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1. Introduction

Given a real number r and a rational number, written as the unique quotient p
q of the relatively

prime integers p and q > 0, our fundamental object of interest from diophantine approximation is
the approximation coefficient θ(r, p

q ) := q2|r − p
q |. Small approximation coefficients suggest high quality

approximations, combining accuracy with simplicity. For instance, the error in approximating π using
355
113 = 3.1415920353982 is smaller than the error of its decimal expansion to the fifth digit 3.14159 =
314 159
100 000 . Since the former rational also has a much smaller denominator, it is of far greater quality than

the latter. Indeed θ(π, 355
113 ) < 0.0341 whereas θ(π, 314 159

100 000 ) > 26 535.
Since adding integers to fractions does not change their denominators, we have θ(r, p

q ) = θ(r −�r�,
p
q − �r�), where �r� is the largest integer smaller than or equal to r (a.k.a. the floor of r), allowing us
to restrict our attention to the unit interval. Expanding an irrational initial seed x0 ∈ (0,1) −Q as an
infinite regular continued fraction
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x0 = 1

b1 + 1

b2 + 1

b3 + · · ·
provides us with the unique symbolic representation via the sequence {bn}∞1 of positive integers,
known as the partial quotients or digits of expansion of x0. For all n � 0, we label the approximation
coefficient associated with the convergent

p0

q0
:= 0

1
,

pn

qn
:= 1

b1 + 1

b2 + 1

· · · + 1

bn

, n � 1

by θn and refer to the sequence {θn}∞1 as the sequence of approximation coefficients.
Much work has been done with this sequence, from its inception in the classical era to more recent

excursion which establishes interesting connections with ergodic theory and hyperbolic geometry. For
a concise description of some classical results concerning this sequence, refer to the introduction sec-
tion of [2]. A more thorough treatment can be found in [3, Chapter 5]. Another well-known continued
fraction theory is the backward continued fraction expansion:

x0 = 1 − 1

b1 + 1 − 1

b2 + 1 − 1

b3 + · · ·
leading to a new unique sequence of digits, hence new sequences of convergents and approximation
coefficients.

The focus of this paper is the space of Jager Pairs

Γ (x0) := {(
θn−1(x0), θn(x0)

)
, x0 ∈ (0,1) −Q, n � 1

}
.

The spaces corresponding to the regular and backwards continued fraction expansions were initially
introduced and studied in [7] and [5] respectively. We are going to reveal an elegant symmetrical
internal structure for both these spaces. Our approach is to treat the regular and continued fraction
expansions as limiting cases for the two families of one parameter continued fraction-like expansions,
first introduced by Haas and Molnar. Using simple plane geometry, we will provide in Corollary 4.4
upper and lower bounds for the growth rate of the associated sequence of approximation coefficients.
For instance, knowing a priori that b2 = b3 = 1 and b4 = 3 are the digits of the classical regular

continued fraction expansion will allow us to obtain the bounds |θ2 − θ1| <
√

2
3 and 2

√
2

7 < |θ3 − θ2| <
3
√

2
5 .

2. Preliminaries

This section is a paraphrased summary of excerpts from [4,5], given for sake of completeness. In
general, the fractional part of Möbius transformation which maps [0,1] onto [0,∞] leads to expan-
sion of real numbers as continued fractions. To characterize all these transformations, we recall that
Möbius transformations are uniquely determined by their values for three distinct points. Thus, we
will need to introduce a parameter for the image of an additional point besides 0 and 1, which we
will naturally take to be ∞. Since our maps fix the real line, the image of ∞, denoted by −k, can
take any value within the set of negative real numbers. We let m ∈ {0,1} equal zero for orientation
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reversing transformations, i.e. 0 �→ ∞, 1 �→ 0 and let m equal one for orientation preserving transfor-
mations, i.e. 0 �→ 0, 1 �→ ∞. Conclude that all such transformations must be the extension of the maps
x �→ k(1−m−x)

x−m , k > 0, mapping (0,1) homeomorphically to (0,∞), to the extended complex plane. The
maps T(m,k) : [0,1) → [0,1), 0 �→ 0,

T(m,k)(x) = k(1 − m − x)

x − m
−

⌊
k(1 − m − x)

x − m

⌋
, x > 0

are called Gauss-like and Rényi-like for m = 0 and m = 1 respectively.
We expand the initial seed x0 ∈ (0,1) as an (m,k)-continued fraction using the following iteration

process:

1. Set n := 1.
2. If xn−1 = 0, stop and exit.
3. Set the digit and future of x0 at time n to be an := � k(1−m−xn−1)

xn−1−m � ∈ Z�0 and xn := k(1−m−xn−1)

xn−1−m −
an ∈ [0,1). Increase n by one and go to step 2.

We thus have

xn = T(m,k)(xn−1) = k(1 − m − xn−1)

xn−1 − m
− an

so that

xn−1 = m + k(1 − 2m)

an + k + xn
.

Therefore, this iteration scheme leads to the expansion of the initial seed x0 as

x0 = m + k(1 − 2m)

a1 + k + x1
= m + k(1 − 2m)

a1 + k + m + k(1−2m)
a2+k+x2

= · · · .

Remark 2.1. The classical k = 1 cases lead to the regular and backwards continued fractions expan-
sions for m = 0 and m = 1 respectively. However, due to the definition of the map T(m,k) the digits
of expansion will be smaller by one than their classical representation. For instance, plugging k = 1
into

k

0 + k + k

1 + k + k

2 + k

= k2 + 4k + 2

k2 + 5k + 4

yields the fraction

7

10
= 1

1 + 1

2 + 1
3
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and plugging k = 1 into

= 1 − k

0 + k + 1 − k

1 + k + 1 − k

2 + k

= k + 4

k3 + 3k2 + 5k + 4

yields the fraction

5

13
= 1 − 1

1 + 1 − 1

2 + 1 − 1

3

.

For the classical regular and backwards continued fraction expansions this iteration process even-
tually terminates precisely when the initial seed x0 is a rational number. Analogously, we denote the
countable set of all numbers in the interval with finite (m,k)-expansion by Q(m,k) . For all a ∈ Z�0,
the cylinder set

�a :=
(

(1 − m)k + ma

a + k + 1 − m
,
(1 − m)k + m(a + 1)

a + k + m

)
(1)

is defined such that x0 ∈ �a if and only if a1 = a. More generally, we have

xn ∈ �a ⇔ an+1 = a, n � 0, (2)

that is, the restriction of the map T(m,k) to �a is a homeomorphism onto (0,1). When x0 is an
(m,k)-irrational, define the past of x0 at time n � 1 to be Y1 := m − k − [a1](m,k) and

Yn := m − k − an − [an−1, . . . ,a1](m,k) ∈ (m − k − an − 1,m − k − an), n � 2. (3)

Then for all initial seeds x0 ∈ (0,1) − Q(m,k) and n � 1, we have (xn, Yn) ∈ Ω(m,k) := (0,1) ×
(−∞,m − k). We call the set Ω(m,k) the space of dynamic pairs.

The sequence of approximation coefficients {θn(x0)}∞1 for the (m,k)-expansion is defined just like
the classical object, i.e. θn(x0) := q2

n|x0 − pn
qn

|, where pn
qn

= [a1, . . . ,an](m,k) ∈ Q(m,k) are the appropriate
convergents. The sequence of approximation coefficients relates to the future and past sequences of
x0 using the identity

θn(x0) = 1

xn+1 − Yn+1
,

first proven for the classical regular continued fraction case in 1921 by Perron [8]. Each of the con-
tinuous maps

Ψ(m,k) : Ω(m,k) →R2, (x, y) �→
(

1

x − y
,

(m − x)(m − y)

(2m − 1)k(x − y)

)
,

(θn, θn+1) = Ψ(m,k)(xn+1, Yn+1), (4)
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is a homeomorphism onto its image

Γ(m,k) := Ψ(m,k)(Ω(m,k)).

Furthermore, the two families {Ψ(0,k)} and {Ψ(1,k)} are known to be equicontinuous. The corresponding
space of Jager Pairs

{(
θn(x0), θn+1(x0)

)
: x0 ∈ (0,1) −Q(m,k), n � 1

}

is a dense subset of Γ(m,k) . In our approach, we will require the parameter k to be greater than
one, treating the classical regular and backwards continued fraction expansions as the limit of the
(m,k)-expansions. As k → 1+ . The choice of taking the limit from the right is not arbitrary, for the
treatment of the 0 < k < 1 cases exhibits certain pathologies, see [1, Section 3.3].

3. The finer structure for the space of Jager Pairs

Fix m ∈ {0,1}, k ∈ (1,∞), and an initial seed x0 ∈ (0,1) −Q(m,k) . In order to ease the notation, we
will omit the subscripts �(m,k) from now on. For all a ∈ Z�0, define the regions

P (m,k,a) = Pa := (0,1) × (m − a − k − 1,m − a − k)

and

F(m,k,a) = Fa := �a × (−∞,m − k),

where �a is the cylinder set (1). Using the identity (2) and the definition (3) of Yn , we see that for
all n � 1 we have

(xn+1, yn+1) ∈ Pa ∩ Fb ⇔ an+1 = a and an+2 = b.

We label the images of each of these subsets of Ω under Ψ by P #
a and F #

a . Using formula (4) and the
fact that Ψ is a homeomorphism, we see that for all n � 1, we have

(θn, θn+1) ∈ P #
a ∩ F #

b ⇔ an+1 = a and an+2 = b. (5)

Next, let p(m,k,a) = pa be the open horizontal line segment (0,1) × {m − a − k}, let f(m,k,a) = fa be

the open vertical ray { (1−m)k+m
a+k } × (−∞,m − k) and let p#

a and f #
a be their image under Ψ . Since

both the collections {Pa ∪ pa}a∈Z�0 and {Fa ∪ fa}a∈Z�0 partition Ω , the image of their intersections

under Ψ , {(P #
a ∪ p#

a ) ∩ (F #
b ∪ f #

b )}a,b∈Z�0 will partition Γ . We will call each member of this refined
partition a subdivision.

Proposition 3.1. For all k ∈ R > 1 and a,b ∈ Z+ the region P #
a ∩ F #

b is the open interior of the quadrangle
in E2 with vertices

(
b + k

(1 − 2m)k + (a + k)(b + k)
,

a + k

(1 − 2m)k + (a + k)(b + k)

)
,
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(
b + k

(1 − 2m)k + (a + k + 1)(b + k)
,

a + k + 1

(1 − 2m)k + (a + k + 1)(b + k)

)
,

(
b + k + 1

(1 − 2m)k + (a + k)(b + k + 1)
,

a + k

(1 − 2m)k + (a + k)(b + k + 1)

)

and

(
b + k + 1

(1 − 2m)k + (a + k + 1)(b + k + 1)
,

a + k + 1

(1 − 2m)k + (a + k + 1)(b + k + 1)

)
.

Proof. Fix a ∈ Z+ and for every (x, y0) ∈ pa i.e. x ∈ (0,1), y0 := m −k −a, set (u, v) := Ψ (x, y0). Using
the definition (4) of Ψ , we write u = 1

x−y0
= 1

x+a+k−m . Then, as x tends from 0 to 1, u tends from
1

a+k−m to 1
a+k+1−m . Since m − x = m − y − 1

u , we express v in terms of u as

v = (m − x)(m − y0)

(2m − 1)k(x − y0)
= (m − x)(m − y0)u

(2m − 1)k

= a + k

(2m − 1)k

(
(a + k)u − 1

)

so that as x tends from 0 to 1, v tends from m(a+k)
k(a+k−m)

to (1−m)(k+a)
k(k+a+1−m)

. Since Ψ : Ω → Γ is a homeo-

morphism, we see that p#
a is an open segment of the line (a +k)2u + (1 − 2m)kv = a +k between the

points ( 1
a+k−m ,

m(a+k)
k(a+k−m)

) and ( 1
a+k+1−m ,

(1−m)(k+a)
k(a+k+1−m)

).
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Next, fix b ∈ Z+ and set x0 := (1−m)k+mb
b+k . We use the definition (4) of Ψ to first write m − y =

m − x + 1
u and then express v in terms of u as

v = u

(2m − 1)k
(m − x0)

(
m − x0 + 1

u

)

= 1

b + k

(
(2m − 1)k

b + k
u + 1

)
. (6)

Since Ψ is a homeomorphism, this allows us to conclude that Ψ maps fb to an open segment of a
line in the uv plane, which is the reflection of the line p#

b along the diagonal u − v = 0. In particular,
P #

a ∩ F #
b is the region interior to the quadrangle with vertices p#

a ∩ f #
b , p#

a+1 ∩ f #
b , p#

a ∩ f #
b+1 and

p#
a+1 ∩ f #

b+1. But (x0, y0) = pa ∩ fb , so that (u0, v0) := Ψ (x0, y0) = p#
a ∩ f #

b . The definition (4) of Ψ

and formula (6) now yield

u0 = 1

x0 − y0
= b + k

(1 − 2m)k + (a + k)(b + k)

and

v0 = a + k

(1 − 2m)k + (a + k)(b + k)

as desired. �



A. Bourla / Journal of Number Theory 133 (2013) 3796–3809 3803
Remark 3.2. This result was first proved for the classical regular continued fractions expansion, corre-
sponding to the parameters m = 0 and k = 1 by Jager and Kraaikamp [6] (see also [3, Exercise 5.3.4]).
For this case, the region P #

0 ∩ F #
0 degenerates to the interior of the triangle with vertices ( 1

3 , 2
3 ), ( 2

3 , 1
3 )

and ( 2
5 , 2

5 ). In these papers, the regions P #
a and F #

a are denoted by V ∗
b and H∗

b respectively, where
b = a +1. We diverge from their notational choice to better illustrate the dynamical structure at hand:
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the point (θn−1, θn) ∈ P #
a precisely when the first digit an in Yn , the past of x0 at time n, is a. Simi-

larly, the point (θn−1, θn) ∈ F #
a precisely when the first digit an+1 in xn , the future representation of

x0 at time n, is a.

When m = 1, we obtain the depicted spaces of Jager Pairs:
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The picture for the classical backwards continued fractions k = 1, is obtained after we let k → 1+
and use the equicontinuity of the family {Ψ(1,k)}k>1. For this case, the region P #

0 ∩ F #
0 expands to

the unbounded region in the uv plane, which is the intersection of the regions u − v > 1, v − u < 1,
4u − v > 2 and 4v − u > 2.

4. Bounding growth rate in Jager Pairs

This symmetry in the subdivisions will allow us to provide uniform bounds for the rate of
growth of the sequence {θn}∞1 , which is the sequence whose members are the Jager Pair differences
{|θn+1 − θn|}∞1 . But first, we already know that Γ(1,1) is the unbounded region in the first quadrant of
the uv plane bounded by the lines u − v < 1 and v − u < 1, hence we obtain at once:

Theorem 4.1. In general, the sequence of approximation coefficients associated with the classical backwards
continued fraction expansion m = k = 1 has no uniform upper bound. However its growth rate is uniformly
bounded by 1.

Our main result is:

Theorem 4.2. Given m ∈ {0,1}, k ∈ R > 1, x0 ∈ (0,1) − Q(m,k) and N � 1, we write l := min{aN+1,aN+2,

aN+3} and L := max{aN+1,aN+2,aN+3}, where an is the digit at time n in the (m,k)-expansion for x0 . Then
the inequality

(θN+1 − θN)2 + (θN+2 − θN+1)
2 < 2

(
L − l + 1

(1 − 2m)k + (l + k)(L + k + 1)

)2

is sharp. Furthermore, if L − l > 1, then the inequality

(θN+1 − θN)2 + (θN+2 − θN+1)
2 > 2

(
L − l

(1 − 2m)k + (l + k + 1)(L + k)

)2

is sharp.

In order to prove this theorem, we will first prove:

Lemma 4.3. Given m ∈ {0,1}, k ∈ R > 1, x0 ∈ (0,1) − Q(m,k) and N � 1, write a := min{aN+1,aN+2},
A := max{aN+1,aN+2}, b := min{aN+2,aN+3} and B := max{aN+2,aN+3}. Then the inequality

(θN+1 − θN)2 + (θN+2 − θN+1)
2

<

(
B + k + 1

(1 − 2m)k + (a + k)(B + k + 1)
− b + k

(1 − 2m)k + (b + k)(A + k + 1)

)2

+
(

A + k + 1

(1 − 2m)k + (b + k)(A + k + 1)
− a + k

(1 − 2m)k + (a + k)(B + k + 1)

)2

is sharp. Furthermore, if max{A − a, B − b} > 1, then the inequality

(θN+1 − θN)2 + (θN+2 − θN+1)
2

>

(
B + k

(1 − 2m)k + (a + k + 1)(B + k)
− b + k + 1

(1 − 2m)k + (b + k + 1)(A + k)

)2
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+
(

A + k

(1 − 2m)k + (b + k + 1)(A + k)
− a + k + 1

(1 − 2m)k + (a + k + 1)(B + k)

)2

is sharp.

Proof. Let R(m,k,a,b,A,B) = R be the set

⋃
a�i�A, b� j�B

(
P #

i ∩ F #
j

)
.

Formula (5) yields (θN , θN+1) ∈ P #
aN +1 ∩ F #

aN+2
⊂ R and (θN+1, θN+2) ∈ P #

aN+2
∩ F #

aN+3
⊂ R . From Propo-

sition 3.1, we see that R is the interior of the bounded convex quadrangle, consisting of sections from
the line segments p#

a , p#
A+1, f #

b and f #
B+1. Unless max{A − a, B − b} � 1, we also let r(m,k,a,b,A,B) = r

be the non-empty set

⋃
a+1�i�A−1, b+1� j�B−1

(
P #

i ∩ F #
j

)
,

so that

{
(θN , θN+1), (θN+1, θN+2)

} ⊂ R − r. (7)

From the same proposition, we see that r ⊂ R is the interior of the convex quadrangle, consisting of
sections from the segments p#

a+1, p#
A , f #

b+1 and f #
B , that is, the quadrangle r is obtained from peeling

the outer layer of R ’s subdivisions.
When m = 0, let (u0, v0) := p#

A ∩ f #
b+1 and (U0, V 0) := p#

a+1 ∩ f #
B . Then

(u, v) ∈ P #
A ∩ F #

b ⇒ u < u0 and v > v0

and

(u, v) ∈ P #
a ∩ F #

B ⇒ u > U0 and v < V 0.

When m = 1, let (u1, v1) := p#
A ∩ f #

B and (U1, V 1) := p#
a+1 ∩ f #

b+1. Then

(u, v) ∈ P #
a ∩ F #

b ⇒ u < u0 and v < v0

and

(u, v) ∈ P #
A ∩ F #

B ⇒ u > U0 and v > V 0.

In tandem with formula (7), this allows us to conclude that, in either case, we have

diam(r)2 < d
(
(θN , θN+1), (θN+1, θN+2)

)
= (θN − θN+1)

2 + (θN+1 − θN+2)
2 < diam(R)2, (8)

where d is the familiar distance formula between two points in E2 and diam(R) stands for the Eu-
clidean diameter of the region R .
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The diameter of the interior of a convex quadrangle in E2 with opposite acute angles is the length
of the diagonal connecting the vertices corresponding to these acute angles. To verify this simple
observation from plane geometry, observe that from the continuity of the Euclidean distance formula,
the diameter of a convex polygon is either a side or a diagonal. The diagonal connecting the two
acute angles will lie opposite to an obtuse angle in either one of the induced triangles obtained. Since
for any triangle, the longest side lies opposite to the largest angle, we conclude that this diagonal
is longer than all of the four sides in this convex quadrangle. To verify it is longer than the other
diagonal, consider one of the four induced triangles obtained after drawing both diagonals and use
the same opposite angle argument.

When m = 0 and c ∈ Z+ , the slope of the line containing p#
c lies in (−∞,−1) whereas the slope

of the line containing f #
c lies in (−1,0). Conclude that both R and r have opposite acute angles, so

that their diameters are the length of the diagonal connecting the vertices p#
a ∩ f #

B+1 with p#
A+1 ∩ f #

b

and p#
a+1 ∩ f #

B with p#
A ∩ f #

b+1 respectively. Hence

diam(R) = d
(

p#
a ∩ f #

B+1, p#
A+1 ∩ f #

b

)

and

diam(r) = d
(

p#
a+1 ∩ f #

B , p#
A ∩ f #

b+1

)
.

When m = 1, the slope of the line containing p#
c lies in (1,∞) whereas the slope of the line contain-

ing f #
c lies in (0,1). Conclude that both R and r have opposite acute angles, so that their diameters

are the length of the diagonal connecting the vertices p#
a ∩ f #

b with p#
A+1 ∩ f #

B+1 and p#
a+1 ∩ f #

b+1

with p#
A ∩ f #

B respectively. Hence

diam(R) = d
(

p#
a ∩ f #

b , p#
A+1 ∩ f #

B+1

)

and

diam(r) = d
(

p#
a+1 ∩ f #

b+1, p#
A ∩ f #

B

)
.

In either case, we have

diam(R)2 =
(

B + k + 1

(1 − 2m)k + (A + k + 1)(B + k + 1)
− b + k

(1 − 2m)k + (a + k)(b + k)

)2

+
(

A + k + 1

(1 − 2m)k + (A + k + 1)(B + k + 1)
− a + k

(1 − 2m)k + (a + k)(b + k)

)2

and

diam(r)2 =
(

B + k

(1 − 2m)k + (A + k)(B + k)
− b + k + 1

(1 − 2m)k + (a + k + 1)(b + k + 1)

)2

+
(

A + k

(1 − 2m)k + (A + k)(B + k)
− a + k + 1

(1 − 2m)k + (a + k + 1)(b + k + 1)

)2

.

Formula (8) now yields the desired inequalities and the density of the space of Jager Pairs in Γ(m,k)

establishes their sharpness. �
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Proof of Theorem 4.2. For all integers a, b, A and B with l � a � A � L and l � b � B � L, we have

A + k + 1

(1 − 2m)k + (b + k)(A + k + 1)
� L + k + 1

(1 − 2m)k + (l + k)(L + k + 1)

and

l + k

(1 − 2m)k + (l + k)(L + k + 1)
� a + k

(1 − 2m)k + (a + k)(B + k + 1)
,

so that

0 � L − l

(1 − 2m)k + (l + k + 1)(L + k)

� A + k + 1

(1 − 2m)k + (b + k)(A + k + 1)
− a + k

(1 − 2m)k + (a + k)(B + k + 1)

� L + k + 1

(1 − 2m)k + (l + k)(L + k + 1)
− l + k

(1 − 2m)k + (l + k)(L + k + 1)

= L − l + 1

(1 − 2m)k + (l + k)(L + k + 1)
.

This argument remains identical after we exchange a for b and A for B . Furthermore, setting a = b := l
and A = B := L shows that we cannot replace these weak inequalities with strict ones. The lemma
will now provide us with the result. �

This theorem will enable us to provide bounds for the rate of growth for the sequence of ap-
proximation coefficients between time n and n + 1, assuming we know the bounds for the digits of
expansion at times n + 1, n + 2 and n + 3, as expressed in the following corollary:

Corollary 4.4. Assuming the hypothesis of the theorem, we have the inequality

max
{|θN+1 − θN |, |θN+2 − θN+1|

}
<

√
2

(
L − l + 1

(1 − 2m)k + (l + k)(L + k + 1)

)
.

Furthermore, if L − l > 1, we also have the inequality

min
{|θN+1 − θN |, |θN+2 − θN+1|

}
>

√
2

(
L − l

(1 − 2m)k + (l + k + 1)(L + k)

)
.

These results extend to the classical k = 1 cases with one exception. The upper bound statement does not apply
for the m = 1 case when an+2 = 0 and either an+1 = 0 or an+3 = 0.

Proof. When k > 1, the proof is an immediate consequence of the theorem. Plugging in m = 0 and
letting k → 1+ establishes the result for the classical Gauss case m = 0, k = 1. When m = 1, we let
k → 1+ and use the equicontinuity of the family {Ψ(1,k)}k>1 to obtain the result, once we exclude the
possibility of the unbounded region P #

0 ∩ F #
0 from belonging to the region R , when computing the

upper bound portion. This happens precisely when either an+1 = an+2 = 0 or an+2 = an+3 = 0. �
Remark 4.5. The bounds given in the last section of the introduction are readily verified once we
remember to translate the digits b2 = b3 = 1 and b4 = 3 in the classical regular continued fraction
expansion to a2 = a3 = 0 and a4 = 2 in the (0,1)-expansion.
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