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1. Introduction

For every field F let F denote its separable closure. For every field extension K|F
and variety Z defined over F let ZK denote the base change of Z to K. Let C be a
smooth projective geometrically irreducible curve defined over a field k and let F , g

denote its function field and its genus, respectively. Let π : C′ → C be a finite regular
geometrically Galois cover defined over k. Let F ′ be the function field of C′ and let S be
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the reduced ramification divisor of the cover π. Let G = Aut(C′
k
|Ck) and let Σ be the

image of Gal(k|k) in Aut(G) with respect to the natural action of Gal(k|k) on G.
Next we recall the definition of Ellenberg’s constant. Let V be the real vector space

spanned by the irreducible complex-valued characters of G � Σ, and let W be the real
vector space spanned by the irreducible complex-valued characters of G. We say that
a vector v in V (resp. in W ) is non-negative if its inner product with each irreducible
representation of G � Σ (resp. of G) is non-negative. Let c ∈ V be the coset character
of G�Σ attached to Σ, and let r ∈ W be the regular character of G. Ellenberg defines
the constant ε(G,Σ) as the maximum of the inner product 〈v, c〉 over all v ∈ V such
that

(i) v is non-negative;
(ii) r −R(v) is non-negative, where R : V → W is the restriction map.

The region of V defined by these two conditions above is a compact polytope, so ε(G,Σ)
is well-defined.

Let E be a non-isotrivial elliptic curve over F . By the Lang–Néron theorem (see [1])
the group E(F ′) is finitely generated. Let cE denote the degree of the conductor of E
and let dE denote the degree of the minimal discriminant of E. Our main result is the
following

Theorem 1.1. Assume that k has characteristic zero, and the supports of S and of the
conductor of E are disjoint. Then

rank
(
E
(
F ′)) � ε(G,Σ)

(
cE − dE/6 + 2g − 2 + deg(S)

)
. (1.1.1)

Let O(G,Σ) be the cardinality of the set of orbits of G with respect to the action
of Σ. It is easy to prove that O(G,Σ) = ε(G,Σ) when G is an abelian group (see
Proposition 2.11 of [3]). Hence we have the following immediate

Corollary 1.2. Assume that k has characteristic zero, the supports of S and of the con-
ductor of E are disjoint, and G is abelian. Then

rank
(
E
(
F ′)) � O(G,Σ)

(
cE − dE/6 + 2g − 2 + deg(S)

)
. (1.2.1)

The upper bound:

rank
(
E
(
F ′)) � O(G,Σ)(cE + 4g − 4), (1.2.2)

was first proved by Silverman in [8] under the assumption that G is abelian, the cover π
is unramified (i.e. S is empty), k is a number field, and a weak form of Tate’s conjecture
holds for E ′ where g′ : E ′ → C′ is the unique relatively minimal elliptic surface over
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k whose generic fibre is EF ′ . Later in [3] Ellenberg proved the following more general
unconditional bound:

rank
(
E
(
F ′)) � ε(G,Σ)

(
cE + 4g − 4 + 2 deg(S)

)
, (1.2.3)

without any restriction on the group, assuming that the characteristic of k is at least 5,
and without assuming that supports of S and of the conductor of E are disjoint. Note
that (1.1.1) trivially implies (1.2.3) since dE � 12 for every non-isotrivial elliptic curve E.
In fact cE � dE , so we also have the following immediate consequence of the main result:

rank
(
E
(
F ′)) � ε(G,Σ)

(
5cE/6 + 2g − 2 + deg(S)

)
,

and hence our result is stronger than Ellenberg’s bound. Moreover the bound (1.1.1) is
false for fields of positive characteristic, even in the degenerate case when G is trivial,
see for example [9].

The strategy for proving Theorem 1.1 follows Ellenberg’s original idea; it is enough
to show that the C[G]-module E(K)⊗C is the quotient of the free C[G]-module of rank
cE − dE/6 + 2g − 2 + deg(S), where K is the composition of the fields F ′ and k. In
the course of our proof of this fact we may assume without loss of generality that k is
algebraically closed. In fact by the Lefschetz principle we may also assume that k is the
field of complex numbers, which we will do from now on. However our method is different
because we use de Rham cohomology instead of étale cohomology and the easy direction
of the Lefschetz-(1, 1) theorem. (A similar idea is used in [4] by Fastenberg.) We prove
the required bounds on the multiplicity of irreducible representations of G appearing in
certain cohomology groups of E ′ via a simple equivariant Riemann–Roch theorem (see
Theorem 2.5) and an equivariant Grothendieck–Ogg–Shafarevich formula for the Euler
characteristic of constructible sheaves of complex vector spaces (Theorem 3.6) and its
applications to elliptic surfaces (Theorems 3.7 and 4.4) which we think are interesting
results on their own.

1.3. Contents

In the next section we compute the C[G]-module structure of the cohomology group
H2(E ′,OE′) using essentially the same arguments as in my previous paper [6]. We use
the Grothendieck–Ogg–Shafarevich formula to compute the C[G]-module structure of
the cohomology group H1(C′, R1g′∗C) in the third section. In the last section we combine
these results and the easy direction of the Lefschetz-(1, 1) theorem to conclude the proof
of our main result.

2. Equivariant Riemann–Roch for elliptic surfaces

Definition 2.1. In this section G will denote a finite group. Let X be a normal scheme
which is of finite type over Spec(C). Assume that the finite group G acts on X on the
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left. Let F be a coherent sheaf on X. A G-linearisation on F is a collection Ψ = {ψg}g∈G

of isomorphisms ψg : g∗(F) → F for every g ∈ G such that

(i) we have ψ1 = IdF ,
(ii) for every g, h ∈ G we have ψhg = ψh ◦ h∗(ψg),

where h∗(ψg) : (hg)∗(F) = h∗(g∗(F)) → h∗(F) is the direct image of the map
ψg : g∗(F) → F under the action of h. We define a G-sheaf over X to be a sheaf on X

equipped with a G-linearisation. A coherent G-sheaf is a coherent sheaf on X equipped
with a G-linearisation Ψ such that ψg : g∗(F) → F is OX -linear for every g ∈ G.

Definition 2.2. Let K(C[G]) denote the Grothendieck group of all finitely generated
C[G]-modules. For every finitely C[G]-module M let [M ] denote its class in K(C[G]).
Let f : X → Y be a G-cover and let F be a coherent G-sheaf on X. Also assume that
Y is proper over Spec(C); then for every n ∈ N the cohomology group Hn(X,F) is a
finitely generated C[G]-module with respect to the natural C[G]-action. Therefore the
element:

χG(X,F) =
∑
n∈N

(−1)n
[
Hn(X,F)

]
∈ K

(
C[G]

)

is well-defined.

In addition to the assumptions above also suppose now that f : X → Y above is a
map of smooth, projective curves over Spec(C). Let L be a line bundle on Y . The line
bundle f∗(L) on X is naturally equipped with the structure of a coherent G-sheaf.

Lemma 2.3. With the same notation and assumptions as above the following equation
holds in K(C[G]):

χG

(
X, f∗(L)

)
= χG(X,OX) + deg(L)

[
C[G]

]
.

Proof. This is the content of Lemma 5.6 of [6] on page 524. �
Notation 2.4. Suppose now that the map f : X → Y is the cover π : C′ → C of the
introduction and let ΔE denote the discriminant of a relatively minimal elliptic surface
g : E → C whose generic fibre is E. Assume that the ramification divisor of the cover
π has support disjoint from the conductor of E. Let g′ : E ′ → C′ be the base change of
the elliptic fibration g : E → C with respect to the map π. Note that the C′-scheme E ′

is a relatively minimal regular model of the base change of E to the function field of C′

because f does not ramify at the locus of the conductor of E. Moreover E ′ is equipped
with a unique action of G such that g′ is equivariant with respect to this action and the
one on C′.
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Theorem 2.5. We have:

[
H2(E ′,OE′

)]
= dE

12
[
C[G]

]
− χG

(
C′,OC′

)
.

Proof. By definition we have:

χG

(
E ′,OE′

)
=

[
H0(E ′,OE′

)]
−
[
H1(E ′,OE′

)]
+

[
H2(E ′,OE′

)]
. (2.5.1)

By Lemma 4 of [5] on page 79 the map (g′)∗ : Pic(C′) → Pic(E ′) induced by Picard
functoriality is an isomorphism. Because this map is equivariant with respect to the
induced G-actions on Pic(C′) and Pic(E ′), we get that H1(E ′,OE′) ∼= H1(C′,OC′) as
C[G]-modules, since these modules are isomorphic to the tangent spaces at the zero of the
abelian varieties Pic(E ′) and Pic(C′), respectively. Obviously H0(E ′,OE′) ∼= H0(C′,OC′)
as C[G]-modules, hence from (2.5.1) we get that

[
H2(E ′,OE′

)]
= χG

(
E ′,OE′

)
− χG

(
C′,OC′

)
. (2.5.2)

Let Ω1
E/C, Ω1

E′/C′ denote the sheaf of relative Kähler differentials of the C-scheme E and
the C′-scheme E ′, respectively. Let ωE/C, ωE′/C′ denote respectively the pull-back of Ω1

E/C
and Ω1

E′/C′ with respect to the zero section. These sheaves are line bundles on C and C′,
respectively. Moreover by Grothendieck’s duality we have R1g′∗(OE′) = ω⊗−1

E′/C′ . Because
all boundary maps in the spectral sequence Hp(C′, Rqg′∗(OE′)) ⇒ Hp+q(E ′,OE′) are
C[G]-linear we get from the above that

χG

(
E ′,OE′

)
= χG

(
C′,OC′

)
− χG

(
C′, R1g′∗(OE′)

)
= χG

(
C′,OC′

)
− χG

(
C′, ω⊗−1

E′/C′

)
. (2.5.3)

Combining (2.5.2) and (2.5.3) we get that

[
H2(E ′,OE′

)]
= −χG

(
C′, ω⊗−1

E′/C′

)
. (2.5.4)

By definition ΔE is the zero divisor of a non-zero section of ω⊗12
E/C . Therefore deg(ΔE) =

12 deg(ωE/C). Moreover ωE′/C′ = π∗(ωE/C). Hence (2.5.4) and Lemma 2.3 imply that

[
H2(E ′,OE′

)]
= deg(ΔE)

12
[
C[G]

]
− χG

(
C′,OC′

)
. �

3. Equivariant Grothendieck–Ogg–Shafarevich for elliptic surfaces

Notation 3.1. Let X be a quasi-projective variety over C. For every constructible sheaf F
of complex vector spaces and for every n ∈ N let Hn(X,F) denote the n-th cohomology
group of F on X with respect to the analytical topology and let



A. Pál / Journal of Number Theory 137 (2014) 166–178 171
χ(X,F) =
∑
n∈N

(−1)n dimC

(
Hn(X,F)

)
∈ N

denote the Euler-characteristic of F . Assume now that X is a smooth irreducible pro-
jective curve and let F be a constructible sheaf of complex vector spaces on X. There is
an open subcurve U ⊆ X such that F|U is locally free of finite rank. We define rank(F),
the rank of F , as the rank of F|U . For every x ∈ X(C) let Fx and cx(F) denote the
stalk of F at x and the conductor of F at x given by the formula:

cx(F) = rank(F) − dimC(Fx),

respectively. Finally let

cond(F) =
∑

x∈X(C)

cx(F).

In this section our main tool will be the complex analytic version of the Grothendieck–
Ogg–Shafarevich formula:

Theorem 3.2 (Grothendieck–Ogg–Shafarevich). For every X and F as above we have:

χ(X,F) = rank(F)χ(X,C) − cond(F).

Proof. The theorem could be easily reduced to the Grothendieck–Ogg–Shafarevich for-
mula for torsion constructible sheaves (see Théorème 1 of [7] on page 133) using a
standard set of arguments. We omit the details. �
Lemma 3.3. Let F and G be constructible sheaves of complex vector spaces on X. Assume
that G is locally free in a neighbourhood of x ∈ X(C). Then

cx(F ⊗ G) = rank(G)cx(F).

Proof. Because G is locally free in a neighbourhood of x ∈ X(C), we have:

(F ⊗ G)x = Fx ⊗ Gx, and hence dimC

(
(F ⊗ G)x

)
= rank(G) dimC(Fx).

Since

rank(F ⊗ G) = rank(G) rank(F),

the claim follows immediately. �
Definition 3.4. Let G continue to denote a finite group. Let X be a quasi-projective
variety over C and assume that G acts on X on the left. Let F be a constructible sheaf
of complex vector spaces on X. A G-linearisation on F is a collection Ψ = {ψg}g∈G

of C-linear isomorphisms of sheaves ψg : g∗(F) → F for every g ∈ G such that
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(i) we have ψ1 = IdF ,
(ii) for every g, h ∈ G we have ψhg = ψh ◦ h∗(ψg),

where h∗(ψg) : (hg)∗(F) = h∗(g∗(F)) → h∗(F) is the direct image of the map
ψg : g∗(F) → F under the action of h. We define a complex constructible G-sheaf over X
to be a constructible sheaf of complex vector spaces on X equipped with a G-linearisation.

Definition 3.5. Let X be a quasi-projective variety over C. Let f : X → Y be a G-cover
and let F be a complex constructible G-sheaf on X. Then for every n ∈ N the coho-
mology group Hn(X,F) is a finitely generated C[G]-module with respect to the natural
C[G]-action. Therefore the element:

χG(X,F) =
∑
n∈N

(−1)n
[
Hn(X,F)

]
∈ K

(
C[G]

)

is well-defined.

In addition to the assumptions above also suppose now that f : X → Y above is
a map of smooth, projective curves over Spec(C). Let F be a constructible sheaf of
complex vector spaces on Y . Then f∗(F) is naturally equipped with the structure of a
complex constructible G-sheaf on X. Let j : U → Y be an open immersion and assume
that F|U is a locally free of finite rank. Assume that the map f does not ramify on the
complement of U in Y .

Theorem 3.6. With the same notation and assumptions as above the following equation
holds in K(C[G]):

χG

(
X, f∗(F)

)
= rank(F)χG(X,C) − cond(F)

[
C[G]

]
.

Proof. Let R(G) denote the set of irreducible C-valued characters of G. For every α ∈
R(G) let Δα : K(C[G]) → Z denote the unique homomorphism such that Δα([M ]) is
the multiplicity of α in the character of M for every finitely generated C[G]-module M

and let rank(α) denote the rank of α. It will be enough to show that

Δα

(
χG

(
X, f∗(F)

))
= rank(F)Δα

(
χG(X,C)

)
− rank(α) cond(F)

(
∀α ∈ R(G)

)
.

Note that there is a unique decomposition:

f∗(C) =
⊕

α∈R(G)

G⊕ rank(α)
α

in the category of constructible sheaves of complex vector spaces such that for ev-
ery α ∈ R(G) the rank of Gα is equal to rank(α) and the natural C[G]-action
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on H0(f−1(V ), f∗(Gα)) has character α where V ⊆ Y is an open subcurve such that
the restriction of f onto f−1(V ) is unramified. Since for every α ∈ R(G) we have:

Δα

(
χG

(
X, f∗(F)

))
= χ(Y,F ⊗ Gα),

Δα

(
χG(X,C)

)
= χ(Y,Gα),

it will be enough to show for every such α that

χ(Y,F ⊗ Gα) = rank(F)χ(Y,Gα) − rank(Gα) cond(F). (3.6.1)

By Theorem 3.2 for every α ∈ R(G) we have:

χ(Y,F ⊗ Gα) = rank(F) rank(Gα)χ(Y,C) − cond(F ⊗ Gα), (3.6.2)

χ(Y,Gα) = rank(Gα)χ(Y,C) − cond(Gα). (3.6.3)

Since for every x ∈ Y (C) either F or Gα is locally constant on a neighbourhood of x,
using Lemma 3.3 we get:

cond(F ⊗ Gα) = rank(Gα) cond(F) + rank(F) cond(Gα)
(
∀α ∈ R(G)

)
. (3.6.4)

Now Eq. (3.6.1) follows from combining (3.6.4) with Eqs. (3.6.2) and (3.6.3). �
Suppose again that the map f : X → Y is the cover π : C′ → C of the introduction.

Let g : E → C and g′ : E ′ → C′ be as above. Then R1g′∗(C) is a complex constructible
G-sheaf on C′. Assume that the ramification divisor of the cover π has support disjoint
from the conductor of E and let cE denote the degree of the conductor of E as in the
introduction.

Theorem 3.7. We have:

[
H1(C′, R1g′∗(C)

)]
= cE

[
C[G]

]
− 2χG

(
C′,C

)
.

Proof. By definition we have:

χG

(
C′, R1g′∗(C)

)
=

[
H0(C′, R1g′∗(C)

)]
−

[
H1(C′, R1g′∗(C)

)]
+

[
H2(C′, R1g′∗(C)

)]
.

As noted in the paragraph above Lemma 1.4 of [2] on page 5 we have:

H0(C′, R1g′∗(C)
)

= 0 = H2(C′, R1g′∗(C)
)
,

and hence

χG

(
C′, R1g′∗(C)

)
= −

[
H1(C′, R1g′∗(C)

)]
.



174 A. Pál / Journal of Number Theory 137 (2014) 166–178
By the proper base change theorem the complex constructible G-sheaves R1g′∗(C) and
π∗(R1g∗(C)) are isomorphic. Therefore we may use Theorem 3.6 to get

χG

(
C′, R1g′∗(C)

)
= rank

(
R1g∗(C)

)
χG

(
C′,C

)
− cond

(
R1g∗(C)

)[
C[G]

]
.

Since rank(R1g∗(C)) = 2 by the proper base change theorem and cond(R1g∗(C)) = cE ,
the claim is now clear. �
4. Rank bounds and Hodge theory

Notation 4.1. For every smooth projective variety X over C let NS(X) be the Néron–
Severi group of X and let

c1 : NS(X) −→ H1(X,Ω1
X/C

)

be the Chern class map of de Rham cohomology. Let s : C′ → E ′ be the zero section of
the elliptic fibration g′ : E ′ → C′ and let T (E ′) � NS(E ′) be the subgroup generated by
the algebraic equivalence classes of s(C′) and the irreducible components of the fibres
of g′. Finally let TdR(E ′) be the C-linear span of the image of T (E ′) with respect to c1.

Lemma 4.2. There is a C[G]-linear injection:

E
(
F ′)⊗ C −→ H1(E ′, Ω1

E′/C

)
/TdR

(
E ′).

Proof. By the Shioda–Tate formula:

NS
(
E ′)⊗ C ∼= E

(
F ′)⊗ C⊕ T

(
E ′)⊗ C.

The claim now follows from the fact that the map

NS
(
E ′)⊗ C −→ H1(E ′, Ω1

E′/C

)

induced by c1 is a C[G]-linear injection. �
Proposition 4.3. We have:

[
TdR

(
E ′)] =

[
H0(C′, R2g′∗(C)

)]
+

[
H2(C′, g′∗(C)

)]
.

Proof. For every finite set T let C[T ] denote the C-module of formal C-linear combination
of elements of T . When T is equipped with a left G-action C[T ] has a natural C[G]-module
structure. Let R ⊂ C′(C) be the set of all points x such that the fibre of g′ over x is
singular. For every x ∈ C′(C) let Cx denote the set of irreducible components of the fibre
of g′ over x. For every x as above and for every irreducible component i ∈ Cx let mi

denote the multiplicity of i. For every complex vector space V and subset T ⊆ V let
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〈T 〉 ⊆ V denote C-linear span of T . Equip
⊔

x∈R Cx with the G-action induced by the
G-action on E ′. Note that the subset:

M =
{ ∑

i∈Cx

mii
∣∣∣ x ∈ R

}
⊂ C

[ ⊔
x∈R

Cx

]

is G-invariant, therefore its C-linear span is a C[G]-submodule. We have the following
isomorphism of C[G]-modules:

TdR
(
E ′) ∼= T

(
E ′)⊗ C ∼= C

⊕2 ⊕ C

[ ⊔
x∈R

Cx

]
/〈M〉,

where we equip C with the trivial C[G]-module structure. Because the fibres of g′ are
connected, for every connected open subset V ⊆ C′ we have H0((g′)−1(V ),C) = C, and
hence the sheaf g′∗(C) is constant of rank 1. Consequently H2(C′, g′∗(C)) is isomorphic
to the trivial C[G]-module of dimension one.

Because the map g : E → C is projective, there is a closed immersion l : E → P
n
C

of C-schemes for some n ∈ N where p : Pn
C → C is the projective n-space over C. The

base change l′ : E ′ → P
n
C′ of l with respect to π is a G-equivariant closed immersion

of C′-schemes where we equip the C′-scheme P
n
C′ with the left G-action induced by the

natural isomorphism between P
n
C′ and the base change of P

n
C to C′. With respect to

this action the structure map p′ : P
n
C′ → C′ is G-equivariant. The map l′ furnishes

a G-equivariant C-linear homomorphism (l′)∗ : R2p′∗(C) → R2g′∗(C) of complex con-
structible G-sheaves. By the Künneth formula R2p′∗(C) = C. For every x ∈ C′(C) let
(l′)∗|x : R2p′∗(C)|x → R2g′∗(C)|x denote the fibre of (l′)∗ at x. By the proper base change
theorem there is a C-linear commutative diagram:

R2p′∗(C)|x
(l′)∗|x

R2g′∗(C)|x

C
dx

C[Cx]

such that both vertical arrows are isomorphisms and dx has image 〈
∑

i∈Cx
mii〉. For

every x ∈ C′(C) let ix : x → C′ denote the closed immersion of the point x into C′. Note
that for every complex vector space V the direct image (ix)∗(V ) is a skyscraper sheaf
on C′. By the above there is a C-linear and G-equivariant short exact sequence:

0 −→ C −→ R2g′∗(C) −→ F −→ 0 (4.3.1)

of complex constructible G-sheaves where

F =
⊕

(ix)∗
(
C[Cx]/

〈 ∑
mii

〉)
,

x∈R i∈Cx
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equipped with the tautological G-action. Note that every x ∈ C′(C) has a contractible
open neighbourhood V ⊂ C′ such that the first cohomology of the constant sheaf C on V

vanishes. Therefore the restriction of the short exact sequence (4.3.1) onto V splits.
Because the sheaf F has finite support the short exact sequence (4.3.1) splits on C′, too.
Therefore the sequence

0 −→ H0(C′,C
)
−→ H0(C′, R2g′∗(C)

)
−→ H0(C′,F

)
−→ 0

is also exact. We get that

[
H0(C′, R2g′∗(C)

)]
= [C] +

[
C

[ ⊔
x∈R

Cx

]
/〈M〉

]

and the claim follows. �
Theorem 4.4. We have:

[
H1(E ′, Ω1

E′/C

)
/TdR

(
E ′)] = (cE − dE/6)

[
C[G]

]
− χG

(
C′,C

)
.

Proof. The G-equivariant degenerating spectral sequence:

Hq
(
E ′, Ωp

E′/C

)
⇒ Hp+q

(
E ′,C

)

furnishes the equation:
[
H2(E ′,C

)]
=

[
H0(E ′, Ω2

E′/C

)]
+
[
H1(E ′, Ω1

E′/C

)]
+
[
H2(E ′,OE′

)]
. (4.4.1)

By Lemma 1.4 of [2] on page 5 the G-equivariant spectral sequence:

Hp
(
C′, Rqg′∗(C)

)
⇒ Hp+q

(
E ′,C

)

degenerates, so we get that
[
H2(E ′,C

)]
=

[
H0(C′, R2g′∗(C)

)]
+

[
H1(C′, R1g′∗(C)

)]
+

[
H2(C′, R0g′∗(C)

)]
. (4.4.2)

Combining Eqs. (4.4.1) and (4.4.2) with Proposition 4.3 we get that
[
H1(E ′, Ω1

E′/C

)
/TdR

(
E ′)] =

[
H1(C′, R1g′∗(C)

)]
−
[
H0(E ′, Ω2

E′/C

)]
−

[
H2(E ′,OE′

)]
. (4.4.3)

Let (·)∨ : K(C[G]) → K(C[G]) denote the unique group homomorphism such that
[M ]∨ is the isomorphism class of the dual HomC(M,C) for every finitely generated
k[G]-module M . Serre’s duality furnishes a perfect pairing
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H0(E ′, Ω2
E′/C

)
×H2(E ′,OE′

)
→ H2(E ′, Ω2

E′/C

)
= C (4.4.4)

which is C[G]-linear, therefore

[
H0(E ′, Ω2

E′/C

)]
=

[
H2(E ′,OE′

)]∨ = dE
12

[
C[G]

]
− χG

(
C′,OC′

)∨ (4.4.5)

by Theorem 2.5. Because the boundary maps in the spectral sequence:

Hq
(
C′, Ωp

C′/C

)
⇒ Hp+q

(
C′,C

)

are C[G]-linear we get that

χG

(
C′,C

)
= χG

(
C′,OC′

)
− χG

(
C′, Ω1

C′/C

)
. (4.4.6)

Serre’s duality furnishes a perfect pairing

H0(C′, Ω1
C′/C

)
×H1(C′,OC′

)
→ H1(C′, Ω1

C′/C

)
= C

which is C[G]-linear, therefore

χG

(
C′, Ω1

C′/C

)
= −χG

(
C′,OC′

)∨
. (4.4.7)

Combining Theorem 2.5 and (4.4.5) with Eqs. (4.4.6) and (4.4.7) we get that

[
H0(E ′, Ω2

E′/C

)]
+
[
H2(E ′,OE′

)]
= dE

6
[
C[G]

]
− χG

(
C′,C

)
. (4.4.8)

The claim now follows from Eqs. (4.4.3) and (4.4.8) and from Theorem 3.7. �
Proof of Theorem 1.1. We are going to use the notation of the proof of Theorem 3.6.
By Lemma 4.2 it will be enough to show that

Δα

([
H1(E ′, Ω1

E′/C

)
/TdR

(
E ′)]) � rank(α)

(
cE − dE/6 + 2g − 2 + deg(S)

)

for every α ∈ R(G). In order to do so, it will be enough to prove that

−Δα

(
χG

(
C′,C

))
� rank(α)

(
2g − 2 + deg(S)

)

for every α ∈ R(G) by Theorem 4.4. We have

−Δα

(
χG

(
C′,C

))
= −χ(C,Gα) = rank(Gα)(2g − 2) + cond(Gα)

for every α ∈ R(G) by Theorem 3.2. Also note that cx(Gα) � rank(Gα) for every x ∈ S

because dimC((Gα)x) is non-negative. Since cx(Gα) = 0 for every x ∈ X(C) − S, the
claim is now clear. �
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