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In this paper, we give a formula which describes the change of the *-invariant of
the p-adic L-function of a modular elliptic curve in a p-extension of Abelian fields.
This formula is an analogue of Kida's formula. � 2000 Academic Press
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1. INTRODUCTION

Let p be a prime number and K a CM-field. Let K� �K be the cyclotomic
Zp -extension and denote by Kn its nth layer. Let h&

n be the relative class
number of Kn . Then there exist integers *&

K �0, +&
K �0 and &&

K such that

ordp(h&
n )=*&

K n++&
K pn+&&

K

for all sufficiently large n (Iwasawa, cf. [14, Chapter 13]).
In [4], Kida gave a formula which describes the growth of *& in a

p-extension of CM-fields under the assumption +&=0. (Kuz'min also gave
an equivalent formula independently, cf. [5, Appendix 2].) In a special
case, it is as follows: Let p be an odd prime number and L�K a p-extension
of CM-fields. Assume that K contains primitive pth roots of unity and
+K

&=0. Then we have +&
L =0 and the formula

2*&
L &2=[L� : K�](2*&

K &2)+:
w

(eL��K�(w)&1),

where w runs over the primes of L� which do not lie above p and split
over the maximal real subfield of L� . For each w, we denote by eL��K�(w)
the ramification index of w in L� �K� . In [11], Sinnott gave another proof
of this formula using p-adic L-functions.
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In this paper, we study an analogue of this formula for the *-invariants
of the p-adic L-functions of modular elliptic curves. For a modular elliptic
curve E�Q, the p-adic L-function of E over an Abelian field K is con-
structed by Mazur and Swinnerton-Dyer [6] for the good ordinary case
(the multiplicative case is due to [7]). As usual we will attach the
*-invariant *E (K) and the +-invariant +E(K) to it (see Section 2). Then our
main result, Theorem 3.1, is as follows: Let L�K be a p-extension of Abelian
fields. Assume that +E (K)=0. Then, under the assumptions (Int) and
(Add) given in Section 2, we have +E (L)=0 and

*E(L)=[L� : K�] *E (K)

+ :
w # P1

(eL��K�(w)&1)+2 :
w # P2

(eL��K�(w)&1),

where P1 and P2 are certain (finite) sets of primes of L� defined in
Theorem 3.1. We prove this formula by following the method of [11].

As in the case of number fields, it is conjectured that the p-adic L-func-
tion of E is related to the structure of the Selmer group of E (analogue of
the Iwasawa main conjecture, cf. [6, Conjecture 3]). In particular, the
invariants of the p-adic L-function should be equal to the invariants of ``the
characteristic polynomial'' associated to the Selmer group of E�K� . There-
fore there should be a similar formula for the Selmer groups. In [3],
Y. Hachimori and the author gave such a formula. The result given there
and the result in this paper are of the same form as expected by the main
conjecture.

We note that some numerical examples of our result will be found in
[2].

Notation. Let Q� be the algebraic closure of Q in C and Cp the comple-
tion of an algebraic closure of Qp . We fix an embedding of Q� in Cp . Then
we may regard the values of any Dirichlet character / as lying in Cp . We
write Zp[/] for the ring generated by all values of / over Zp .

We denote by *M the number of elements of a finite set M. For any
Abelian group A and any integer n�1, we denote by An the kernel of the
multiplication by n. For any finite Abelian group G, we denote by G� its
character group.

2. P-ADIC L-FUNCTIONS

Let p be an odd prime number. Let Q� �Q be the cyclotomic Zp-exten-
sion with 1=Gal(Q� �Q). Let #0 be a topological generator of 1. For any
finite extension F�Q, put F�=FQ� .
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Let E�Q be a modular elliptic curve which has good ordinary reduction
or multiplicative reduction at p. Let NE be the conductor of E, and define
a Dirichlet character = by

=(a)={1
0

if (a, NE)=1,
if (a, NE){1.

Let

f (z)= :
�

n=1

an qn (q=e2?iz)

be the normalized newform of weight 2 and of level NE associated to E. By
the assumption on the reduction type of E at p, we have ap �0 (mod p).
Hence the polynomial X2&apX+=( p) p has a unique root which lies in
Z_

p and we denote it by : # Z_
p .

The p-adic L-function of E is obtained by the p-adic Mellin transform of
a p-adic measure constructed using modular symbols. We recall the con-
struction of such p-adic measures and p-adic L-functions following [7,
Chapter I]. Let P1(Q)=Q _ [i�] and define 8: P1(Q) � C by

8(r)=|
r

i�
f (q)

dq
q

.

Since f is an eigenform of Hecke operators, 8 satisfies the formula

al 8(r)= :
l&1

u=0

8 \r+u
l ++=(l ) 8(lr) (1)

for any prime l and any r # Q (cf. [7, Chapter I, Proposition 4.2]). For any
integer m prime to p, we put

Zp, m :=�
n

(Z�pnmZ)=(Z�mZ)_Zp ,

Z_
p, m :=�

n
(Z�pnmZ)_=(Z�pmZ)__(1+ pZp).

Then we define a measure &*E, m on Z_
p, m by

&*E, m(a+ pnmZp, m)=:&n&1 \:8 \ a
pnm+&=( p) 8 \ a

pn&1m++
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for n�1, a # (Z�pnmZ)_. This measure takes values in L(E)�Qp , where
L(E) is the period lattice of E with respect to a Ne� ron differential |E on
E�Q

L(E) :=Image(H1(EC , Z) ww�
� |E

C)

(cf. [12, Sections 2, 4]). It is conjectured that &*E, m satisfies the following
integrality ([12, Conjecture IV]):

(Int) &*E, m takes values in L(E)�Zp .

For the rest of this paper, we assume (Int). Stevens proved that &*E, m

takes values in L(E)� (c&1
E Zp) for some non-zero integer cE which

depends only on E ([12, Theorem 4.6], see also [13]). In particular, (Int)
holds for almost all primes at which E has good ordinary reduction.

Let L(E)\ denote the submodules of L(E) on which the complex con-
jugation acts as multiplication by \1. Since p is odd, we can decompose
L(E)�Zp as

L(E)�Zp $(L(E)+�Zp)� (L(E)&�Zp).

Let &\
E, m be the decomposition of &*E, m associated to them. By fixing

isomorphisms L(E)\$Z, we may regard &\
E, m as measures which take

values in Zp . Thus we have a Zp -valued measure &E, m :=&+
E, m+&&

E, m .
Let ( ): Z_

p, m � 1+ pZp be the natural projection and }: 1 � 1+ pZp

the cyclotomic character. Define t: Z_
p, m � Zp by (x)=}(#0)t(x) for

x # Z_
p, m .

Let / be a character of Z_
p, m of finite order. We may regard / as a

Dirichlet character of conductor pnm$ for some n�0 and m$ | m. Then we
call this m$ the p$-conductor of /. For such a /, we define

Gp, m(E, /, T ) :=|
Z_

p, m

/(x)(1+T )t(x) d&E, m .

Since &\
E, m(&U)=\&\

E, m(U) for any open compact set U/Z_
p, m , we have

Gp, m(E, /, T )=|
Z

_
p, m

/(x)(1+T )t(x) d&sgn(/)
E, m , (2)

where sgn(/) is the sign of /(&1) (cf. [6, p. 51]). If / has p$-conductor m,
we simply denote Gp, m(E, /, T ) by Gp(E, /, T ). It is known that Gp(E, /, T )
is non-zero for any / as an immediate consequence of [8, Theorem 1].

The p-adic L-function of E associated to / is defined as

Lp(E, /, s)=Gp(E, /, }(#0)s&1&1)
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(see [7, p. 19], [12, p. 93]). In this paper, we treat only Gp(E, /, T ) and
we call this also the p-adic L-function of E (associated to /).

Next, we will define the p-adic L-function of E over an Abelian field K
as in [6, p. 52]. Let Sadd be the set of prime numbers at which E has
additive reduction. We assume the following condition on K:

(Add) E has also additive reduction at any prime of K lying above Sadd .

If E�Q is semistable, any number field satisfies (Add) trivially. Moreover,
if p�5 and K satisfies (Add), any pro-p-extension of K also satisfies (Add).
Indeed, if there exists a p-extension L of K which does not satisfy (Add),
then p must divide *Aut(E(Q� ) l)=(l2&1)(l2&l ) for almost all primes
l�3 (cf. [9, p. 498]).

Under (Add), we define the p-adic L-function Gp(E�K, T ) by the formula

Gp(E�K, (1+T ) pn
&1)= `

@/ # Gal(K�Q)

Gp(E, /, T ),

where n is the integer such that K & Q�=Bn , where Bn is the nth layer of
Q� �Q. Such a power series exists uniquely (cf. [14, Lemma 13.39]), and
it is contained in Zp[[T]] under (Int).

Let O be the integer ring of a finite extension of Qp . It is known that any
non-zero power series F(T ) # O[[T]] is uniquely decomposed as

F(T )=?+P(T ) U(T ),

where U(T ) # O[[T]]_, P(T ) # O[T] is a distinguished polynomial and ?
is a fixed prime element of O ( p-adic Weierstrass preparation theorem, cf.
[14, Theorem 7.3]). As usual, we put *(F ) :=deg (P(T )) and +(F ) :=
+ ordp(?) in this notation. We denote

*E (K) :=*(Gp(E�K, T )), +E (K) :=+(Gp(E�K, T )).

Similarly denote

*E, m(/) :=*(Gp, m(E, /, T )), +E, m(/) :=+(Gp, m(E, /, T ))

for Gp, m(E, /, T ). If / has p$-conductor m, we denote them simply by
*E (/), +E (/).

We now remark how the p-adic L-function changes by isogenies. Let
E$�Q be an elliptic curve and .: E � E$ an isogeny over Q.

Proposition 2.1. Let K be an Abelian field which satisfies (Add). Then
there exists a non-zero c # Q such that Gp(E$�K, T )=cGp(E�K, T ). In par-
ticular, we have *E$(K)=*E (K).
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Remark. The +-invariant may change by isogeny. An explicit formula of
the change is given in [12] (Proposition 4.12).

Proof. Since . is extended to the morphism between the Ne� ron models
of E and E$, there exists a non-zero integer a such that .*|E$=a|E . By
the definition of L(E), we have aL(E)\/L(E$)\. In particular,
L(E)\�Q$L(E$)\�Q. On the other hand, the modular symbol 8
does not change by . since 8 is defined by f (z) which depends only on the
isogeny class. Therefore &\

E$, m is equal to &\
E, m up to multiplication by a

rational constant. By (2), we have the assertion of this proposition. K

At the end of this section, we give a lemma needed for the proof of our
main theorem. This is already given in [6] (Section 8, Lemma 2) although
the proof is omitted. Since there seems to be a slight error in the statement,
we will correct it and give a proof here. Let l be a prime such that l |% pm
and let ,: Z_

p, ml � Z_
p, m be the natural projection.

Lemma 2.2. For any open compact set U/Z_
p, m , we have

&E, ml (,&1(U))=a l&E, m(U)&&E, m(l&1U)&=(l ) &E, m(lU).

Proof. It suffices to treat the case U=a+ pnmZp, m , (a, pm)=1.
Furthermore, we may choose a such that l |% a. Then we have

,&1(U)= �

b#a(mod pn m)
b # (Z�pn mlZ)_

b+ pnmlZp, ml .

By (1), we have

al&*E, m(U)= :
l&1

u=0
\:&n8 \a+upnm

pnml +&=( p) :&n&18 \a+upn&1m
pn&1ml ++

+=(l )\:&n8 \ al
pnm+&=( p) :&n&18\ al

pn&1m++.

Since a+upnm runs through a complete set of residue class modulo pnml
which is congruent to a (mod pnm), we have

:
l&1

u=0

8 \a+upnm
pnml += :

b#a(mod pn m)
b # (Z�pnmlZ)_

8 \ b
pnml++8 \ al $

pnm +
for l $ # Z such that ll $#1 (mod pnm). We have a similar formula for
a+upn&1m. Hence we get

al &*E, m(U)=&*E, ml (,&1(U))+&*E, m(l&1U)+=(l ) &*E, m(lU).
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Decomposing this by the action of the complex conjugation, we have the
statement of Lemma 2.2. K

3. AN ANALOGUE OF KIDA'S FORMULA

In this section, we will give the following theorem which is an analogue
of Kida's formula for the p-adic L-functions of elliptic curves. We follow
the notations in the preceding section and keep the assumption (Int).

Theorem 3.1. Let L�K be a p-extension of Abelian fields satisfying the
assumption (Add). We further assume that +E (K)=0. Then, under (Int), we
have +E (L)=0 and

*E (L)=[L� : K�] *E (K)

+ :
w # P1

(eL��K�(w)&1)+2 :
w # P2

(eL��K�(w)&1),

where P1 and P2 are the sets of primes of L� which are defined as

P1=[w | w |% p, E: split multiplicative reduction at w],

P1=[w | w |% p, E: good reduction at w, E(L�, w)p {0],

and eL��K�(w) denotes the ramification index of w in L� �K� .

Remark. By Proposition 2.1, the formula of the *-invariants in the
above theorem holds without the assumption +E (K)=0 if there exists an
elliptic curve E$ isogenous to E such that +E$(K)=0.

For each prime l and any algebraic extension F�Q, we denote by gF (l )
the number of primes of F lying above l (if it is finite). Let / be a character
of Z_

p, m of finite order and ? a prime element of Zp[/]. We define an
integer g/(l) as follows:

(i) If /(l ){0 and l |% NE ,

0 if al �/(l )+/&1(l ) (mod ?),

g/(l )={ gQ�(l ) if al #/(l )+/&1(l ), al � \2 (mod ?),

2gQ�(l ) otherwise.
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(ii) If /(l ){0 and l | NE ,

g/(l )={0
gQ�(l )

if al �/&1(l ) (mod ?),
if al #/&1(l ) (mod ?).

(iii) If /(l )=0, then g/(l )=0.

We now prove the following two lemmas needed to prove Theorem 3.1.
These lemmas correspond to [11, Proposition 2.1], [11, Lemma 2.1]
respectively, and one can prove these in the similar way. We use
Lemma 2.2 to prove the latter.

Lemma 3.2. Let / and � be characters of Z_
p, m of finite order. Assume

that � has a p-power order and +E, m(/)=0. Then we have

*E, m(/�)=*E, m(/), +E, m(/�)=0.

Proof. Let ? be a prime element of Zp[/�]. Since � has a p-power
order, �(x) is congruent to 1 modulo ? for any x # Z_

p, m . Hence we have

Gp, m(E, /�, T )#Gp, m(E, /, T ) (mod ?).

Therefore we have +E, m(/�)=0 by the assumption +E, m(/)=0, and then
we have *E, m(/�)=*E, m(/) by the definition of the *-invariants. K

Lemma 3.3. Let / be a character of Z_
p, m of finite order and l a prime

number such that l |3 pm. Assume that the order of / is prime to p. Then we
have

*E, ml (/)=*E, m(/)+ g/(l ), +E, ml (/)=+E, m(/).

Proof. Since t(ab)=t(a)+t(b) for any a, b # Z_
p, m , we have

Gp, ml (E, /, T )

=|
Z

_
p, ml

/(x)(1+T )t(x) d&E, ml

=|
Z

_
p, m \al/(x)(1+T )t(x)&/ \x

l + (1+T )t(x�l )

&=(l ) /(lx)(1+T )t(lx)+ d&E, m

=(al&/&1(l )(1+T )&t(l )&=(l ) /(l )(1+T )t(l )) Gp, m(E, /, T )

by Lemma 2.2. Hence, if we put

hl (E, /, T )=al&/&1(l )(1+T )&t(l )&=(l ) /(l )(1+T )t(l )
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then we have

*E, ml (/)=*E, m(/)+*(h l (E, /, T )),

+E, ml (/)=+E, m(/)++(h l (E, /, T )).

Write t(l )=upa with a�0, u # Z_
p . Then we have pa= gQ�(l ). Indeed, we

have

}(#0)t(l )=(l) =}(_l),

where _l # 1 is the Frobenius element of l, thus the index of the decomposi-
tion group of l in 1 is pa.

We calculate the *, +-invariant of hl (E, /, T ).

(i) If l |% NE ,

hl (E, /, T )=al&/&1(l )(1+T )&upa
&/(l )(1+T )upa

#al&(/(l )+/&1(l ))&(/(l )&/&1(l )) uT pa

&\/(l )+/&1(l )
2

u2&
/(l )&/&1(l )

2
u+ T 2pa

(mod( p, T 2pa+1)).

If /(l )&/&1(l ) is divisible by ?, we have /(l )#\1 (mod ?). Then
/(l )+/&1(l ) is not divisible by ? since p is odd. Thus we have +(h l (E,
/, T ))=0 and, by the definition of the *-invariant, *(hl (E, /, T ))= g/(l ).

(ii) If l | NE ,

hl (E, /, T )#al&/&1(l )+/&1(l ) uT pa
(mod( p, T pa+1)).

Hence we have +(hl (E, /, T ))=0, *(hl (E, /, T ))= g/(l ).
This completes the proof. K

Next, we prove the following lemma.

Lemma 3.4. Let K be an Abelian field which satisfies (Add). Let l be a
prime number and v a prime of K lying above l. Assume that p |% [K : Q] and
l#1 (mod p). Then we have

2gK�(l ) if E: good reduction at v and E(Kv)p {0,

:
@/ # Gal(K�Q)

g/(l )={gK�(l ) if E: split multiplicative reduction at v,

0 otherwise.
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Remark. Let M be a non-zero finite abelian p-group with an action of
a p-group G. Then the subgroup of G-invariant elements MG is also non-
zero. By this fact, we can show that E(K�, v� )p {0 � E(Kv)p {0 for any
prime v� of K� above v.

Proof. We denote /(l ) (mod ?) by `/ # F� p for each /. Since p |% [K : Q],
the order of `/ coincides with that of /(l). We first assume that l |% NE , i.e.,
E has good reduction at l. Let : # F� p be one of the root of the polynomial
x2&alx+1 (mod p). By the definition of g/(l), we have

:
/

g/(l )= gQ�(l ) (*[/ | `/=:]+*[/ | `/=:&1]).

Here we note that :=:&1 is equivalent to a l #\2 (mod p). Let

Y=[/ # Gal(K�Q)@ | /(l ){0], Z=[/ # Y | /(l )=1],

and denote by f the residue degree of l in K�Q. Then the following facts (A)
and (B) are well-known (cf. [14, Theorem 3.7]):

(A) Y�Z is cyclic of order f,
(B) the order of Z is equal to gK (l ).

By these facts, we can easily show that

:
/

g/(l )={2gQ�(l ) gK (l )
0

if : f=1,
if : f{1.

Since p |% [K : Q], we have gK�(l )= gQ�(l ) gK (l ). Hence it suffices to show
that E(Kv)p {0 � : f=1. Let E� be the reduction of E modulo l and kv

the residue field of Kv . Then E(Kv)p is isomorphic to E� (kv)p , (cf. [10,
Chapter VII, Proposition 3.1]). Since l#1 (mod p), the characteristic poly-
nomial of the action of the Frobenius element of l on E� (F� l)p is just
x2&alx+1 (mod p). Hence : f is one of the eigenvalues of the action of the
Frobenius of v on E� (F� l)p . Thus E� (kv)p {0 is equivalent to : f=1.

Assume that l | NE . Let : :=(al mod p) in this case. Then, again by the
definition of g/(l) and by the facts (A), (B),

:
/

g/(l )= gQ�(l )*[/ # Y | `&1
/ =:]

={gQ�(l ) gK (l)
0

if : f=1,
if : f{1.

If E has split multiplicative reduction at l, then :=1. Assume that E has
non-split multiplicative reduction at l. Then :=&1. Hence : f=1 if and
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only if f is even, and this is equivalent to the condition that E has split mul-
tiplicative reduction at v. If E has additive reduction at l, then :=0 and E
has also additive reduction at v by (Add). Thus we have

:
/

g/(l )={gK�(l )
0

if E has split multiplicative reduction at v,
otherwise

in the case l | NE . The proof is completed. K

Now we begin the proof of Theorem 3.1. By the following lemma, we
may assume that p |% [K : Q] without loss of generality:

Lemma 3.5. Let K, L and M be Abelian fields satisfying (Add). Assume
that K/L/M and [M : K] is a power of p. If the assertion of Theorem 3.1
holds for two of the extensions L�K, M�L, M�K, it holds for the remaining
one.

Proof. Let v be a prime of L� which does not lie above p. Let g be the
number of primes of M� lying above v. Since there exists no p-extension
of the residue field of L� at v, we have [M� : L�]=eM��L�(w) g. Hence
we have a formula

[M� : L�](eL��K�(v)&1)=:
w

(eM��K�(w)&eM��L�(w)),

where w runs over all primes of M� lying above v. This implies Lemma
3.5. K

Take the maximal subfield L$ of L such that [L$ : Q] is a p-power. Then
K & L$=Q by the assumption p |% [K : Q], and hence any character of
Gal(L�Q) is uniquely written as a product of a character / of Gal(K�Q)
and a character � of Gal(L$�Q). We regard these characters as Dirichlet
characters. Let n denote the integer such that L & Q�=Bn , where Bn is the
nth layer of Q� �Q. Note that K & Q�=Q. Then we have

pn*E (L)=:
�

:
/

*E (/�), *E (K)=:
/

*E (/),

+E (L)=:
�

:
/

+E (/�), +E (K)=:
/

+E (/).

Let m (resp. m$) denote the p$-conductor of / (resp. /�). Since the order
of / is prime to p and that of � is a p-power, m$ is divisible by m and m$�m
is square-free. By Lemmas 3.2 and 3.3, we have +E (/�)=0 and

*E (/�)=*E, m$(/)=*E (/)+ :
l | m$

g/(l )
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(recall that g/(l )=0 if l | m). Hence we have +E (L)=0 and

pn*E (L)=[L$ : Q] *E (K)+ :
l{ p

*[� | �(l )=0] :
/

g/(l ). (3)

Since L$ & K=Q and L & K�=Kn , we have [L$ : Q]= pn[L� : K�].
Furthermore, since l is unramified in Q� �Q, we have eL$�Q(l )=eL��K�(w),
where w is any prime of L� lying above l. By the facts (A) and (B) in the
proof of Lemma 3.4, we have

*[� | �(l )=0]=[L$ : Q](1&eL$�Q(l )&1)

= pn[L� :K�](1&eL��K�(w)&1).

On the other hand, by Lemma 3.4, we have �/ g/(l)=$w gK�(l), where

2 if w # P2 ,

$w={1 if w # P1 ,

0 otherwise

(see the remark after Lemma 3.4, and that L� satisfies (Add) since L� �L
is unramified outside the primes above p). Hence, for each l{ p, we have

*[� | �(l )=0] :
/

g/(l )

= pn[L� :K�] gK�(l ) $w(1&eL��K�(w)&1)

= pn[L� :K�] gK�(l ) gL�(l )&1 :
w | l

$w(1&eL��K�(w)&1).

As in the proof of Lemma 3.5, gL�(l )=[L� : K�] eL��K�(w)&1 gK�(l ).
Hence we have

*E (L)=[L� : K�] *E (K)+ :
w |% p

$w(eL��K�(w)&1)

by (3). We have completed the proof of Theorem 3.1.
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