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of Selberg zeta functions for principal congruence subgroups. 
We prove that the joint universality theorem for these zeta 
functions holds in the strip 0.85 < σ < 1. As a corollary, we 
obtain the functional independence for the zeta functions.
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1. Introduction

As usual, let s = σ + it be a complex valuable and Z, Q, R, and C be the set of 
integers, rational numbers, real numbers, and complex numbers respectively.

The investigation of the value distribution of the Riemann zeta function

ζ(s) =
∞∑

n=1

1
ns

=
∏

p:prime

(
1 − 1

ps

)−1

(σ > 1)
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was started in 1910s. Bohr and Courant [2] showed that for any fixed 1/2 < σ0 ≤ 1 the 
set

{ζ(σ0 + it) ∈ C | t ∈ R}

is dense in C. In 1972, Voronin [13] extended this denseness result to the multi-
dimensional space. He showed that for any fixed 1/2 < σ0 ≤ 1 and any positive integer 
r the set {(

ζ(σ0 + it), ζ ′(σ0 + it), . . . , ζ(r−1)(σ0 + it)
)
∈ Cr | t ∈ R

}
is dense in Cr. Further, Voronin [14] extended it to the functional space and obtained 
the remarkable universality theorem. To state it in a modern form which was established 
by Bagchi [1], we define a probability measure on R. Let μ be the Lebesgue measure on 
R. For T > 0 define

νT (· · · ) = 1
T
μ {τ ∈ [0, T ] : · · · } ,

where in place of dots we write some conditions satisfied by a real number τ .

Theorem 1 (Voronin [14]). Let K be a compact subset of the strip 1
2 < σ < 1 with 

connected complement and f(s) be a non-vanishing and continuous function on K which 
is analytic in the interior of K. Then for any small positive number ε we have

lim inf
T→∞

νT (max
s∈K

|ζ(s + iτ) − f(s)| < ε) > 0.

Roughly speaking this theorem asserts that any analytic function can be uniformly 
approximated by suitable vertical translation of ζ(s). We call such analytic property of 
a function universality.

In general, a Dirichlet series is called arithmetic zeta function if it has the Euler 
product expression over prime numbers and some analytic properties. In the proof of 
Theorem 1, the fact that the set {log p 

∣∣ p:prime} of Dirichlet exponents of log ζ(s) is 
linearly independent over Q plays an essential role. After Theorem 1, several mathe-
maticians proved universality property for many types of arithmetic zeta functions (see 
Steuding [12, Section 1.6]).

Let Γ be a discrete subgroup of PSL2(R) such that vol(H/Γ) < ∞. The Selberg zeta 
function for Γ is defined by

ZΓ(s) =
∏
{P}

∞∏
k=0

(
1 −N(P )−s−k

)
, (1.1)

where {P} runs through all primitive hyperbolic conjugacy classes of Γ and N(P ) denotes 
the norm of P (we give the definitions in §2.). This product converges absolutely in 
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σ > 1 and has a meromorphic continuation to the whole s-plane. Selberg [10] showed 
that the Selberg zeta function bears a strong resemblance to the Riemann zeta function. 
Especially ZΓ(s) satisfies the Riemann hypothesis for some groups Γ.

In 2013, Drungilas, Garunkštis, and Kačėnas [3] proved that when Γ = PSL2(Z), the 
Selberg zeta function behaves similarly to the Riemann zeta function regarding non-zero 
value-distribution. Namely, ZΓ(s) has the universality property.

Theorem 2 (Drungilas, Garunkštis, and Kačėnas [3]). Let Γ be the full modular group 
PSL2(Z). Let α be a positive constant for which the prime geodesic theorem

πΓ(x) :=
∑
{P}

N(P )≤x

1 = Li(x) + O(xα)

holds for Γ. Let K be a compact subset of the strip α+1
2 < σ < 1 with connected com-

plement and f(s) be a non-vanishing and continuous function on K which is analytic in 
the interior of K. Then for any small positive number ε, we have

lim inf
T→∞

νT (max
s∈K

|ZΓ(s + iτ) − f(s)| < ε) > 0.

At present, the best estimate of the error term of the prime geodesic theorem is 
O(x 25

36+ε) due to Soundararajan and Young [11]. Therefore the universality for ZΓ(s)
holds in the strip 61

72 < σ < 1.
The proof of Theorem 2 is similar to the proof of Theorem 1 in several points. Let D

be the set of positive discriminants. For d ∈ D, let ε(d) and h(d) be the fundamental unit 
and the class number of the quadratic field Q(

√
d) respectively (we state the definitions 

of them in §2.1.). Then ZΓ(s) for Γ = PSL2(Z) has the expression

ZΓ(s) =
∏
d∈D

∞∏
k=0

(
1 − ε(d)−2s−2k)h(d)

.

Let D∗ be a subset of D consisting of positive fundamental discriminants. The authors 
proved Theorem 2 by using the fact that the set {log ε(d) : d ∈ D∗} is linearly indepen-
dent over Q.

In [3], the authors predicted that the universal property of the Selberg zeta function 
also holds for other types of discrete subgroups of PSL2(R). One of them is the principal 
congruence subgroup. For a positive integer N , the principal congruence subgroup of level 
N is defined by

Γ(N) =
{(

a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

A subgroup Δ of SL2(Z) is called a congruence subgroup if Γ(N) ⊂ Δ for some N ≥ 1. 
Let Γ̄(N) be the image of Γ(N) in PSL2(R). Namely Γ̄(1) = PSL2(Z).
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Now we state our main result.

Theorem 3. Let α > 0. Suppose that the prime geodesic theorem

πΓ(x) =
∑
{P}

N(P )≤x

1 = Li(x) + O(xα) (1.2)

holds for all congruence subgroups Γ. Let r be a positive integer. Let N0 = 1 and 
N1, . . . , Nr be positive integers which are relatively prime each other and Nj ≥ 3. In 
the following, we put

Zj(s) = ZΓ̄(Nj)(s).

For each j = 0 . . . r, let Kj be a compact subset of the strip α+1
2 < σ < 1 with con-

nected complement and fj(s) be a non-vanishing and continuous function on Kj which 
is analytic in the interior of Kj. Then for any small positive number ε, we have

lim inf
T→∞

νT

(
max

0≤j≤r
max
s∈Kj

|Zj(s + iτ) − fj(s)| < ε

)
> 0.

This theorem asserts that for a set of Selberg zeta functions associated with principal 
congruence subgroups with distinct levels, the universal property for each zeta function 
hold simultaneously. We call this type of property for a collection of functions joint 
universality.

Luo, Rudnick, and Sarnak [7] proved that the remainder term of (1.2) is O(x 7
10 ) for 

all congruence subgroups, which is the best estimate at present. Therefore the joint 
universality for Zj(s)’s holds in the strip 17

20 < σ < 1. Similarly to the prime number 
theorem, it is expected that the error term of (1.2) is O(x 1

2+ε). Therefore we expect that 
the joint universality for Zj(s)’s will hold in 3

4 < σ < 1.
The following corollaries are typical and simple consequences of the joint universality 

theorem. They easily follow from Theorem 3 in the similar way as the proofs of the 
corollaries in Mishou [8].

Corollary 1. Let r be a non-negative integer. Suppose that integers N0, . . . , Nr satisfy 
the assumption in Theorem 3. Let σ0 be a real number with α+1

2 < σ0 < 1 and M be a 
positive integer. Then the set{(

Z0(σ0 + it), · · ·Zr(σ0 + it), · · · , Z(M−1)
0 (σ0 + it), . . . ,

Z(M−1)
r (σ0 + it)

)
∈ C(r+1)M

∣∣∣ t ∈ R
}

is dense in C(r+1)M .

Proof. See the proof of [8, Corollary 4]. �



H. Mishou / Journal of Number Theory 227 (2021) 235–264 239
Corollary 2. Let r be a non-negative integer. Suppose that integers N0, . . . , Nr satisfy 
the assumption in Theorem 3. Let M be a positive integer. If continuous functions fl :
C(r+1)M → C (0 ≤ l ≤ L) satisfy

L∑
l=0

slfl(Z0(s), · · · , Zr(s), . . . , Z(M−1)
0 (s), · · · , Z(M−1)

r (s)) ≡ 0

for all s ∈ C, then fl ≡ 0 (0 ≤ l ≤ L).

Proof. See the proof of [8, Corollary 5]. �
Corollary 3. Let r be a positive integer. Suppose that integers N0, . . . , Nr satisfy the 
assumption in Theorem 3. Let a0, . . . , ar be non-zero complex numbers. Put

Z(s) =
r∑

j=0
ajZj(s).

Then Z(s) is strongly universal in the strip α+1
2 < σ < 1. Namely, let K be a compact 

subset of the strip with connected complement and h(s) be a continuous function on K
which is analytic in the interior of K. Remark that the function h(s) is allowed to have 
zeros on K. For any ε > 0

lim inf
T→∞

νT

(
max
s∈K

|Z(s + iτ) − h(s)| < ε

)
> 0.

Proof. See the proof of [8, Corollary 3]. �
Corollary 4. Let r be a positive integer. Suppose that integers N0, . . . , Nr satisfy the 
assumption in Theorem 3. Let a0, . . . , ar be non-zero complex numbers. For real numbers 
σ1, σ2 with α+1

2 < σ1 < σ2 < 1 and T ≥ 2, denote by N(σ1, σ2, T ) the number of zeros 
of the function

Z(s) =
r∑

j=0
ajZj(s)

in the rectangle {s = σ + it 
∣∣ σ1 < σ < σ2, 0 ≤ t ≤ T}. Then we have for sufficiently 

large T

N(σ1, σ2, T ) 
 T.

Proof. See the proof of [8, Corollary 6]. �
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The construction of the paper is as follows. In Section 2, we explain the connection 
between primitive hyperbolic elements of Γ(N) and primitive indefinite quadratic forms, 
which are given in Sarnak [9]. In Section 3, we quote some results in [3], which are basic 
tools to prove universality for general Dirichlet series. In Section 4, we represent the 
logarithm of the Selberg zeta function by a sum of two Dirichlet series over the set of 
fundamental discriminants. In the last section, we prove Theorem 3.

2. Connection between indefinite quadratic forms and hyperbolic elements of principal 
congruence subgroups

In this section, we explain the connection between primitive hyperbolic elements of 
principal congruence subgroups and primitive indefinite quadratic forms. By applying 
this connection, we will obtain the infinite product expression of ZΓ̄(N)(s) over the set 
of positive discriminants and the prime geodesic theorem for congruence subgroups. We 
quote many notions and results from Sarnak [9] without proofs.

2.1. Primitive indefinite quadratic forms

Let a, b, c be integers such that (a, b, c) = 1 and the discriminant d = b2 − 4ac is 
positive. Then the quadratic form

Q(x, y) = ax2 + bxy + cy2,

is primitive and indefinite. We will use [a, b, c] to denote such a form. Let D be the set 
of positive discriminants, then

D = {d ∈ Z>0
∣∣ d ≡ 0 or 1 (mod 4), d is not square}.

Two forms Q = [a, b, c] and Q′ = [a′, b′, c′] are called equivalent in the narrow sense, if 

there exists γ =
(
p q

r s

)
∈ SL2(Z) such that

Q′(x, y) = Q(px + qy, rx + sy),

in other words,
(

a′ b′

2
b′

2 c′

)
= γt

(
a b

2
b
2 c′

)
γ.

We denote the equivalent relation by Q ∼ Q′ or [a, b, c] ∼ [a′, b′, c′]. The following 
properties are well known. For more details, see Landau [6].

(1) If [a, b, c] and [a′, b′, c′] are equivalent, then they have the same discriminant.
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(2) For any d ∈ D, the number of equivalent classes of primitive indefinite quadratic 
forms with discriminant d is finite. We call the number of classes the class number. 
We denote it h(d).

(3) The group of automorphism of Q = [a, b, c] is defined by

GQ =
{
γ ∈ SL2(Z)

∣∣∣ γt

(
a b

2
b
2 c

)
γ =

(
a b

2
b
2 c

)}
.

Then GQ is an infinite cyclic group {±Mn
Q : n ∈ Z} with a generator

MQ =

⎛
⎜⎝

t(d) − bu(d)
2 −cu(d)

au(d) t(d) + bu(d)
2

⎞
⎟⎠ , (2.1)

where (t(d), u(d)) ∈ Z2
>0 is the fundamental solution of the Pell equation t2−du2 = 4. 

We call MQ the fundamental automorphism of the form Q.

2.2. Primitive hyperbolic elements

The group PSL2(R) = SL2(R) /{±I} acts on the upper half-plane H by a linear 
fractional transformation

γz = pz + q

rz + s

(
z ∈ H, γ =

(
p q

r s

)
∈ PSL2(R)

)
.

Let Γ be a discrete subgroup of PSL2(R). An element P ∈ Γ is called hyperbolic if its 
fixed points are two different real numbers. If P is hyperbolic, the eigenvalues of P are 
α > 1 and 0 < α−1 < 1. We define the norm of P by

N(P ) = α2.

If P and P ′ are Γ-equivalent, that is, there is an element γ ∈ Γ such that P ′ = γ−1Pγ, 
then N(P ) = N(P ′). A power of a hyperbolic element is also hyperbolic. We say that a 
hyperbolic element P ∈ Γ is primitive if it is not a non-trivial power of another hyperbolic 
element of Γ.

Let MQ ∈ SL2(Z) be the fundamental automorphism of the form Q and M̄Q be the 
image of MQ in PSL2(Z). By (2.1) it is easily showed that M̄Q is a primitive hyperbolic 
element of PSL2(Z) and its eigenvalues are

ε(d) = t(d) + u(d)
√
d
> 1 (2.2)
2
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and 0 < ε(d)−1 < 1. Thus we have N(M̄Q) = ε(d)2. As usual, we call ε(d) the funda-
mental unit of discriminant d. Now we state the connection between fundamental infinite 
quadratic forms and primitive hyperbolic elements of PSL2(Z).

Proposition 1. Define the map φ by φ(Q) = M̄Q. Then

(1) φ is a one-to-one map from the set of all primitive indefinite quadratic forms onto 
the set of all primitive hyperbolic elements of PSL2(Z).

(2) φ commutes with the action of PSL2(Z), so that

Q ∼ Q′ ⇐⇒ M̄Q ∼ M̄Q′ .

(3) The norms of the conjugacy classes of primitive hyperbolic elements of PSL2(Z) are 
the numbers ε(d)2 where d ∈ D, with multiplicity h(d).

Proof. See [9, Proposition 1.4 and Corollary 1.5]. �
By the proposition, the prime geodesic theorem (1.2) for Γ = PSL2(Z) can be rewrit-

ten as

πΓ(x) =
∑
d∈D

ε(d)2≤x

h(d) = Li(x) + O(xα). (2.3)

The Selberg zeta function (1.1) is also rewritten as

ZΓ(s) =
∏
d∈D

∞∏
k=0

(
1 − ε(d)−2s−2k)h(d) (2.4)

when Γ = PSL2(Z).

2.3. Principal congruence subgroups

For a positive integer N , the principal congruence subgroup of level N is defined by

Γ(N) =
{(

a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

Let Γ̄(N) be the image of Γ(N) in PSL2(Z). The following basic property of the principal 
congruence subgroup is well-known.
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Lemma 1.

(1) For any integer N ≥ 1, the group Γ(N) is a normal subgroup of SL2(Z) and

ν∗(N) = [SL2(Z) : Γ(N)] = N3
∏
p|N

(
1 − 1

p2

)
.

(2) If N ≥ 3, then −I /∈ Γ(N). Namely, Γ̄(N) is a normal subgroup of PSL2(Z) and

ν(N) = [PSL2(Z) : Γ(N)] = 1
2ν

∗(N).

Proof. See, for instance, [5, Section 11.5]. �
Remark that when (M, N) = 1,

Γ(M) ∩ Γ(N) = Γ(MN) (2.5)

and

ν∗(M)ν∗(N) = ν∗(MN) (2.6)

hold. In contrast, concerning Γ̄(N) we have the following lemma.

Lemma 2.

(1) Let M and N be positive integers with M, N ≥ 3. If (M, N) = 1, then Γ̄(MN) is a 
subgroup of Γ̄(M) ∩ Γ̄(N) satisfying

[Γ̄(M) ∩ Γ̄(N) : Γ̄(MN)] = 2.

(2) Let N1, . . . , Nr be positive integers which are relatively prime each other and Nj ≥ 3. 
Put N =

∏r
j=1 Nj and

Γ̄′(N) =
r⋂

j=1
Γ̄(Nj).

Then Γ̄(N) is a subgroup of Γ̄′(N) satisfying

[Γ̄′(N) : Γ̄(N)] = 2r−1.

Namely, Γ̄′(N) is a normal subgroup of PSL2(Z) satisfying

[PSL2(Z) : Γ′(N)] =
r∏ ν∗(Nj)

2 = 1
2r ν

∗(N).

j=1
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Proof. First we prove that

Γ(M)Γ(N) = SL2(Z) (2.7)

when (M, N) = 1. By the second isomorphism theorem and (2.5),

Γ(M)Γ(N)/Γ(N) ∼= Γ(M)/(Γ(M) ∩ Γ(N)) = Γ(M)/Γ(MN).

Therefore, by (2.6),

[Γ(M)Γ(N) : Γ(N)] = [Γ(M) : Γ(MN)]

= ν∗(MN)
ν∗(M) = ν∗(N) = [SL2(Z) : Γ(N)],

which means (2.7).
Next, we consider the similar problem in PSL2(R). By the second isomorphism the-

orem,

Γ̄(M)/(Γ̄(M) ∩ Γ̄(N)) ∼= Γ̄(M)Γ̄(N)/Γ̄(N).

By (2.7), we have Γ̄(M)Γ̄(N) ⊃ Γ(M)Γ(N) = PSL2(Z). Therefore

[Γ̄(M) : Γ̄(M) ∩ Γ̄(N)] = [PSL2(Z) : Γ̄(N)] = 1
2ν

∗(N).

Now we have

1
2ν

∗(MN) = [PSL2(Z) : Γ̄(MN)]

= [PSL2(Z) : Γ̄(M)][Γ̄(M) : Γ̄(M) ∩ Γ̄(N)][Γ̄(M) ∩ Γ̄(N) : Γ̄(MN)]

= 1
2ν

∗(M)1
2ν

∗(N)[Γ̄(M) ∩ Γ̄(N) : Γ̄(MN)].

Therefore, by (2.6),

[Γ̄(M) ∩ Γ̄(N) : Γ̄(MN)] = 2.

This completes the proof of the first assertion of the lemma. The second assertion easily 
follows from the first assertion. �

For a positive integer N , define the sets of discriminants

D′
N := {d ∈ D

∣∣ N |u(d)} (2.8)

and
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DN := {d ∈ D′
N

∣∣ t(d) ≡ ±2 (mod N)}, (2.9)

of D. It is obvious that when (M, N) = 1,

D′
M ∩D′

N = D′
MN (2.10)

and DM ∩DN � DMN hold. Now we prove the following lemma.

Lemma 3. For a primitive hyperbolic element P ∈ PSL2(Z), denote by dP the discrimi-
nant of the primitive quadratic form which is corresponding to P by Proposition 1.

(1) If N is a positive integer with N ≥ 3,

P ∈ Γ̄(N) ⇐⇒ dP ∈ DN . (2.11)

(2) If N is a prime number with N ≥ 3, then D′
N = DN . Therefore

P ∈ Γ̄(N) ⇐⇒ dP ∈ D′
N . (2.12)

(3) Let N1, . . . Nr be positive integers which are relatively prime each other and Nj ≥ 3. 
Put N = N1 · · ·Nr and Γ̄′(N) is the subgroup of PSL2(R) given in Lemma 2. Then

P ∈ Γ̄′(N) ⇐⇒ dP ∈
r⋂

j=1
DNj

. (2.13)

In particular, if N1, . . . Nr are distinct prime numbers with Nj ≥ 3, then

P ∈ Γ̄′(N) ⇐⇒ dP ∈ D′
N . (2.14)

Proof. The second assertion has already been obtained in [9, Proposition 3.3], however, 
we give the proof of all the assertions. By Proposition 1, the primitive hyperbolic element 
P may be identified with the fundamental automorphism

MQ =

⎛
⎜⎝

t(d) − bu(d)
2 −cu(d)

au(d) t(d) + bu(d)
2

⎞
⎟⎠

of the form Q = [a, b, c] with discriminant d. M̄Q ∈ Γ̄(N) if and only if

t(d) − bu(d)
2 ≡ t(d) + bu(d)

2 ≡ ±1, −cu(d) ≡ au(d) ≡ 0 (mod N).

Since (a, b, c) = 1, we have

u(d) ≡ 0, t(d) ≡ ±2 (mod N).
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This means d ∈ DN .
Next we assume that N is a prime number with N ≥ 3. If d ∈ D′

N then u(d) ≡ 0
(mod N). Since (t(d), u(d)) satisfies the Pell equation t2 − u2d = 4, we have

t(d)2 ≡ 4 (mod N).

When N is a prime, this means t(d) ≡ ±2 (mod N), that is, d ∈ DN . We obtain the 
second assertion.

The relation (2.13) easily follows from the definition of Γ̄′(N) in Lemma 2 and the 
first assertion. Further if N1, . . . , Nr are distinct primes with Nj ≥ 3, by the second 
assertion and (2.10) we have,

r⋂
j=1

DNj
=

r⋂
j=1

D′
Nj

= D′∏
Nj

= D′
N .

Therefore (2.14) is obtained as the special case of (2.13). �
The Selberg zeta function for Γ̄(N) is defined by

ZΓ̄(N)(s) =
∏

{PN}N

∞∏
k=0

(
1 −N(PN )−s−k

)
,

where PN denotes the primitive hyperbolic element of Γ̄(N) and {PN}N denotes its 
Γ̄(N)-conjugacy class. By Lemma 1, the PSL2(Z)-conjugacy class {PN} of PN is di-
vided into Γ̄(N)-conjugacy classes {γ−1

j PNγj}N , where γ1 . . . γν(N) are representatives 
of PSL2(Z) 

/
Γ̄(N) and ν(N) is the constant in Lemma 1. By Proposition 1, Lemma 3

and the above argument, we have the following expression

ZΓ̄(N)(s) =
∏

d∈DN

∞∏
k=0

(
1 − ε(d)−2s−2k)h(d)ν(N) (σ > 1). (2.15)

Next we will obtain the prime geodesic theorem of the type (2.3) for the congruence 
subgroups. Let Γ be a discrete subgroup of PSL2(R) and M = H/Γ be its Riemann 
surface. Let CP (Γ) denote the set of oriented closed geodesics on M . For γ ∈ CP (Γ) let 
τ(γ) denote the length of γ. As we know, each closed geodesic γ ∈ CP (Γ) is associated 
with a Γ-conjugacy class {Pγ}Γ of the primitive hyperbolic element Pγ ∈ Γ and we have 
τ(γ) = logN(Pγ). Thus the function πΓ(x) is represented as follows

πΓ(x) = � {γ ∈ CP (Γ) : τ(γ) ≤ log x} . (2.16)

Now we assume that N1, . . . , Nr are positive integers which are relatively prime each 
other and Nj ≥ 3. Put N =

∏r
j=1 Nj . By Lemma 1 and Lemma 2, the subgroup
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Γ1 = Γ̄(N) or Γ̄′(N)

is a normal subgroup of Γ0 = PSL2(Z). Geometrically speaking, this means that the 
surface M1 = H /Γ1 is a finite regular cover of the surface M0 = H /Γ0 and the group of 
cover transformations G is isomorphic to Γ0 /Γ1 . As usual, we call an oriented primitive 
closed geodesic on the surface M a prime in M . Let π : M1 → M0 be the natural 
projection. We say that a prime γ̃ in M1 lies over a prime γ in M0 if π(γ̃) = γ. Now we 
quote the following result.

Lemma 4. For a prime γ ∈ CP (Γ0), let m be the order of Pγ ∈ Γ0 in the group G = Γ0/Γ1

and k = |G|
m . Then γ is decomposed into the primes γ̃1, . . . , ̃γk ∈ CP (Γ1) such that 

τ(γ̃j) = mτ(γ) for all 1 ≤ j ≤ k. Especially, Pγ ∈ Γ1 if and only if γ splits completely 
in M1, namely, τ(γ̃j) = τ(γ) for all 1 ≤ j ≤ |G|.

Proof. This is [9, Proposition 2.3]. �
By (2.16) and the above lemma,

πΓ1(x) = �

{
γ̃ ∈ CP (Γ1) : τ(γ̃) ≤ x

τ(γ̃) = τ(γ)

}

+ �

{
γ̃ ∈ CP (Γ1) : τ(γ̃) ≤ x

τ(γ̃) = mτ(γ) (m ≥ 2)

}

= |G|�
{
γ ∈ CP (Γ0) : τ(γ) ≤ x

Pγ ∈ Γ1

}
+ O(πΓ1(

√
x)).

Thus we have

∑
{P}Γ0

P∈Γ1, N(P )≤x

1 = 1
|G|πΓ1(x) + O(πΓ1(

√
x)).

For the group Γ1 = Γ̄(N) or Γ̄′(N), let DΓ1 be the associated set of discriminants by 
Lemma 3. Then by (1.2), Proposition 1 and Lemma 3, we have

∑
d∈DΓ1
ε(d)2≤x

h(d) = 1
[PSL2(Z) : Γ1]

Li(x) + O(xα).

Namely, by Lemma 1 and Lemma 2, we obtain the following prime geodesic theorem.
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Proposition 2.

(1) Let N be a positive integer with N ≥ 3. Then

∑
d∈DN

ε(d)2≤x

h(d) = μ(N)Li(x) + O(xα) (2.17)

holds, where

μ(N) = 2
ν∗(N) = 1

ν(N)

and ν∗(N) and ν(N) are the constants in Lemma 1.
(2) Let N1, . . . , Nr be positive integers which are relatively prime each other and Nj ≥ 3. 

Then

∑
d∈
⋂r

j=1 DNj

ε(d)2≤x

h(d) =

⎛
⎝ r∏

j=1
μ(Nj)

⎞
⎠Li(x) + O(xα). (2.18)

In particular, if N1, . . . , Nr are distinct primes with Nj ≥ 3,

∑
d∈D′

N

ε(d)2≤x

h(d) = μ′(N)Li(x) + O(xα) (2.19)

holds, where

μ′(N) =
r∏

j=1

2
ν∗(Nj)

= 2r

ν∗(N) .

The formulas (2.17) and (2.18) play essential roles in the proof of Theorem 3. Remark 
that when N is a prime number with N ≥ 3, (2.17) and (2.19) mean the same formula

∑
N |u(d)
ε(d)2≤x

h(d) = 2
N(N2 − 1)Li(x) + O(xα),

which was [9, Theorem 3.4].
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3. Basic tools for to prove universality

Let us consider a general Dirichlet series of the form
∑
λ∈Λ

aλ
eλs

, (3.1)

where Λ = {λ} is a monotone increasing sequence of positive real numbers tending to 
infinity and aλ ∈ C. In this section, we quote three propositions in Drungilas, Garunkštis, 
and Kačėnas [3], which are basic tools to prove the universality for the general Dirichlet 
series.

Proposition 3. Suppose that the general Dirichlet series (3.1) satisfies the following con-
ditions:

(1) (3.1) converges on some half-plane,
(2) (3.1) has an analytic continuation to a function L(s) which is meromorphic for 

σ > σ1 > 1/2,
(3) L(s) is polynomial growth in σ > σ1,
(4) L(s) satisfies a mean value estimate

lim
T→∞

1
T

T∫
0

|L(σ + it)|2dt < ∞ (σ > σ1).

Let K be a compact subset of σ1 < σ < 1 with connected complement. Then for any 
small positive real numbers ε and ε1 there exists a large positive real number Q0 such 
that if Q > Q0,

μ

⎛
⎜⎜⎝
⎧⎪⎪⎨
⎪⎪⎩τ ∈ [0, T ] : max

s∈K

∣∣∣∣∣∣∣∣
L(s + iτ) −

∑
λ∈Λ
eλ<Q

aλ
eλ(s+iτ)

∣∣∣∣∣∣∣∣
< ε

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠ > (1 − ε1)T.

Proof. This is [3, Proposition 2.2]. �
This proposition means that the Dirichlet series satisfying the mean value estimate 

can be uniformly approximated by the Dirichlet polynomial with sufficient length for 
almost all vertical translation.

Definition 1. For x > 0 put

N(x) :=
∑

|aλ|.

λ≤x
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We say that the series (3.1) satisfies the packing condition if for any c > 0 and ε > 0,

∣∣∣N (x± c

x2

)
−N(x)

∣∣∣
 e(1−ε)x. (3.2)

The following proposition is called the general denseness lemma, which follows from 
some results in functional analysis such as the theorem of Hahn-Banach.

Proposition 4. Suppose that the general Dirichlet series (3.1) satisfies the packing condi-
tion (3.2). Let K be a compact subset of 12 < σ1 < σ < σ2 < 1 with connected complement 
and f(s) be a continuous function on K which is analytic in the interior of K. Then 
for any μ > 0 there exists a positive constant ρ0 = ρ0(σ1, σ2, K, f, μ) such that for any 
ρ > ρ0 there is a sequence θλ ∈ [0, 1) for which

max
s∈K

∣∣∣∣∣∣∣∣
f(s) −

∑
λ∈Λ

μ<eλ≤ρ

aλe(θλ)
eλs

∣∣∣∣∣∣∣∣
≤ CK

∑
λ∈Λ

μ<eλ≤ρ

|aλ|2
e2λσ1

,

where e(x) = e2πix and CK is the constant depends only on σ1, σ2, K and Λ.

Proof. This is [3, Proposition 2.3]. �
As we stated in §1, in the proof of the universality theorem for a function given by a 

Dirichlet series, the linearly independence of the set of Dirichlet exponents over Q plays 
an essential role. We need this condition to apply the following proposition.

Proposition 5. Suppose that the general Dirichlet series (3.1) satisfies the following con-
ditions:

(1) the set Λ is linearly independent over Q,
(2) the series

∑
λ∈Λ

|aλ|2
e2λσ

converges for σ > α.

For numbers θλ ∈ [0, 1) (λ ∈ Λ), 0 < μ < ρ and 0 < δ < 1/2, we consider

ST = ST (δ, μ, ρ) =
{
τ ∈ [0, T ] :

∥∥∥∥−τλ

2π − θλ

∥∥∥∥ < δ (μ < eλ ≤ ρ)
}
,

where ‖x‖ = min{|x − n| : n ∈ Z}.
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(1) We have

lim
T→∞

μ(ST )
T

= (2δ)M ,

where M = �{λ ∈ Λ : μ < eλ ≤ ρ}
(2) Let K be a compact subset of α < σ < 1 and Q be a positive real number with Q > ρ. 

Denote by S′
T the set of τ ∈ ST satisfying

max
s∈K

∣∣∣∣∣∣∣∣
∑

ρ<eλ≤Q
λ∈Λ

aλ
eλ(s+iτ)

∣∣∣∣∣∣∣∣
≤ C ′

K

⎛
⎜⎜⎝∑

eλ>ρ
λ∈Λ

|aλ|2
e2λσ1

⎞
⎟⎟⎠

1
4

,

where σ1 is a real number satisfying α < σ1 < min{�s : s ∈ K} and C ′
K = C ′

K(σ1)
be a positive constant depending only on K and σ1. Then we have

lim
T→∞

μ(S′
T )

T
>

1
2(2δ)M .

Proof. This is a combination of [3, Lemma 2.9] (Generalized Kronecker’s theorem) and 
[3, Proposition 2.8]. �
4. Approximation by sum of Dirichlet series over fundamental discriminants

In this section, we express the logarithm of the Selberg zeta function by a sum of two 
Dirichlet series over the set of fundamental discriminants.

4.1. Approximation by a Dirichlet series over fundamental discriminants

Define the set of positive fundamental discriminants by

D∗ = {d ∈ Z>0 : d ≡ 1 mod 4, d is square-free}
∪ {d = 4m : m ∈ Z>0, m ≡ 2, 3 mod 4, m is square-free} .

Drungilas, Garunkštis, and Kačėnas [3] proved the following proposition.

Proposition 6. For d ∈ D, let ε(d) be the fundamental unit given by (2.2). Then the set

{log ε(d) : d ∈ D∗}

is linearly independent over Q.

Proof. This is [3, Proposition 3.1]. �
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The authors also proved that the logarithm of the Selberg zeta function for PSL2(Z)
is approximated by the Dirichlet series over the fundamental discriminants. According to 
their method, we will represent the logarithms of Zj(s) by Dirichlet series over a subset 
of D∗. Let N be a positive integer which is square-free. For a subset DN given in (2.9), 
define

D∗
N = DN ∩D∗.

Let ν(N) be the constant in Lemma 1 when N ≥ 3. When N = 1, put ν(1) = 1. For 
d ∈ D∗, put b(d) = �{n ∈ N : n|u(d)}. Define a non-decreasing sequence {yn} of positive 
real numbers by

{yn} = {ε(d)m : d ∈ D∗, m ∈ N} .

Proposition 7. For each j = 0 . . . r there exist a sequence {a(j)
n } of complex numbers such 

that for σ > 1,

logZj(s) = −ν(Nj)
∑

d∈D∗
Nj

h(d)b(d)
ε2s
d

+
∞∑

n=1

a
(j)
n

ysn
, (4.1)

where the second series converges absolutely for σ > 1/2.

Proof. By (2.15),

Zj(s) =
∏

d∈DNj

(
1 − ε(d)−2s)h(d)ν(Nj)

Zj(s + 1)

=: Rj(s)Zj(s + 1),

where the function Rj(s) is called the Ruelle zeta function. By taking logarithm of both 
sides, we have

logZj(s) = logRj(s) + logZj(s + 1), (4.2)

where the second term is absolutely convergent for σ > 1/2. By the Tailor expansion of 
log(1 − x),

logRj(s) =
∑

d∈DNj

ν(Nj)h(d) log
(
1 − ε(d)−2s) (4.3)

= −ν(Nj)
∑

d∈DN

∞∑
k=1

h(d)
kε(d)2ks
j
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= −ν(Nj)

⎧⎨
⎩
∑

d∈DNj

h(d)
ε(d)2s +

∑
d∈DNj

∞∑
k=2

h(d)
kε(d)2ks

⎫⎬
⎭ ,

where the second double series converges absolutely for σ > 1/2.
Now we rewrite the first sum

∑
d∈DNj

h(d)
ε(d)2s

to the sum over the set D∗
Nj

. By definitions of DNj
and D∗

Nj
,

DNj
\D∗

Nj
= {d′ = dn2 : d ∈ D∗

Nj
, n > 1}.

Put E∗ = {ε(d) : e ∈ D∗}. Assume that the discriminant d′ = dn2 ∈ DNj
\D∗

Nj
satisfies 

ε(d′) ∈ E∗. Then there is some d1 ∈ D∗ satisfying ε(d′) = ε(d1). This means that

t(dn2) + u(dn2)
√
dn2

2 = t(d1) + u(d1)
√
d1

2

and that

d = d1 and n|u(d).

Therefore, if we put b(d) = �{n ∈ N : n|u(d)}, we have

∑
d∈DNj

h(d)
ε(d)2s =

∑
d∈D∗

Nj

h(d)
ε(d)2s +

∑
d∈DNj

\D∗
Nj

h(d)
ε(d)2s (4.4)

=
∑

d∈D∗
Nj

h(d)b(d)
ε(d)2s +

∑
d∈D∗

Nj

∑
n≥2

ε(dn2)/∈E∗

h(d)
ε(d)2s .

By the property of fundamental units (see, for instance, Davenport [4, Chapter 6]), we 
have

{ε(dn2) : d ∈ D∗
Nj

, n ≥ 2, ε(dn2) /∈ E∗} ⊂ {ε(d)m : d ∈ D∗
Nj

, m ≥ 2}.

If ε(dn2) = ε(d)m holds, then

t(dn2) + u(dn2)
√
dn2

2 =
(
t(d) + u(d)

√
d

2

)m

= tm(d) + um(d)
√
d

2

for some integers tm(d), um(d). This means that for fixed d and m
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�{n ∈ N : ε(dn2) = ε(d)m} ≤
∑

n|tm(d)

1 �ε ε(d)mε.

By this and the trivial estimate h(d) < d, the second series in (4.4) is estimated by

�ε

∑
d∈D∗

∑
m≥2

h(d)
ε(d)(2σ−ε)m �

∑
d∈D∗

1
ε(d)4σ−1−ε

.

Therefore the second series in (4.4) is absolutely convergent for σ > 1/2. Combining 
(4.2) with (4.3) and (4.4), we obtain (4.1). �

In the following, we put

Lj(s) =
∑

d∈D∗
Nj

h(d)b(d)
ε(d)2s (4.5)

for each j = 0, . . . , r.

4.2. Outline of the proof of the universality for individual zeta functions

In [3], the authors proved that the series

L0(s) =
∑
d∈D∗

h(d)b(d)
ε(d)2s

for PSL2(Z) has the following analytic property.

Proposition 8. Let the function r(s) be an analytic continuation to σ > 1/2, t > 0, of 
the Dirichlet series

∑
d∈D∗

h(d)b(d)
ε(d)2s .

Then r(s) is of polynomial growth for σ > α, where α is the same constant in the prime 
geodesic theorem (2.3), and

lim
T→∞

1
T

T∫
1

|r(σ + it)|2dt =
∑
d∈D∗

h(d)2b(d)2

ε(d)4σ

for σ > α+1
2 .

Proof. This is [3, Proposition 3.4]. �
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This proposition follows from the prime geodesic theorem (2.3) for PSL2(Z) and the 
next lemma.

Lemma 5. Define a non-decreasing sequence {xn} of positive real numbers by

{ε(d)2 : d ∈ D∗} ∪N = {x1 < x2 < x3 · · · }.

Then the inequality

xn+1 − xn ≥ 1
xn + 1

holds for each n > 3.

Proof. This is [3, Lemma 3.7]. �
By the prime geodesic theorem (2.3) for Γ = PSL2(Z), we have

∣∣∣πΓ

(
exp
(
x + c

x2

))
− πΓ(ex)

∣∣∣
 ex

x3

for any positive constant c. This means that the packing condition (3.2) holds for the 
series L0(s). Therefore, by Proposition 7 and Proposition 8, the series L0(s) satisfies all 
the assumptions of Propositions 3-5 in the strip α+1

2 < σ < 1. Theorem 2 follows from 
these propositions and Proposition 6.

Now we have the prime geodesic theorem (2.17) for principal congruence subgroups, so 
the packing condition (3.2) and Proposition 8 also hold even if we replace D∗ by a subset 
D∗

N . From this and Proposition 7, as Drungilas, Garunkštis, and Kačėnas [3] predicted, 
the ordinary universality theorem for each Zj(s) holds in the strip α+1

2 < σ < 1.

4.3. Definition of L(1)
j (s) and L(2)

j (s)

To prove Theorem 3, we divide the series

Lj(s) =
∑

d∈D∗
Nj

h(d)b(d)
ε(d)2s

into two sub series.

Definition 2. For each j = 0 . . . r, we define subsets D(1)
j and D(2)

j of D∗
Nj

as follows.

(1) For j = 0,

D
(2)
0 =

r⋃
D∗

Ni
, D

(1)
0 = D∗ \D(2)

0 .

i=1
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(2) For j = 1 . . . r,

D
(2)
j =

r⋃
i=1
i	=j

(
D∗

Nj
∩D∗

Ni

)
, D

(1)
j = D∗

Nj
\D(2)

j .

For instance, when r = 1 we have

D
(1)
0 = D∗ \D∗

N1
, D

(2)
0 = D

(1)
1 = D∗

N1
, D

(2)
1 = ∅.

When r = 2 we have

D
(1)
0 = D∗ \

(
D∗

N1
∪D∗

N2

)
, D

(2)
0 = D∗

N1
∪D∗

N2
,

D
(1)
1 = D∗

N1
\ (D∗

N1
∩D∗

N2
), D

(2)
1 = D∗

N1
∩D∗

N2
,

D
(1)
2 = D∗

N2
\ (D∗

N1
∩D∗

N2
), D

(2)
2 = D∗

N1
∩D∗

N2
.

It is clear that D(1)
j ∪D

(2)
j = D∗

Nj
for each j = 0, . . . , r and that all D(1)

j (j = 0, . . . , r)
and 

⋃r
j=0 D

(2)
j are disjoint. Now we prove that each D(1)

j has a positive density.

Proposition 9. For x > 0,
∑

d∈D
(1)
j

ε(d)2≤x

h(d)b(d) = CjLi(x) + O(xα), (4.6)

where

Cj =

⎧⎨
⎩
∏r

i=1(1 − μ(Ni)) (j = 0),

μ(Nj)
∏r

i=1
i	=j

(1 − μ(Ni)) (j = 1 . . . r),

and μ(N) is the constant in Proposition 2.

Proof. First recall the prime geodesic theorem (2.3) for PSL2(Z)
∑
d∈D

ε(d)2≤x

h(d) = Li(x) + O(xα).

By the argument in §4.1, the left-hand side is rewritten as follows.
∑
d∈D∗

ε(d)2≤x

h(d)b(d) +
∑
d∈D∗

∑
n≥2

ε(dn2)≤x
2

h(d).
ε(dn )/∈E
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The second term is estimated by

�
∑
d∈D∗

∑
m=2

ε(d)2m≤x

h(d)ε(d)mε � xε
∑
d∈D

ε(d)≤√
x

h(d) � xα.

Therefore we have for j = 0,

∑
d∈D∗

ε(d)2≤x

h(d)b(d) = Li(x) + O(xα). (4.7)

By the first assertion of Proposition 2, we also have for j = 1 . . . r,

∑
d∈D∗

Nj

ε(d)2≤x

h(d)b(d) = μ(Nj)Li(x) + O(xα). (4.8)

Further, by the second assertion of Proposition 2,

∑
d∈D∗

I

ε(d)2≤x

h(d)b(d) =
(∏

i∈I

μ(Ni)
)

Li(x) + O(xα), (4.9)

where D∗
I =

⋂
i∈I D

∗
Ni

for a subset I ⊂ {1, 2, . . . , r}. Now we prove the proposition. First 
we consider the case j = 0. By the definition of D(1)

0 , (4.7) and (4.9),

∑
d∈D

(1)
0

ε(d)2≤x

h(d)b(d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
d∈D∗

ε(d)2≤x

+
∑

I⊂{1,...,r}
(−1)|I|

∑
d∈D∗

I

ε(d)2≤x

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

h(d)b(d)

= C0Li(x) + O(xα),

where

C0 = 1 +
∑

I⊂{1,...,r}
(−1)|I|

∏
i∈I

μ(Ni)

=
r∏

i=1
(1 − μ(Ni)).

Next we consider the case j = 1, . . . , r. By the definition of D(1)
j , (4.8) and (4.9),
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∑
d∈D

(1)
j

ε(d)2≤x

h(d)b(d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑

d∈D∗
Nj

ε(d)2≤x

+
∑

I⊂{1,...,r}
j /∈I

(−1)|I|
∑

d∈D∗
Nj

∩D∗
I

ε(d)2≤x

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

h(d)b(d)

= CjLi(x) + O(xα),

where

Cj = μ(Nj) +
∑

I⊂{1,...,r}
j /∈I

(−1)|I|μ(Nj)
∏
i∈I

μ(Ni)

= μ(Nj)
r∏

i=1
i	=j

(1 − μ(Ni)). �

By (4.7)–(4.8) we also have the prime geodesic theorems for D(2)
j

∑
d∈D

(2)
j

ε(d)2≤x

h(d)b(d) = C
(2)
j Li(x) + O(xα), (4.10)

where C(2)
j ≥ 0 for each j = 0, . . . , r. We divide Lj(s) into two sub series

Lj(s) =
∑

d∈D
(1)
j

h(d)b(d)
ε(d)2s +

∑
d∈D

(2)
j

h(d)b(d)
ε(d)2s

=: L(1)
j (s) + L

(2)
j (s).

Now we have the prime geodesic theorems (4.6) and (4.10), which are corresponding to 
each series L(1)

j (s) and L(2)
j (s). By the same argument in the previous section, for each 

j = 0, . . . , r, the following statements hold:

(1) Lj(s) satisfies the assumption of Proposition 3.
(2) L

(1)
j (s) satisfies the assumption of Proposition 4,

(3) L
(1)
j (s) and L(2)

j (s) satisfy the assumption of Proposition 5.

5. Proof of Theorem 3

To simplify the proof of Theorem 3, let us define some symbols. For a Dirichlet series 
L(s) =

∑
λ∈Λ

aλ
λs and positive numbers X < Y , we put
e
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LX(s) =
∑
λ∈Λ
eλ≤X

aλ
eλs

, LX<Y (s) =
∑
λ∈Λ

X<eλ≤Y

aλ
eλs

.

Assume that compact subsets Kj and functions fj(s) satisfy the assumption in The-
orem 3. Let σ1 be a real number with α+1

2 < σ1 < min{�s : s ∈ ∪r
j=0Kj} and σ2 be 

a real number with max{�s : s ∈ ∪r
j=0Kj} < σ2 < 1. We will show that for any small 

positive number ε and any sufficiently large number T there exists a subset CT of the 
interval [0, T ] with positive density such that for any τ ∈ CT

Ij := max
s∈Kj

|logZj(s + iτ) − log fj(s)| < ε (5.1)

holds for each j = 0, . . . , r. By Proposition 7,

logZj(s) = −ν(Nj)Lj(s) +
∞∑

n=1

a
(j)
n

ysn
(5.2)

holds for σ > 1, where Lj(s) is given by (4.5), yn is a non-decreasing sequence given by

{yn} = {ε(d)m : d ∈ D∗, m ∈ N}

and the second series converges absolutely for σ > 1/2. Fix a sufficiently large positive 
number ρ3 such that

max
s∈Kj

∣∣∣∣∣
∑

yn>ρ3

a
(j)
n

ysn

∣∣∣∣∣ < ε

2 (5.3)

holds for each j = 0, . . . , r. Put

L
(3)
j,ρ3

(s) = − 1
ν(Nj)

∑
yn≤ρ3

a
(j)
n

ysn

and

gj(s) := − 1
ν(Nj)

log fj(s).

Then, by (5.1)–(5.3),

Ij ≤ ν(Nj)I ′j + ε

2 (5.4)

holds for all τ ∈ R, where we put

I ′j = max
∣∣∣Lj(s + iτ) + L

(3)
j,ρ3

(s + iτ) − gj(s)
∣∣∣ . (5.5)
s∈Kj
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Let us divide I ′j into seven parts. Recall that all Lj(s) satisfy the assumption in Propo-
sition 3. We may say that Lj(s) can be replaced by the Dirichlet polynomial Lj,X(s) if 
X > 0 is a sufficiently large number. Fix a sufficiently large positive number ρ2 satisfying 
ρ2 > ρ3 and

C ′
Kj

⎛
⎜⎜⎜⎜⎝

∑
d∈D

(2)
j

ε(d)2>ρ2

|h(d)b(d)|2
ε(d)4σ1

⎞
⎟⎟⎟⎟⎠

1
4

<
ε

14ν(Nj)
(5.6)

for each j = 0, . . . , r, where C ′
K = C ′

K(σ1) is a positive constant in Proposition 5. Assume 
that X > ρ2. By (5.5) and the Cauchy-Schwarz inequality, we have

I ′j ≤ I ′′j +
7∑

k=4

I
(k)
j , (5.7)

where

I ′′j = max
s∈Kj

|L(1)
j,X(s + iτ) + L

(2)
j,ρ2

(s) + L
(3)
j,ρ3

(s) − gj(s)|, (5.8)

I
(4)
j = max

s∈Kj

|L(2)
j,ρ2

(s + iτ) − L
(2)
j,ρ2

(s)|,

I
(5)
j = max

s∈Kj

|L(2)
j,ρ2<X(s + iτ)|,

I
(6)
j = max

s∈Kj

|Lj(s + iτ) − Lj,X(s + iτ)|,

and

I
(7)
j = max

s∈Kj

|L(3)
j,ρ3

(s + iτ) − L
(3)
j,ρ3

(s)|.

Next we apply Proposition 4 for each series L(1)
j (s). Fix a sufficiently large number μ1 > 0

satisfying μ1 > ρ3 and

CKj

∑
d∈D

(1)
j

ε(d)2>μ1

|h(d)b(d)|2
ε(d)4σ1

<
ε

14ν(Nj)

for each j = 0, . . . , r, where CK is the positive constant in Proposition 4. By this and 
Proposition 4, there exists a positive constant ρ0 > μ1 such that if ρ1 > ρ0 there exist 
numbers

θ
(j)
d ∈ [0, 1) (d ∈ D

(1)
j , μ1 < ε(d)2 ≤ ρ1)
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such that

max
s∈Kj

∣∣∣∣∣∣∣∣∣∣
∑

d∈D
(1)
j

μ1<ε(d)2≤ρ1

h(d)b(d)e(θ(j)
d )

ε(d)2s + L
(1)
j,μ1

(s) + L
(2)
j,ρ2

(s) + L
(3)
j,ρ3

(s) − gj(s)

∣∣∣∣∣∣∣∣∣∣
<

ε

28ν(Nj)

(5.9)
holds for each j = 0, . . . , r. Here we may assume that ρ1 also satisfies

C ′
Kj

⎛
⎜⎜⎜⎜⎝

∑
d∈D

(1)
j

ε(d)2>ρ1

|h(d)b(d)|2
ε(d)4σ1

⎞
⎟⎟⎟⎟⎠

1
4

<
ε

14ν(Nj)
(5.10)

for each j = 0, . . . , r. Let X > max{ρ1, ρ2}. By (5.8) and the Cauchy-Schwarz inequality,

I ′′j ≤
3∑

k=1

I
(k)
j , (5.11)

where

I
(1)
j = max

s∈Kj

|L(1)
j,μ1<ρ1

(s + iτ) + L
(1)
j,μ1

(s) + L
(2)
j,ρ2

(s) − L
(3)
j,ρ3

(s)|, (5.12)

I
(2)
j = max

s∈Kj

|L(1)
j,μ1

(s + iτ) − Lj,μ1(s)|,

and

I
(3)
j = max

s∈Kj

|L(1)
j,ρ1<X(s + iτ)|.

Combining (5.7) with (5.11), we have

I ′j ≤
7∑

k=1

I
(k)
j . (5.13)

Now we define a subset of the interval [0, T ]. Put

Dρ1,ρ2 :=
2⋃

k=1

⎧⎨
⎩d ∈

r⋃
j=0

D
(k)
j : ε(d)2 ≤ ρk

⎫⎬
⎭ .

Since all sets D(1)
j (j = 0, . . . , r) and 

⋃r
j=0 D

(2)
j are disjoint and the relation ρ3 < ρ2, ρ3 <

μ1 < ρ1, we can define the numbers θd (d ∈ Dρ1,ρ2) as follows
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θd =

⎧⎪⎨
⎪⎩

θ
(j)
d (μ1 < ε(d)2 ≤ ρ1 and d ∈ D

(1)
j for j = 0, . . . , r),

0 (ε(d)2 ≤ μ1 and d ∈
⋃r

j=0 D
(1)
j ),

0 (ε(d)2 ≤ ρ2 and d ∈
⋃r

j=0 D
(2)
j ).

For a real number δ with 0 < δ < 1/2, define

ST (δ) =
{
τ ∈ [0, T ] :

∥∥∥∥−τ log ε(d)
π

− θd

∥∥∥∥ < δ for all d ∈ Dρ1,ρ2

}
.

By the continuity of the Dirichlet polynomials, if we fix a sufficiently small δ > 0, we 
have for τ ∈ ST (δ)

max
s∈Kj

∣∣∣∣∣∣∣∣∣∣
∑

d∈D
(1)
j

μ1<ε(d)2≤ρ1

h(d)b(d)(ε(d)−2iτ − e(θd))
ε(d)2s

∣∣∣∣∣∣∣∣∣∣
<

ε

28ν(Nj)
. (5.14)

By the definition of θd, (5.9) and (5.12), we have

I
(1)
j <

ε

14ν(Nj)
(5.15)

for τ ∈ ST (δ). Similarly we have

I
(2)
j , I

(4)
j , I

(7)
j <

ε

14ν(Nj)
(5.16)

for any τ ∈ ST (δ). By Proposition 5-(1), the set ST (δ) have the positive density,

lim
T→∞

μ(ST (δ))
T

= (2δ)�Dρ1,ρ2 =: Mρ1,ρ2 , (5.17)

where the number �Dρ1,ρ2 is computable according to the argument in [9, Chapter 4]. 
By Proposition 5-(2), (5.6) and (5.10), there exists a subset AT of ST (δ) such that

lim
T→∞

μ(AT )
T

>
1
2Mρ1,ρ2 (5.18)

and that we have for any τ ∈ AT ,

max
s∈Kj

∣∣∣∣∣∣∣∣∣∣
∑

d∈D
(k)
j

ρk<ε(d)2≤X

h(d)b(d)
ε(d)2(s+iτ)

∣∣∣∣∣∣∣∣∣∣
<

ε

14ν(Nj)
(k = 1, 2),

that is
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I
(3)
j , I

(5)
j <

ε

14ν(Nj)
. (5.19)

Now we apply Proposition 3 for the series Lj(s), ε = ε
14ν(Nj) , and ε1 = 1

4Mρ1,ρ2 . Then 
there is a positive constant X0 such that if X > X0 the set BT of real numbers τ ∈ [0, T ]
for which

max
s∈Kj

∣∣∣∣∣∣∣∣
Lj(s + iτ) −

∑
d∈Dj

ρε(d)2≤X

h(d)b(d)
ε(d)2(s+iτ)

∣∣∣∣∣∣∣∣
<

ε

14ν(Nj)
,

that is

I
(6)
j <

ε

14ν(Nj)
(5.20)

has a positive density

lim
T→∞

μ(BT )
T

> 1 − 1
4Mρ1,ρ2 . (5.21)

Now we fix a positive real number X satisfying X > max{ρ1, ρ2, X0}. Put

CT = AT ∩BT .

By (5.18) and (5.21), we have

lim
T→∞

μ(CT )
T

>
1
4Mρ1,ρ2 > 0.

For any τ ∈ CT , the inequalities (5.15), (5.16), (5.19) and (5.20) hold. By (5.4) and 
(5.13) we have

Ij = max
s∈Kj

|logZj(s + iτ) − log fj(s)| < ε,

for any τ ∈ CT . This completes the proof of Theorem 3. �
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