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1. Introduction

Several different methods to construct minimal polynomials of Salem numbers have 
been investigated in the literature (see e.g. [1,2,6,11]). Various authors associate Salem 
numbers with Coxeter polynomials and use this relation in order to construct Salem 
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numbers (cf. for instance [3–5,7,9]). In this paper we follow the very explicit approach 
of Gross et al. [5] and provide precise information on the decomposition of Coxeter 
polynomials of certain star-like trees into irreducible factors, thereby giving estimates on 
the degree of the occurring Salem factor.

To be more precise, let r, a0, . . . , ar ∈ N such that a0 ≥ 2, . . . , ar ≥ 2. We consider the 
star-like tree T = T (a0, . . . , ar) with r + 1 arms of a0 − 1, . . . , ar − 1 edges, respectively. 
According to [9, Lemma 5] the Coxeter polynomial of T (a0, . . . , ar) is given by

RT (a0,...,ar)(z) =
r∏

i=0

(zai − 1
z − 1

)(
z + 1 − z

r∑
i=0

zai−1 − 1
zai − 1

)
.

Note that RT can be written as

RT (z) = C(z)S(z), (1.1)

where C is a product of cyclotomic polynomials and S is the minimal polynomial of a 
Salem number or of a quadratic Pisot number. Indeed, by the results of [10], the zeros of 
RT are either real and positive or have modulus 1. The decomposition (1.1) now follows 
from [9, Corollaries 7 and 9, together with the remark after the latter], as these results 
imply that RT has exactly one irrational real positive root of modulus greater than 1.

For Coxeter polynomials corresponding to star-like trees with three arms we are able 
to say much more about the factors of the decomposition (1.1). In particular, we shall 
prove the following result.

Theorem 1. Let a0, a1, a2 ∈ Z such that a2 > a1 > a0 > 1 and (a0, a1, a2) �= (2, 3, t) for 
all t ∈ {4, 5, 6}. Further, let T := T (a0, a1, a2) be the star-like tree with three arms of 
a0 − 1, a1 − 1, a2 − 1 edges, and let λ be its largest eigenvalue. Then τ > 1 defined by

√
τ + 1/

√
τ = λ

is a Salem or a quadratic Pisot root of the Coxeter polynomial RT of T . If S is the 
minimal polynomial of τ then we can write

RT (x) = S(x)C(x), (1.2)

where C is a product of cyclotomic polynomials of orders bounded by 420(a2 − a1 +
a0 − 1) whose roots have multiplicity bounded by an effectively computable constant 
m(a0, a2 − a1). Thus

degS ≥ degRT −m(a0, a2 − a1)
∑

k≤420(a2−a1+a0−1)

ϕ(k), (1.3)

where ϕ denotes Euler’s ϕ-function.
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Remark 1.1 (Periodicity properties of cyclotomic factors). Gross et al. [5] study certain 
Coxeter polynomials and prove periodicity properties of their cyclotomic factors. Con-
trary to their case, our Coxeter polynomials RT do not have the same strong separability 
properties (cf. Lemma 2.2). For this reason, we could not exhibit analogous results for 
C(x), however, we obtain weaker periodicity properties in the following way.

In the setting of Theorem 1 assume that a0 as well as a2 − a1 are constant. For 
convenience set Sa1 = RT (a0,a1,a2) and let ζk be a root of unity of order k. It follows from 
(2.2) below (see (2.1) for the definition of P ) that Sa1(ζk) = 0 if and only if Sa1+k(ζk) = 0, 
i.e., the fact that the k-th cyclotomic polynomial divides Sa1 depends only on the residue 
class of a1 (mod k). Therefore, setting K := lcm{1, 2, . . . , 420(a2−a1+a0−1)}, the set of 
all cyclotomic polynomials dividing Sa1 is determined by the residue class of a1 (mod K).

If we determine the set {k : k ≤ 420(a2 − a1 + a0 − 1), Sa1(ζk) = 0} for all a1 ≤ K

we thus know exactly which cyclotomic factor divides which of the polynomials Sa1 for 
a1 ∈ N. Obviously, this knowledge would allow to improve the bound (1.3).

Remark 1.2 (Degrees of the Salem numbers). Theorem 1 enables us to exhibit Salem 
numbers of arbitrarily large degree. Indeed, if a0 and the difference a2 − a1 are kept 
small and a1 → ∞ then (1.3) assures that degS → ∞. We also mention here that 
Gross and McMullen [6, Theorem 1.6] showed that for any odd integer n ≥ 3 there exist 
infinitely many unramified Salem numbers of degree 2n; recall that a Salem polynomial 
f is said to be unramified if it satisfies |f(−1)| = |f(1)| = 1. The construction pursued 
in this work substantially differs from ours: it is proved that every unramified Salem 
polynomial arises from an automorphism of an indefinite lattice.

If two of the arms of the star-like tree under consideration get longer and longer, the 
associated Salem numbers converge to the m-bonacci number ϕm, where m is the (fixed) 
length of the third arm. This is made precise in the following theorem.

Theorem 2. Let a1 > a0 ≥ 2 and η ≥ 1 be given and set a2 = a1 + η. Then, for a1 → ∞, 
the Salem root τ(a0, a1, a2) of the Coxeter polynomial associated with T (a0, a1, a2) con-
verges to ϕa0 , where the degree of τ(a0, a1, a2) is bounded from below by (1.3).

Besides that, we are able to give the following result which is valid for more general 
star-like trees.

Theorem 3. Let r ≥ 1, ar > · · · > a1 > a0 ≥ 2, and choose k ∈ {1, . . . , r − 1}. Then, 
for fixed a0, . . . , ak and ak+1, . . . , ar → ∞, the Salem root τ(a0, . . . , ar) of the Coxeter 
polynomial associated with T (a0, . . . , ar) converges to the dominant Pisot root of

Q(z) = (z + 1 − r + k)
k∏

i=0
(zai − 1) − z

k∑
i=0

(zai−1 − 1)
k∏

j=0
j �=i

(zaj − 1). (1.4)
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2. Salem numbers generated by Coxeter polynomials of star-like trees

For convenience, we introduce the polynomial

P (z) := (z − 1)r+1RT (a0,...,ar)(z)

=
( r∏

i=0
(zai − 1)

)
(z + 1) − z

r∑
i=0

(
(zai−1 − 1)

r∏
j=0, j �=i

(zaj − 1)
)
. (2.1)

Of course, like RT , the polynomial P can be decomposed as a product of a Salem (or 
quadratic Pisot) factor times a factor containing only cyclotomic polynomials.

Now, we concentrate on star-like trees with three arms, i.e., we assume that r = 2.

Lemma 2.1. Let a2 > a1 > a0. Then for T (a0, a1, a2) the polynomial P (z) reads

P (z) = za1+a2Q(z) + za1+1R(z) + S(z) (2.2)

with

Q(z) = za0+1 − 2za0 + 1,

R(z) = za2−a1+a0−1 − za2−a1 + za0−1 − 1,

S(z) = −za0+1 + 2z − 1.

Moreover,

max{deg(Q),deg(R),deg(S)} = a2 − a1 + a0 − 1, deg(P ) = a0 + a1 + a2 + 1,

and the (naive) height of P equals 2.

Proof. This can easily be verified by direct computation. �
Lemma 2.2. Let a2 > a1 > a0 and let P as in (2.1) be associated with T (a0, a1, a2). 
Then there exists an effectively computable constant m = m(a0, a2 − a1) which bounds 
the multiplicity of every root z of P with |z| = 1.

Proof. Observe, that 1 is a root of Q, R, and S. Thus, for technical reasons, we work 
with P̃ (z) = P (z)/(z − 1) and, defining Q̃(z), R̃(z), and S̃(z) analogously, we write

P̃ (z) = za1+a2Q̃(z) + za1+1R̃(z) + S̃(z).

Our first goal is to bound the n-th derivatives |P̃ (n)(z)| with |z| = 1 away from zero. To 
this end we define the quantities
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η(a0) := min{|Q̃(z)| : |z| = 1} > 0,

En = En(a0) := max{|Q̃(k)(z)| : 1 ≤ k ≤ n, |z| = 1},
F0 = F0(a0, a2 − a1) := max{|R̃(z)| : |z| = 1},

Fn = Fn(a0, a2 − a1, n) := max{|R̃(k)(z)| : 1 ≤ k ≤ n, |z| = 1},
Gn = G(a0, n) := max{|S̃(n)(z)| : |z| = 1}.

For n ≥ 1 one easily computes that (note that (x)n = x(x − 1) · · · (x − n + 1) denotes 
the Pochhammer symbol)

P̃ (n)(z) = (a1 + a2)(n)Q̃(z)za1+a2−n + (a1 + 1)(n)R̃(z)za1+1−n

+
n−1∑
k=0

(
n

k

)
(a1 + a2)(k)Q̃

(n−k)(z)za1+a2−k

+
n−1∑
k=0

(
n

k

)
(a1 + 1)(k)R̃

(n−k)(z)za1+1−k + S̃(n)(z).

Now for |z| = 1 we estimate

|P̃ (n)(z)| ≥ (a1 + a2)(n)η(a0) − 2−n+1(a1 + a2)(n)F0

− 2n−1(a1 + a2)(n−1)En − 2n−1(a1 + 1)(n−1)Fn −Gn

≥ (a1 + a2)(n)

(
η(a0) − 2−n+1F0 −

2n−1(En + Fn)
a1 + a2 − n + 1 − Gn

(a1 + a2)(n)

)
. (2.3)

Now we fix a0 and the difference a2 − a1. Then we choose n0 = n0(a0, a2 − a1) such that

η(a0) − 2−n0+1F0 > 0.

In view of (2.3) there exists a constant c = c(a0, a2 − a1) such that for all a1, a2 with 
a1 + a2 > c (with our fixed difference) we have |P̃ (n0)(z)| > 0 for all z with |z| = 1. If, 
on the other hand, a1 + a2 ≤ c, then we have deg P̃ ≤ c + a0. Therefore, in any case, 
the multiplicity of a root of P̃ on the unit circle is bounded by max(n0, c + a0) and the 
result follows by taking m = max(n0, c + a0) + 1. �

The following lemma is a simple special case of Mann’s Theorem.

Lemma 2.3. Let a, b, c, p, q ∈ Z such that (p, q) �= (0, 0) and a, b, c nonzero. If ζ is a root 
of unity such that

aζp + bζq + c = 0

then the order of ζ divides 6 gcd(p, q).
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Proof. This is a special case of [8, Theorem 1]. �
For subsequent use we recall some notation and facts (used in a similar context in [5]). 

A divisor on the complex plane is a finite sum

D =
∑
j∈J

aj · zj

where aj ∈ Z \ {0} and

supp(D) := {zj ∈ C : j ∈ J}

is the support of D; D is said to be effective if all its coefficients are positive.
The set of all divisors on C forms the abelian group Div(C), and the natural evaluation 

map σ : Div(C) → C is given by

σ(D) =
∑
j∈J

ajzj .

A polar rational polygon (prp) is an effective divisor D =
∑

j∈J aj · zj such that each 
zj is a root of unity and σ(D) = 0. In this case the order o(D) is the cardinality of 
the subgroup of C \ {0} generated by the roots of unity {zj/zk : j, k ∈ J}. The prp D is 
called primitive if there do not exist nonzero prp’s D′ and D′′ such that D = D′ + D′′. 
In particular, the coefficients of D′, D′′ are positive, thus each prp can be expressed as 
a sum of primitive prp’s.

Every polynomial f ∈ Z[X] \ {0} can be uniquely written in the form

f =
∑
j∈J

εjajX
j (2.4)

with J ⊆ {0, . . . ,deg(f)}, εj = ±1 and aj > 0. We call

	(f) := Card(J)

the length of f . For ζ ∈ C with f(ζ) = 0 we define the effective divisor of f (w.r.t. ζ) by

Df(ζ) :=
∑
j∈J

aj(εjζj).

Proposition 2.4. Let a2 > a1 > a0 and let P as in (2.1) be associated with T (a0, a1, a2). 
If ζ is a root of unity such that P (ζ) = 0 then the order of ζ satisfies

ord(ζ) ≤ 420(a2 − a1 + a0 − 1).
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Proof. We follow the proof of [5, Theorem 2.1] and write the polynomials Q, R, S in the 
form

Q(X) =
∑

Qj(X), R(X) =
∑

Rj(X), S(X) =
∑

Sj(X)

with finite sums of integer polynomials such that

DP (ζ) =
∑
j

DPj(ζ) =
∑
j

(
ζa1+a2DQj(ζ) + ζa1+1DRj(ζ) + DSj(ζ)

)

is a decomposition of the divisor DP (ζ) into primitive polar rational polygons DPj(ζ), 
thus for every j the sum

ζa1+a2Qj(ζ) + ζa1+1Rj(ζ) + Sj(ζ)

is the evaluation of the primitive prp DPj(ζ). Observe that in view of Lemma 2.1 the 
(naive) height of the polynomials Qj , Rj , Sj does not exceed 2 since the coefficients 
cannot increase when performing the decomposition of a prp into primitive prp’s.

Case 1: max {	(Qj), 	(Rj), 	(Sj)} > 1 for some j.
Let us first assume 	(Qj) > 1 for some j. The ratio of any two roots of unity occurring 

in DQj(ζ) can be written in the form ±ζe with 1 ≤ e ≤ deg(Qj) ≤ deg(Q). Therefore 
we have

ord(ζ)
2 deg(Q) ≤ o(DPj(ζ)).

By Mann’s Theorem [8], o(DPj(ζ)) is bounded by the product of primes at most equal 
to

	(Pj) ≤ 	(Qj) + 	(Rj) + 	(Sj) ≤ 	(Q) + 	(R) + 	(S) ≤ 3 + 4 + 3 = 10.

The product of the respective primes is at most 2 ·3 ·5 ·7 = 210. Therefore by Lemma 2.1
we find

ord(ζ)
2(a0 + 1) = ord(ζ)

2 deg(Q) ≤ 210,

which yields

ord(ζ) ≤ 420(a0 + 1).

Analogously, the other two cases yield

ord(ζ) ≤ 420(a2 − a1 + a0 − 1) or ord(ζ) ≤ 420(a0 + 1),
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and we conclude

ord(ζ) ≤ 420 max {a0 + 1, a2 − a1 + a0 − 1} = 420(a2 − a1 + a0 − 1). (2.5)

Case 2: max {	(Qj), 	(Rj), 	(Sj)} ≤ 1 for all j.
In this case, DPj(ζ) is either of the form

DPj(ζ) = cj1ζ
bj1 + cj2ζ

bj2 (2.6)

or of the form

DPj(ζ) = cj1ζ
bj1 + cj2ζ

bj2 + cj3ζ
bj3 , (2.7)

where cji ∈ {−2, . . . , 2} by Lemma 2.2. We distinguish two subcases.

Case 2.1: There exists j such that DPj(ζ) is of the form (2.7).
In this situation DPj(ζ) can be written more explicitly as

DPj(ζ) = cj1ζ
a1+a2+η1 + cj2ζ

a1+η2 + cj3ζ
η3 (2.8)

or

DPj(ζ) = cj1ζ
a1+a2+η1 + cj2ζ

a2+η2 + cj3ζ
η3 , (2.9)

where η1 ∈ {0, a0, a0 + 1}, η2 ∈ {1, a0}, and η3 ∈ {0, 1, a0 + 1}. If DPj(ζ) is as in (2.8)
then Pj(ζ) = 0 implies that

cj1ζ
a1+a2+η1−η3 + cj2ζ

a1+η2−η3 + cj3 = 0.

Now, using Lemma 2.3 we gain

ord(ζ) | 6 gcd(a1 + a2 + η1 − η3, a1 + η2 − η3)

which yields

ord(ζ) | 6(a2 − a1 + η1 − 2η2 + η3),

hence,

ord(ζ) ≤ 6(2a0 + a2 − a1). (2.10)

If DPj(ζ) is as in (2.9), by analogous arguments we again obtain (2.10).

Case 2.2: For all j the divisor DPj(ζ) is of the form (2.6).
In this case we have to form pairs of the 10 summands of DP (ζ) to obtain the divisors 

DPj(ζ). As 	(R) = 	(S) = 4 there must exist j1, j2 such that 	(Rj1) = 0 and 	(Sj2) = 0. 
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In what follows, cij ∈ {−2, . . . , 2}, and η1, η′1 ∈ {0, a0, a0 + 1}, η2, η′2 ∈ {1, a0}, and 
η3, η′3 ∈ {0, 1, a0 + 1}. Then DPj1(ζ) is of the form

DPj1(ζ) = cj11ζ
a1+a2+η1 + cj13ζ

η3 (2.11)

which yields

cj11ζ
a1+a2+η1−η3 + cj13 = 0,

and, hence,

ord(ζ) | 2(a1 + a2 + η1 − η3). (2.12)

For DPj2(ζ) we have two possibilities. Either we have

DPj2(ζ) = cj21ζ
a1+a2+η′

1 + cj22ζ
a1+η′

2 . (2.13)

This yields

cj21ζ
a2+η′

1−η′
2 + cj22 = 0,

and, hence,

ord(ζ) | 2(a2 + η′1 − η′2). (2.14)

The second alternative for DPj2(ζ) reads

DPj2(ζ) = cj21ζ
a1+a2+η′

1 + cj22ζ
a2+η′

2 . (2.15)

This yields

cj21ζ
a1+η′

1−η′
2 + cj22 = 0,

and, hence,

ord(ζ) | 2(a1 + η′1 − η′2). (2.16)

If Pj2 is of the form (2.13), then (2.12) and (2.14) yield that

ord(ζ) | 2 gcd(a1 + a2 + η1 − η3, a2 + η′1 − η′2),

hence, ord(ζ) | 2(a1 − a2 + η1 − 2η′1 + 2η′2 − η3) and therefore

ord(ζ) ≤ 2(a2 − a1 + 3a0 + 1). (2.17)
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If Pj2 is of the form (2.15), then (2.12) and (2.16) yield

ord(ζ) | 2 gcd(a1 + a2 + η1 − η3, a1 + η′1 − η′2),

hence, (2.17) follows again.
Summing up, the proposition is proved by combining (2.5), (2.10), and (2.17). �
Combining results from [9] with our previous considerations we can now prove the 

main theorem of this paper.

Proof of Theorem 1. The fact that τ is either a Salem number or a quadratic Pisot 
number as well as the decomposition of RT given in (1.2) follows immediately from (1.1). 
The bound on the orders of the roots of the cyclotomic polynomials is a consequence 
of Proposition 2.4. Together with Lemma 2.2 this proposition yields the estimate (1.3)
on the degree of S, where the explicitly computable constant m(a0, a2 − a1) is the one 
stated in Lemma 2.2. �
3. Convergence properties of Salem numbers generated by star-like trees

In this section we prove Theorems 2 and 3. In the following proof of Theorem 2 we 
denote by Mm(x) = xm − xm−1 − · · · − x − 1 the minimal polynomial of the m-bonacci 
number ϕm.

Proof of Theorem 2. Note that Q(x) = (x −1)Ma0(x) holds. The theorem is proved if for 
each ε > 0 the polynomial P (x) has a root ζ in the open ball Bε(ϕa0) for all sufficiently 
large a1. We prove this by using Rouché’s Theorem. Let ε > 0 be sufficiently small and 
set Cε := ∂Bε(ϕa0). Then δ := min{|Ma0(x)| : x ∈ Cε} > 0. Thus, on Cε we have the 
following estimations.

|xa1+1R(x) + S(x)| < (ϕa0 + ε)a1+14(ϕa0 + ε)η+a0−1 + 4(ϕa0 + ε)a0+1,

|xa1+a2Q(x)| > (ϕa0 − ε)2a1+η(ϕa0 − 1 − ε)δ. (3.1)

Combining these two inequalities yields

|P (x)| > (ϕa0 − ε)2a1+η(ϕa0 − 1 − ε)δ − 4(ϕa0 + ε)a1+a0+η − 4(ϕa0 + ε)a0+1. (3.2)

Since (3.1) and (3.2) imply that for sufficiently large a1 we have

|P (x)| > |xa1+1R(x) + S(x)| (x ∈ Cε),

Rouché’s Theorem yields that P (x) and xa1+a2(x − 1)Ma0(x) have the same number of 
roots in Bε(ϕa0). Thus our assertion is proved. �
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To prove Theorem 3 we need the following auxiliary lemma.

Lemma 3.1. Let r ≥ 1, ar > · · · > a1 > a0 ≥ 2, and choose k ∈ {1, . . . , r− 1}. If P is as 
in (2.1) and Q as in (1.4) then, for fixed a0, . . . , ak and ak+1, . . . , ar sufficiently large, 
we have

#{ξ ∈ C : P (ξ) = 0, |ξ| > 1} = #{ξ ∈ C : Q(ξ) = 0, |ξ| > 1} = 1.

Proof. First observe that

P (z) = zak+1+···+arQ(z) + O(zak+2+···+ar+η) (3.3)

for some fixed constant η ∈ N. Since by (1.1) the polynomial P has exactly one (Salem) 
root outside the unit disk, it is sufficient to prove the first equality in the statement of 
the lemma.

We first show that Q has at least one root ξ with |ξ| > 1. This is certainly true for 
k < r − 2 as in this case we have |Q(0)| > 1. For k ∈ {r − 2, r − 1} we see that

Q(�)(1) = 0, for 0 ≤ 	 < a0 + · · · + ak − 1, Q(a0+···+ak−1)(1) < 0.

As the leading coefficient of Q is positive, this implies that Q(ξ) = 0 for some ξ > 1.
Now we show that Q has at most one root ξ with |ξ| > 1. Assume on the contrary 

that there exist two distinct roots ξ1, ξ2 ∈ C of Q outside the closed unit circle. Applying 
Rouché’s Theorem to P (z) and zak+1+···+arQ(z) shows by using (3.3) that also P has 
two zeros outside the closed unit circle which contradicts the fact that P is a product of 
a Salem polynomial and cyclotomic polynomials, see (1.1). �
Proof of Theorem 3. From Lemma 3.1 and (1.4) we derive that

Q(z) = C(z)T (z)zs,

where s ∈ {0, 1} and T is a Pisot or a Salem polynomial. To show the theorem we 
have to prove that T is a Pisot polynomial. It suffices to show that C(z)T (z) is not 
self-reciprocal.

We distinguish three cases. If k < r−2 then |C(0)T (0)| > 1, hence, as this polynomial 
has leading coefficient 1 it cannot be self-reciprocal.

Denote the 	-th coefficient of the polynomial f by [z�]f(z). If k = r − 2 we have 
[z]C(z)T (z) = 2(−1)r−1 and [za0+···+ar−2 ]C(z)T (z) = −r. As k > 0 we have r > 2 and 
again the polynomial cannot be self-reciprocal.

Finally for k = r − 1 we have [z]C(z)T (z) = 0 and [za0+···+ar−1−1]C(z)T (z) = −r

which again excludes self-reciprocity of C(z)T (z). �



96 H. Brunotte, J.M. Thuswaldner / Journal of Number Theory 153 (2015) 85–96
4. Concluding remarks

In this note we have studied Coxeter polynomials of star-like trees with special em-
phasis on star-like trees with three arms. It would be nice to extend Theorem 2 to 
star-like trees T (a0, . . . , ar) with four and more arms in order to get lower estimates on 
the degrees of the Salem polynomials involved in Theorem 3. In fact, the estimate on 
the maximal multiplicity of the irreducible factors of RT contained in Lemma 2.2 can 
be carried over to star-like trees with larger values of r. Concerning Proposition 2.4, the 
argument based on Mann’s Theorem used in order to settle Case 1 of its proof can be 
extended to T (a0, . . . , ar), however, in the situation of Case 2 we were not able to prove 
that the orders of the occurring roots of unity are bounded by a reasonable bound. We 
expect that a generalization of this case requires new ideas.

Acknowledgment

The authors are indebted to the referee for insightful comments on the first version 
of this paper.

References

[1] M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J.P. Schreiber, Pisot 
and Salem Numbers, Birkhäuser Verlag, Basel, 1992.

[2] D.W. Boyd, Small Salem numbers, Duke Math. J. 44 (2) (1977) 315–328.
[3] J.W. Cannon, P. Wagreich, Growth functions of surface groups, Math. Ann. 293 (1992) 239–257.
[4] W. Floyd, S. Plotnick, Growth functions for semi-regular tilings of the hyperbolic plane, Geom. 

Dedicata 53 (1994) 1–23.
[5] B.H. Gross, E. Hironaka, C.T. McMullen, Cyclotomic factors of Coxeter polynomials, J. Number 

Theory 129 (2009) 1034–1043.
[6] B.H. Gross, C.T. McMullen, Automorphisms of even unimodular lattices and unramified Salem 

numbers, J. Algebra 257 (2002) 265–290.
[7] P. Lakatos, Salem numbers defined by Coxeter transformation, Linear Algebra Appl. 432 (2010) 

144–154.
[8] H.B. Mann, On linear relations between roots of unity, Mathematika 12 (1965) 107–117.
[9] J.F. McKee, P. Rowlinson, C.J. Smyth, Salem numbers and Pisot numbers from stars, in: Number 

Theory in Progress, vol. 1, Zakopane–Kościelisko, 1997, de Gruyter, Berlin, 1999, pp. 309–319.
[10] J.A. de la Peña, Coxeter transformations and the representation theory of algebras, in: Finite-

Dimensional Algebras and Related Topics, Ottawa, ON, 1992, in: NATO Adv. Sci. Inst. Ser. C 
Math. Phys. Sci., vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, pp. 223–253.

[11] C. Smyth, Seventy years of Salem numbers: a survey, preprint, 2014, available under arXiv:
1408.0195.

http://refhub.elsevier.com/S0022-314X(15)00058-X/bib4244475053s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib4244475053s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib626F7964s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib63616E6E77616772s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib666C6F7964706C6F746E69636Bs1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib666C6F7964706C6F746E69636Bs1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib67726F6869726D636Ds1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib67726F6869726D636Ds1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib67726F73736D636D756C6C656Es1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib67726F73736D636D756C6C656Es1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib6C616B61746F73s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib6C616B61746F73s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib6D616E6Es1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib6D636B726F77736D79s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib6D636B726F77736D79s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib70656E61s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib70656E61s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib70656E61s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib736D797468s1
http://refhub.elsevier.com/S0022-314X(15)00058-X/bib736D797468s1

	Salem numbers from a class of star-like trees
	1 Introduction
	2 Salem numbers generated by Coxeter polynomials of star-like trees
	3 Convergence properties of Salem numbers generated by star-like trees
	4 Concluding remarks
	Acknowledgment
	References


