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Among abelian extensions of a congruence function field, an
asymptotic relation of class number and genus is established:
namely, for such extensions with class number h, genus g, and
field of constants F, that ln h ∼ g ln |F|. The proof is completely
classical, employing well known results from congruence function
field theory. This gives an answer to a question of E. Inaba.
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1. Introduction

Let K be a congruence function field with genus gK and class number hK . The study of the asymp-
totic behavior of class number and genus for congruence function fields dates to a result of E. Inaba
[7], which established, for a natural number m, that among congruence function fields K with a fixed
choice of finite constant field Fq and an element x ∈ K that satisfies [K : Fq(x)] � m,

lim
gK →∞

ln hK

gK ln |Fq| = 1. (1.1)
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In his paper Inaba remarked that he was not aware of whether this relation remains true if the
bound involving m is removed. As noted by K. Iwasawa in Inaba’s article, the requirement that m be
fixed resembles R. Brauer’s first result on the Brauer–Siegel theorem for algebraic number fields [1].
Results similar to that of Inaba also appear in the work of I. Luthar and S. Gogia [13] and M. Tsfas-
man [17].

Much later, M. Madan and D. Madden [14] noted, for congruence function fields K with a fixed
choice of constant field Fq and an element x ∈ K\Fq , that Inaba’s method yields

lim
[K :Fq(x)]

gK
→0

ln hK

gK ln |Fq| = 1. (1.2)

One may observe that (1.2) loosely resembles the condition required in R. Brauer’s second paper [2]
on the Brauer–Siegel theorem, with an exception: in addition to requiring for an extension L of the
rational numbers with discriminant d that [L : Q]/ ln d tends to zero, it was necessary for Brauer to
assume that the extension L/Q be normal. It is difficult to surmount both of these requirements in the
case of number fields as a result of the connection to the Riemann hypothesis [10]. However, Brauer’s
result may be extended to abelian number fields without any relative requirement on discriminant
growth; for example, see the concise argument of S.R. Louboutin [12].

The objective of this paper is to establish the analogue to Brauer’s theorem for finite abelian ex-
tensions of any choice of congruence function field. In fact, P. Lam-Estrada and G.D. Villa-Salvador [9]
have already noted that, by a result of D. Hayes [6], the relation (1.1) holds among the cyclotomic
extensions of the field of rational functions Fq(T ). The objective is met by means of two theorems.
For what follows, let FK denote the constant field of K .

Theorem 1. Let K be a congruence function field. It holds that

lim inf
gK →∞

ln hK

gK ln |FK | � 1.

The bound attained in the proof of Theorem 1 is effective. Furthermore, Theorem 1 makes no
requirement that K be a finite abelian extension of a congruence function field. It is for the proof of
the upper bound that abelian structure is essential.

Theorem 2. Let F be a congruence function field. Let K be a finite abelian extension of F . It holds that

lim sup
gK →∞

ln hK

gK ln |FK | � 1.

The method of proof for Theorem 2 in this paper is unique to the abelian case; indeed, the re-
quired properties are violated within the simplest class of non-abelian extensions of a congruence
function field for which the genus may become large: finite, geometric, tamely ramified, and solv-
able extensions of Fq(T ). This is a consequence of the possibility of slow growth of the genus [5].
Also, unlike Theorem 1, the bound attained in the proof of Theorem 2 is ineffective. As a corollary of
Theorems 1 and 2, one obtains the main result of this paper.

Corollary. Let F be a congruence function field. Let K be a finite abelian extension of F . It holds that

lim
gK →∞

ln hK

gK ln |FK | = 1.
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2. The lower bound

The proof of Theorem 1 proceeds as follows.

1. Count the number of monic irreducible polynomials of a given degree with coefficients in FK via
Möbius inversion;

2. For x ∈ K\FK , compare the number of places of a given degree in K to the number of places of
the same degree in FK (x) via Möbius inversion and Riemann’s hypothesis;

3. Obtain a lower bound for the number of integral divisors of degree 2gK in K via the Riemann–
Roch theorem.

This proof follows closely Inaba’s original method in [7]. The first step is a basic result in field
theory [11].

Lemma 1. Let x ∈ K\FK . For each m ∈ N, let ψ(m) be the number of monic irreducible elements of FK [x] of
degree in x equal to m. Let μ be the Möbius function. It holds for each m ∈ N that

ψ(m) = 1

m

∑
d|m

μ

(
m

d

)
|FK |d.

The second step of the proof follows a method known to H. Reichardt [16]. The basic principle is
as follows. For K , let PK denote the collection of places and dK the degree function on divisors. For
each m ∈N, let

Nm = ∣∣{P ∈ PK
∣∣ dK (P) = m

}∣∣.
Also, let s ∈C with Re(s) > 1 and u = |FK |−s . One may write the zeta function ζK (s) of K as

ζK (s) =
∏

P∈PK

(
1 − 1

|FK |dK (P)s

)−1

=
∞∏

k=1

(
1 − uk)−Nk . (2.1)

Let x ∈ K\FK . For FK (x), let P0 denote the collection of places, d0 the degree function on divisors,
ζ0(s) the zeta function, and

nm = ∣∣{p ∈ P0
∣∣ d0(p) = m

}∣∣.
Application of the logarithmic derivative to both (2.1) and the analogous identity for ζ0(s) yields that

ζ ′
K (s)

ζK (s)
− ζ ′

0(s)

ζ0(s)
= − ln |FK |

∞∑
m=1

(∑
d|m

d(Nd − nd)

)
um. (2.2)

Let P K (s) = (1 − u)(1 − |FK |u)ζK (s). It is well known [3] that there exist ω1, . . . ,ω2gK ∈C with

P K (s) =
2gK∏
i=1

(1 − ωiu). (2.3)

Furthermore, as Re(s) > 1, one has that P K (s) = ζK (s)/ζ0(s). From (2.2) and (2.3), it follows that

∑
d|m

d(Nd − nd) = −
2gK∑
i=1

ωm
i . (2.4)
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By Riemann’s hypothesis, it holds for each i = 1, . . . ,2gK that |ωi | = |FK | 1
2 . By Möbius inversion, one

then obtains from (2.4) the following lemma.

Lemma 2. Let x ∈ K\FK . For each m ∈ N, it holds that

|Nm − nm| � 4gK |FK |m
2 .

Proof of Theorem 1. For a divisor class C of K , let lK (C) denote the dimension over FK of the
Riemann–Roch space for any element of C . If C is of degree equal to 2gK , the Riemann–Roch theorem
gives that lK (C) = gK + 1. Thus the number of integral divisors A2gK of K of degree 2gK satisfies

A2gK = hK

( |FK |gK +1 − 1

|FK | − 1

)
. (2.5)

By (2.5) and Lemmas 1 and 2, one obtains that

hK

( |FK |gK +1 − 1

|FK | − 1

)
� N2gK � n2gK − 4gK |FK |gK = ψ(2gK ) − 4gK |FK |gK

� |FK |2gK

2gK
−

∣∣∣∣ 1

2gK

∑
d|2gK

d<2gK

μ

(
2gK

d

)
|FK |d

∣∣∣∣ − 4gK |FK |gK

� |FK |2gK

2gK
−

∑
d|2gK

d<2gK

|FK |d − 4gK |FK |gK

� |FK |2gK

2gK
−

gK∑
d=1

|FK |d − 4gK |FK |gK

� |FK |2gK

2gK
− (4gK + 2)|FK |gK . (2.6)

By (2.6), if gK is large enough, it holds for any possible value of |FK | that

hK � (|FK | − 1)|FK |gK −1

4gK
. (2.7)

It may be assumed that gK > 0. As |FK | � 2, by application of the logarithm to (2.7), one obtains for
gK large enough that

ln hK

gK ln |FK | � ln(|FK | − 1)

gK ln |FK | + 1 − 1

gK
− ln 4gK

gK ln |FK | � 1 − 1 + ln 4gK

gK ln 2
. (2.8)

The result follows. �
3. The abelian case

For this section, let F also denote a congruence function field. Though more involved, the proof of
Theorem 2 is also quite basic. The essential steps are as follows.
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1. Establish the upper bound of Theorem 2 for K with a condition on the growth of the genus via
ramification theory and Riemann’s inequality;

2. Obtain an upper bound for the degree of a finite, geometric, unramified, and abelian extension
H/F via global class field theory [8];

3. Obtain a lower bound for the degree of the different of a finite abelian extension K/F via higher
ramification theory and the Hasse–Arf theorem [15];

4. Derive a contradiction for a sequence that violates the statement of Theorem 2 via the Riemann–
Roch theorem, Riemann’s hypothesis, and the Riemann–Hurwitz formula.

Throughout this section, the notation of Section 2 is assumed. The first part of this proof is similar
to the method of Madden and Madan in [14]. For a divisor class C of K of degree n, one has by
Riemann’s inequality that lK (C) � n− gK +1. Thus the number of integral divisors An of K of degree n
satisfies

An � hK

( |FK |n−gK +1 − 1

|FK | − 1

)
. (3.1)

Let s ∈R with s > 1 and x ∈ K\FK . By (3.1), it follows that

ζK (s) =
∞∑

n=0

An

|FK |ns
�

∞∑
n=gK

An

|FK |ns
�

∞∑
n=gK

hK

( |FK |n−gK +1 − 1

|FK | − 1

)
1

|FK |ns

= hK

|FK |gK s

∞∑
n=gK

|FK |n−gK +1 − 1

|FK | − 1

1

|FK |(n−gK )s
= hK

|FK |gK s
ζ0(s). (3.2)

Let p ∈ P0, and let P1, . . . ,Pr be those places of K that lie above p. For each i = 1, . . . , r, let e(Pi|p)
denote the ramification index and f (Pi |p) the relative degree of Pi |p. By ramification theory (see for
example [18]), it holds that

r∑
i=1

e(Pi |p) f (Pi|p) = [
K : FK (x)

]
. (3.3)

As K/FK (x) is a geometric extension, it follows from (3.3) that

ζK (s) =
∏

P∈PK

(
1 − 1

|FK |dK (P)s

)−1

�
∏
p∈P0

(
1 − 1

|FK |d0(p)s

)−[K :FK (x)]
= ζ0(s)[K :FK (x)]. (3.4)

By (3.2) and (3.4), one obtains that

hK

|FK |gK s
� ζ0(s)[K :FK (x)]−1. (3.5)

As |FK | � 2 and ζ0(s) � ζF2(T )(s), application of the logarithm to (3.5) yields that

ln hK � s + ([K : FK (x)] − 1) ln ζF2(T )(s)
. (3.6)
gK ln |FK | gK ln 2
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Let ε be fixed and positive, and let s = 1+ ε
2 . If the quantity [K : FK (x)]/gK is chosen to be sufficiently

close to zero, it follows from (3.6) that

ln hK

gK ln |FK | < 1 + ε.

The following lemma and the first step of the proof of Theorem 2 have therefore been established.

Lemma 3. Let x ∈ K\FK . It holds that

lim sup
[K :FK (x)]

gK
→0

ln hK

gK ln |FK | � 1.

By the reciprocity map of global class field theory, a maximal finite, geometric, unramified, and
abelian extension of a congruence function field F is of degree hF . From this fact, one obtains the
following lemma and the second step of the proof of Theorem 2.

Lemma 4. Let H/F be a finite, geometric, unramified, and abelian extension. It holds that [H : F ] � hF .

The third step of the proof of Theorem 2 follows a method known to G. Frey et al. [4]. Let K/F
be a finite abelian extension. Let p ∈ PF and P ∈ PK with P|p. For each n = 0,1,2, . . . , let Gn(P|p)
denote the nth ramification group of P|p. Also, let αP|p denote the differential exponent of P|p. First,
by ramification theory, one obtains that

αP|p =
∞∑

n=0

(∣∣Gn(P|p)∣∣ − 1
)
. (3.7)

Let k(P|p) denote the number of ramification jumps of P|p. By the Hasse–Arf theorem, it follows
from (3.7) that

αP|p � 1

2
k(P|p)e(P|p). (3.8)

Second, let KP and FP denote the completion of K , respectively F , according to P, respectively p. Let
P be identified with its maximal ideal, ϑP denote the valuation ring for P, and πP be an element
prime for P. As KP/FP is abelian, the action of Gal(KP/FP) is trivial on each element in the image
of each injection

ψ0 : G0(P|p)/G1(P|p) → (ϑP/P)∗, ψ0(σ ) = σ(πP)

πP

and, for each n ∈ N,

ψn : Gn(P|p)/Gn+1(P|p) →Pn/Pn+1, ψn(σ ) = σ(πP)

πP

− 1.

Identifying p with its maximal ideal and denoting by ϑP the valuation ring of p, it follows that

e(P|p) � |ϑp/p|k(P|p). (3.9)
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Finally, observing that the fixed field of the product of the inertia groups G0(P|p) over all p ∈ PF is
simply the maximal unramified extension of F in K , one obtains the following result as a consequence
of (3.8) and (3.9).

Lemma 5. Let K/F be a finite abelian extension. Let H K/F denote the maximal unramified extension of F in K .
It follows that the different DK/F satisfies

dK (DK/F ) � [K : F ]
2 ln |FF |

(
ln[K : F ] − ln[H K/F : F ]).

Proof of Theorem 2. Consider a sequence {Kn}n∈N with Kn/F a finite abelian extension for each n ∈ N

and unbounded sequence of genera {gKn }n∈N . Furthermore, suppose that there exists a positive δ ∈ R

with, for each n ∈ N, ln hKn /(gKn ln |FKn |) � 1 + δ. Let x ∈ F\FF . By Lemma 3, there exists a positive
ε ∈ R with, for each n ∈N,

[Kn : FKn (x)]
gKn

� ε. (3.10)

Let s ∈ C, u = |FK |−s , and n ∈ N. Let P Kn (s) be defined as in Section 2. As noted in (2.3), there
exist ω1, . . . ,ω2gKn

so that

P Kn (s) =
2gKn∏
i=1

(1 − ωiu). (3.11)

By Riemann’s hypothesis, one has for each i = 1, . . . ,2gKn that |ωi | = |FKn |
1
2 . Also, it is well known

[3] that P Kn (0) = hKn . From (3.11), one obtains that

hKn = P Kn(0) = ∣∣P Kn (0)
∣∣ =

2gKn∏
i=1

|1 − ωi | �
(
1 + |FKn |

1
2
)2gKn . (3.12)

It may be assumed for each n ∈ N that gKn > 0. Application of the logarithm to (3.12) yields that

ln hKn

gKn ln |FKn |
� 2 ln(1 + |FKn |

1
2 )

ln |FKn |
. (3.13)

By (3.13), it follows that the field

E =
∏
n∈N

FKn (3.14)

is finite. By the definition of E in (3.14), it follows for each n ∈ N that the extension EKn/EF is
geometric. By the Riemann–Hurwitz formula and Lemmas 4 and 5, one obtains that

gEKn

[EKn : EF ] � gEF − 1 + 1

2[EKn : EF ]dEKn(DEKn/EF )

� gEF − 1 + 1

4 ln |E|
(
ln[EKn : EF ] − ln[HEKn/EF : EF ])

� gEF − 1 + 1 (
ln[EKn : EF ] − ln hEF

)
. (3.15)
4 ln |E|
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By basic function field theory, it holds that [EKn : E(x)] = [Kn : FKn (x)]. As the sequence of genera
{gKn }n∈N is unbounded, it follows from (3.10) that the sequence {[EKn : EF ]}n∈N is also unbounded.
However, by the Riemann–Roch theorem, one obtains for each n ∈ N that gEKn = gKn . By (3.10) and
(3.15), it follows that the sequence {[EKn : EF ]}n∈N is bounded. This is a contradiction. The result
follows. �
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