661085 x6−1948290 x5+702561 x4−149227072 x3+
227288688 x2 + 224655360 x + 13690872064
classgroup : [768, [24, 4, 4, 2]]
d = 970, u = 563, v = 20, #C	k− = 12, #C	k+ = 4
P = x12 − 6 x11 + 21 x10 − 2302 x9 + 10224 x8 − 20394 x7 + 2701601 x6 − 8043702 x5 − 2977323 x4 −
1568242964 x3 + 2378397756 x2 + 2373361968 x + 495396376336
classgroup : [600, [30, 10, 2]]

4.4. Case C�K � Z/9Z 
⊕

Z/3Z (a = 1)

d = 211, u = 17/2, v = 1/2, #C	k− = 3, #C	k+ = 1
P = x12−6 x11+21 x10−84 x9+243 x8−432 x7+1037 x6−1896 x5−204 x4−966 x3+5949 x2+4905 x +11881
classgroup : [27, [9, 3]]
d = 214, u = 89, v = 6, #C	k− = 6, #C	k+ = 2
P = x12 − 6 x11 + 21 x10 − 406 x9 + 1692 x8 − 3330 x7 + 66813 x6 − 190530 x5 − 45783 x4 − 5155600 x3 +
8296296 x2 + 8156544 x + 238640704
classgroup : [54, [18, 3]]

. . .

d = 4531, u = 403/2, v = 5/2, #C	k− = 12, #C	k+ = 2
P = x12 − 6 x11 + 21 x10 − 856 x9 + 3717 x8 − 7380 x7 + 308855 x6 − 904506 x5 − 62898 x4 − 53921936 x3 +
83258895 x2 + 82428357 x + 4694853361
classgroup : [1728, [36, 12, 4]]
d = 4639, u = 361, v = 2, #C	k− = 51, #C	k+ = 1
P = x12−6 x11+21 x10−1494 x9+6588 x8−13122 x7+834341 x6−2463738 x5+888141 x4−212657184 x3+
323349156 x2 + 320016960 x + 21950200336
classgroup : [7344, [612, 12]]

4.5. Case C�K � Z/27Z 
⊕

Z/9Z (a = 2)

d = 1141, u = 449, v = 8, #C	k− = 24, #C	k+ = 4
P = x12−6 x11+21 x10−1846 x9+8172 x8−16290 x7+1374653 x6−4075170 x5+711057 x4−487867520 x3+
740542656 x2 + 735780864 x + 74927017984
classgroup : [7776, [216, 18, 2]]
d = 1174, u = 21, v = 5, #C	k− = 30, #C	k+ = 2
P = x12 − 6 x11 + 21 x10 − 134 x9 + 468 x8 − 882 x7 + 62369 x6 − 184542 x5 − 436569 x4 − 1322320 x3 +
3316650 x2 + 3570000 x + 885062500
classgroup : [2430, [270, 9]]

. . .

https://www.dropbox.com/s/6rlwrt34ami4383/TABLE-Riemann-Hurwitz.pdf?dl=0
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d = 4087, u = 357, v = 8, #C	k− = 30, #C	k+ = 2
P = x12−6 x11+21 x10−1478 x9+6516 x8−12978 x7+1302965 x6−3870042 x5−2782815 x4−543509224 x3+
830485104 x2 + 829417344 x + 150779996416
classgroup : [19440, [270, 18, 2, 2]]
d = 4567, u = 195/2, v = 1/2, #C	k− = 33, #C	k+ = 7
P = x12 − 6 x11 + 21 x10 − 440 x9 + 1845 x8 − 3636 x7 + 63557 x6 − 179844 x5 + 66765 x4 − 3988930 x3 +
6294021 x2 + 6052866 x + 109286116
classgroup : [18711, [2079, 9]]

4.6. Case C�K � Z/81Z 
⊕

Z/27Z (a = 3)

d = 12058, u = 989, v = 26, #C	k− = 42, #C	k+ = 2
P = x12 − 6 x11 + 21 x10 − 4006 x9 + 17892 x8 − 35730 x7 + 22212821 x6 − 66531354 x5 − 113482743 x4 −
35777798264 x3 + 54059937672 x2 + 54106942656 x + 83308554531904
classgroup : [30618, [1134, 27]]
d = 15607, u = 534, v = 1, #C	k− = 39, #C	k+ = 1
P = x12−6 x11+21 x10−2186 x9+9702 x8−19350 x7+1764719 x6−5236188 x5+2322777 x4−638361238 x3+
965957748 x2 + 958427808 x + 89817692416
classgroup : [28431, [1053, 27]]

. . .

d = 45517, u = 845, v = 6, #C	k− = 120#C	k+ = 4
P = x12 − 6 x11 + 21 x10 − 3430 x9 + 15300 x8 − 30546 x7 + 7597005 x6 − 22699458 x5 − 18168075 x4 −
7877764840 x3 + 11909686236 x2 + 11905200672 x + 5526956498704
classgroup : [174960, [3240, 54]]
d = 47194, u = 293, v = 2, #C	k− = 120#C	k+ = 4
P = x12−6 x11+21 x10−1222 x9+5364 x8−10674 x7+905093 x6−2683338 x5−2064183 x4−313267016 x3+
480721224 x2 + 480118080 x + 75097921600
classgroup : [699840, [3240, 54, 2, 2]]

Acknowledgments

I thank Christian Maire for telling me about difficulties with the techniques developed 
in [W], then Thong Nguyen Quang Do and Jean-François Jaulent for a similar thinking 
about it. My sincere thanks to the referee for valuable suggestions and indications of 
some inaccuracies, especially about recalls on Kida’s formulas.

References

[P] K. Belabas, et al., Pari/gp, Version 2.5.3, Laboratoire A2X, Université de Bordeaux I, http://
sagemath.org/.

[DFKS] D.S. Dummit, D. Ford, H. Kisilevsky, J.W. Sands, Computation of Iwasawa Lambda invari-
ants for imaginary quadratic fields, J. Number Theory 37 (1) (1991) 100–121, http://www.
sciencedirect.com/science/article/pii/S0022314X05800277.

[FOO] S. Fujii, Y. Ohgi, M. Ozaki, Construction of Zp-extensions with prescribed Iwasawa λ-invariants, 
J. Number Theory 118 (2) (2006) 200–207, http://www.sciencedirect.com/science/article/pii/
S0022314X05002040.

[Gr4] G. Gras, Invariant generalized ideal classes – Structure theorems for p-class groups in 
p-extensions. A survey, submitted to a Journal, 2016.

[Gr3] G. Gras, Sur les �-classes d’idéaux dans les extensions cycliques relatives de degré premier �, Ann. 
Inst. Fourier 23 (3) (1973) 1–48, http://www.numdam.org/item?id=AIF_1973__23_3_1_0.

[Gr2] G. Gras, Classes généralisées invariantes, J. Math. Soc. Japan 46 (3) (1994) 467–476, http://
projecteuclid.org/euclid.jmsj/1227104692.

[Gr1] G. Gras, Class Field Theory: from Theory to Practice, Springer Monogr. Math., Springer-Verlag, 
2003; second corrected printing 2005, http://dx.doi.org/10.1007/978-3-662-11323-3.

http://sagemath.org/
http://sagemath.org/
http://www.sciencedirect.com/science/article/pii/S0022314X05800277
http://www.sciencedirect.com/science/article/pii/S0022314X05800277
http://www.sciencedirect.com/science/article/pii/S0022314X05002040
http://www.sciencedirect.com/science/article/pii/S0022314X05002040
http://www.numdam.org/item?id=AIF_1973__23_3_1_0
http://projecteuclid.org/euclid.jmsj/1227104692
http://projecteuclid.org/euclid.jmsj/1227104692
http://dx.doi.org/10.1007/978-3-662-11323-3


226 G. Gras / Journal of Number Theory 171 (2017) 213–226
[Iw] K. Iwasawa, Riemann–Hurwitz formula and p-adic Galois representations for number fields, 
Tohoku Math. J. 33 (2) (1981) 263–288, https://www.jstage.jst.go.jp/article/tmj1949/33/2/
33_2_263/_pdf.

[JaMa] J.-F. Jaulent, C. Maire, Sur les invariants d’Iwasawa des tours cyclotomiques, Canad. Math. 
Bull. 46 (2003) 178–190, https://cms.math.ca/openaccess/cmb/v46/jaulent8160.pdf.

[JaMi] J.-F. Jaulent, A. Michel, Classes des corps surcirculaires et des corps de fonctions, Progr. Math. 
102 (1992) 141–161, http://www.math.u-bordeaux1.fr/~jjaulent/Articles/ClCpsSurc.pdf.

[Ki] Y. Kida, �-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (4) (1980) 
519–528, http://www.sciencedirect.com/science/article/pii/0022314X80900426.

[KM] J. Klüners, G. Malle, A Database for Number Fields, http://galoisdb.math.upb.de/groups?
sort=size&deg=6.

[L] F. Lemmermeyer, Class groups of dihedral extensions, Math. Nachr. 278 (6) (2005) 679–691, 
http://onlinelibrary.wiley.com/doi/10.1002/mana.200310263/abstract.

[Sch] J. Schettler, Generalizations of Iwasawa’s “Riemann–Hurwitz” formula for cyclic p-extensions 
of number fields, arXiv:1211.4140v3, 2013, http://arxiv.org/pdf/1211.4140v3.pdf. From: The 
change in lambda invariants for cyclic p-extensions of Zp-fields, PhD thesis, The University of 
Arizona, 2012, http://arizona.openrepository.com/arizona/handle/10150/217113.

[Sin] W. Sinnott, On p-adic L-functions and the Riemann–Hurwitz genus formula, Compos. Math. 
53 (1) (1984) 3–17, http://archive.numdam.org/ARCHIVE/CM/CM_1984__53_1/CM_
1984__53_1_3_0/CM_1984__53_1_3_0.pdf.

[W] K. Wingberg, A Riemann–Hurwitz formula for the p-rank of ideal class groups of CM-fields, 
J. Number Theory 56 (2) (1996) 319–328, http://www.sciencedirect.com/science/article/pii/
S0022314X96900219.

https://www.jstage.jst.go.jp/article/tmj1949/33/2/33_2_263/_pdf
https://www.jstage.jst.go.jp/article/tmj1949/33/2/33_2_263/_pdf
https://cms.math.ca/openaccess/cmb/v46/jaulent8160.pdf
http://www.math.u-bordeaux1.fr/~jjaulent/Articles/ClCpsSurc.pdf
http://www.sciencedirect.com/science/article/pii/0022314X80900426
http://galoisdb.math.upb.de/groups?sort=size&deg=6
http://galoisdb.math.upb.de/groups?sort=size&deg=6
http://onlinelibrary.wiley.com/doi/10.1002/mana.200310263/abstract
http://arxiv.org/pdf/1211.4140v3.pdf
http://arizona.openrepository.com/arizona/handle/10150/217113
http://archive.numdam.org/ARCHIVE/CM/CM_1984__53_1/CM_1984__53_1_3_0/CM_1984__53_1_3_0.pdf
http://archive.numdam.org/ARCHIVE/CM/CM_1984__53_1/CM_1984__53_1_3_0/CM_1984__53_1_3_0.pdf
http://www.sciencedirect.com/science/article/pii/S0022314X96900219
http://www.sciencedirect.com/science/article/pii/S0022314X96900219

	No general Riemann-Hurwitz formula for relative p-class groups
	1 Generalities
	2 A numerical counterexample
	2.1 Deﬁnitions and assumptions
	2.2 Recalls on Kummer and class ﬁeld theories
	2.3 Numerical data for a ﬁrst counterexample

	3 Some structural results
	3.1 Structure of Zp[G]-modules M such that Mν=1 and # MG = p
	3.2 The structure ClK- ≃Z/3aZ1.0pt ⊕Z /3aZ does not exist

	4 Numerical results and heuristic aspects
	4.1 A ﬁltration for the computation of the invariants a and b
	4.2 PARI program
	4.3 Case ClK ≃Z/3Z (a=0), equivalent to ClK = ClKG≃Z/3Z
	4.4 Case ClK ≃Z/9Z 1.0pt ⊕Z/3Z (a=1)
	4.5 Case ClK ≃Z/27Z 1.0pt ⊕Z/9Z (a=2)
	4.6 Case ClK ≃Z/81Z 1.0pt ⊕Z/27Z (a=3)

	Acknowledgments
	References


