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We define epsilon factors for irreducible representations of fi-
nite general linear groups using Macdonald’s correspondence. 
These epsilon factors satisfy multiplicativity, and are express-
ible as products of Gauss sums. The tensor product epsilon 
factors are related to the Rankin-Selberg gamma factors, by 
which we prove that the Rankin-Selberg gamma factors can 
be written as products of Gauss sums. The exterior square ep-
silon factors relate the Jacquet-Shalika exterior square gamma 
factors and the Langlands-Shahidi exterior square gamma fac-
tors for level zero supercuspidal representations. We prove 
that these exterior square factors coincide in a special case.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Long before the local Langlands correspondence was established by Harris-Taylor [6]
and Henniart [7], Macdonald had already established a correspondence between irre-
ducible representations of GLn(k), k a finite field, and inertia equivalence classes of 
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admissible tamely ramified n-dimensional Weil-Deligne representations of WK , where 
K is a non-archimedean local field with residue field k and WK is the Weil group of 
K. This correspondence matches epsilon factors. In view of [17, (A.1)], Macdonald’s 
correspondence is the restriction of the local Langlands correspondence to level zero 
representations.

Let o be the ring of integers of K, p ⊂ o be its prime ideal. Let q be the size of k. 
Let ψ be an additive character of K of conductor p, i.e., ψ is trivial on p but not on o. 
Thus, it descends to a non-trivial additive character ψ on k. Let dx be the Haar measure 
on K normalized such that p has volume q−

1
2 . If φ is a tamely ramified n-dimensional 

Weil-Deligne representation of WK corresponding to the irreducible representation π of 
GLn(k), then the match of epsilon factors asserts that

ε(π, ψ) = ε0(φ, ψ, dx).

Here ε(π, ψ) is the Godement-Jacquet epsilon factor of π defined in [10], and ε0(φ, ψ, dx)
is the arithmetic epsilon factor defined by Deligne in [3]. We note that operations such 
as direct sums, tensor products, exterior powers and symmetric powers preserve tame 
ramification of Weil-Deligne representations of WK . Thus in the spirit of Macdonald’s 
correspondence, we define various ε0-factors of representations over the finite field with 
respect to these operations in a way that they match the arithmetic ε0-factors of Deligne, 
see Definition 3.2. The immediate benefit of such definition is that ε0-factors over finite 
fields inherit good properties from the arithmetic ε0-factors of Deligne. The most impor-
tant ones are multiplicativity and being expressible as products of Gauss sums.

ε0-factors over finite fields agree with those gamma factors coming from integral rep-
resentations. In Section 4, we write down explicitly the formulas for the finite ε0-factors 
with respect to the tensor product operation in terms of Gauss sums. Then we show that 
they are equal to the corresponding Rankin-Selberg gamma factors defined in [15,12,19], 
up to some effective constants. Since ε0-factors can be written as products of Gauss sums, 
we then prove in Corollary 4.5 that the Rankin-Selberg gamma factors are also products 
of Gauss sums, which answers [14, Conjecture 2.2].

Section 5 is similar to Section 4, only that we analyze the exterior square epsilon 
factors in this section. The exterior square epsilon factors are also multiplicative and are 
products of Gauss sums. We will not repeat the proofs of these statements, since the 
techniques are demonstrated in Section 4. The exterior square epsilon factor is equal, up 
to some constant cf , to the exterior square gamma factor defined in [21]. Unfortunately, 
the constants cf are not effective. We conjecture that cf = 1, which is roughly equivalent 
to the statement that the two exterior square epsilon factors coming from the Jacquet-
Shalika integral representation and the Langlands-Shahidi method coincide.

Acknowledgments. We would like to thank Colin Bushnell for pointing us to [10]. We 
are especially grateful to James Cogdell for careful readings of the paper and his helpful 
comments.
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2. Tamely ramified representations

Let K be a non-archimedean local field with residue field k of size q. Let o be the ring of 
integers of K and p = (�) be the maximal ideal of o, where � is a fixed uniformizer. Then 
k is isomorphic to o/p. Set K and k as the separable closures of K and k respectively. 
We have a short exact sequence

1 → I → Gal(K/K) → Gal(k/k) ∼= Ẑ → 1,

where I is called the inertia subgroup, and Ẑ = lim←−−
m

Z/mZ is the inverse limit of the Galois 

groups of the finite degree field extensions of k. The pro-p subgroup P of I (where p is 
the characteristic of k) is the wild inertia subgroup of K. Taking the preimage of Z ⊂ Ẑ, 
we obtain another short exact sequence involving the Weil group W of K:

1 → I → W (K/K) → Z → 1.

For convenience, we set W = W (K/K). Let Kun ⊂ K be the maximal unramified 
extension of K. Let F ∈ Gal(Kun/K) be a geometric Frobenius element, i.e., it is the 
inverse image of an automorphism of k/k, also denoted by F , defined by F (xq) = x for 
x ∈ k. Then W = I � 〈F 〉. We define a norm ‖·‖ on W by setting

‖i‖ = 1, ‖F‖ = q−1,

where i ∈ I.
A Weil-Deligne representation of W is a pair φ = (ρ, N) satisfying the following 

conditions:

(1) ρ : W → GL(V ) is a finite dimensional representation on V over C, such that ρ(w)
is semisimple for w ∈ W , and ker(ρ) contains an open subgroup of I;

(2) N : V → V is nilpotent, and ρ(w)Nρ(w)−1 = ‖w‖ ·N for w ∈ W .

The degree (or dimension) of φ is set to be dim ρ. If ker(ρ) contains I (resp. P ), then ρ
and φ are said to be unramified (resp. tamely ramified). Two Weil-Deligne representations 
φ = (ρ, N) and φ′ = (ρ′, N ′) are equivalent if there exists a linear isomorphism α : V →
V ′ such that the following two diagrams commute for all w ∈ W , where V and V ′ are 
the underlying vector spaces of ρ and ρ′ respectively.

V V ′

V V ′

α

ρ(w) ρ′(w)

α

V V ′

V V ′

α

N N ′

α

Similarly, φ and φ′ are said to be I-equivalent if the above diagrams commute with ρ and 
ρ′ replaced by their restrictions to I with some linear isomorphism α : V → V ′. Following 
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the notations in [10, Section 3], we set Φt(GLn) to be the set of equivalence classes of 
tamely ramified Weil-Deligne representations of W of degree n, and set Φt

I(GLn) to be 
the set of I-equivalence classes of tamely ramified Weil-Deligne representations of W of 
degree n.

For a Weil representation ρ : W → GL(V ), Deligne [3, Section 4 and 5] defined 
the epsilon factors ε(ρ, ψ, dx) and ε0(ρ, ψ, dx) associated to it, where ψ is a non-trivial 
additive character of K and dx is an arbitrary Haar measure on K. These two epsilon 
factors are non-zero constants related by

ε(ρ, ψ, dx) = ε0(ρ, ψ, dx) det
(
−F, V I

)−1
, (1)

where V I is the maximal subspace of V on which ρ(I) acts trivially. For a Weil-Deligne 
representation φ = (ρ, N), following [3, 8.12], we can also define the epsilon factors 
associated to it by

ε0(φ, ψ, dx) = ε0(ρ, ψ, dx), (2)

and

ε(φ, ψ, dx) = ε0(ρ, ψ, dx) det
(
−F, V I

N

)−1
, (3)

where V I
N is the null space of N : V I → V I (N preserves V I because ρ(i)Nρ(i)−1 =

‖i‖ ·N = N for i ∈ I).
These epsilon factors are in general hard to made explicit. Deligne computed ε0 for 

the case where ρ is tamely ramified.

Theorem 2.1 ([3, Section 5.16]). Let ρ : W = W (K/K) → GL(V ) be a tamely ramified 
representation, i.e., ρ(P ) ≡ 1. Then

(1) ρ is a direct sum of induced representations of tamely ramified characters χi : K×
i →

C× of unramified extensions Ki/K, i.e.,

ρ =
r∑

i=1
IndW

W (K/Ki)χi,

where i = 1, · · · , r for some integer r, and χi is treated as a character of W (K/Ki)
via the natural map W (K/Ki) → W (K/Ki)ab ∼= K×

i from local class field theory, 
normalized so that F is sent to �.

(2) Let ψ be an additive character of K of conductor p, that is, ψ is trivial on p but not 
on o. Then ψ can be treated as a character ψk of k via the isomorphism o/p → k. 
Let dx be the Haar measure on K, normalized such that 

∫
dx = q−

1
2 . Then
p
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ε0(ρ, ψ, dx) = (−1)dimV q−
dim V

2

r∏
i=1

τ(χ̃i, ψki
),

where ki is the residue field of Ki, ψki
= ψk ◦ Trki/k is an additive character of ki, 

χ̃i is the multiplicative character of k×i defined by χi, and τ(χ̃i, ψki
) is the Gauss 

sum of χ̃i with respect to the additive character ψki
defined by

τ(χ̃i, ψki
) = −

∑
x∈k×

i

χ̃i

(
x−1)ψki

(x).

These epsilon factors are equal for two representations in the same equivalence class. 
They might not be equal for two representations that are only in the same I-equivalence 
class. However, an immediate corollary of the above theorem is that ε0(φ, ψ, dx) is well-
defined on Φt

I(GLn), since the Frobenius element F is not involved in the explicit formula 
of ε0(ρ, ψ, dx).

Corollary 2.2. Let φ = (ρ, N) and φ′ = (ρ′, N ′) be two tamely ramified Weil-Deligne 
representations of W such that ρI ∼= ρ′I . Then for any Haar measure dx on K,

ε0(φ, ψ, dx) = ε0(φ′, ψ, dx).

In particular, the above equality holds if φ and φ′ are I-equivalent.

Tamely ramified Weil-Deligne representations are parameterized in [10, Section 3]. 
We now recall this parameterization. A partition of a non-negative integer n is a tuple 
λ = (λ1, λ2, · · · , λr) such that λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and |λ| :=

∑r
i=1 λi = n. We 

define n(λ) := r to be the number of parts of λ. For convenience, we sometimes write 
λ = (λi) and ignore the ordering of λi’s. For example, if λ = (λi) and μ = (μj) are 
partitions of n and m respectively, then λ +μ := (λi; μj), the concatenation of these two 
partitions, is a partition of n +m and λ ·μ := (λiμj) is a partition of nm. We denote the 
empty partition of 0 by (). We set Pn to be the set of partitions of n and P =

⋃
n≥0 Pn.

Let kn be the (unique) field extension of k of degree n in k. Let Γn be the character 
group of k×n . For m|n, the norm map Nn,m : k×n → k×m induces an embedding Nn,m :
Γm → Γn. {Γn} forms a directed system under these norm maps, and we define

Γ = lim−−→Γn.

The Frobenius element F acts on Γ by Fγ = γq for γ ∈ Γ. We identify Γn with the 
subgroup {γ ∈ Γ : Fnγ = γ} of Γ. If f is an F -orbit in Γ, we define the degree d(f) of f
to be the cardinality of f . Thus if γ ∈ f , then γ ∈ Γd(f).

Let Pn(Γ) be the set of partition-valued functions λ : Γ → P such that

(i) λ ◦ F = λ, i.e., λ is constant on the F -orbits;
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(ii)
∑

γ∈Γ |λ(γ)| = n (Since |λ(γ)| ≥ 0, it is actually a finite sum).

If λ ∈ Pn(Γ), then since λ ◦ F = λ, it makes sense to define λ(f) := λ(γ) for any 
F -orbit f and any γ ∈ f . Let γ ∈ Γn be a multiplicative character of k×n and let ψn be 
the additive character of kn defined by ψ. In Theorem 2.1, we have defined the Gauss 
sum of γ with respect to ψn:

τ(γ, ψn) = −
∑
x∈k×

n

γ
(
x−1)ψn(x).

We observe that τ(F (γ), ψn) = τ(γ, ψn): since ψn(xq) = ψ◦Trkn/k(xq) = ψ◦Trkn/k(x) =
ψn(x) for x ∈ kn, and x �→ xq is an automorphism of k×n , we have

τ(F (γ), ψn) = τ(γq, ψn) = −
∑
x∈k×

n

γ
(
x−1)q ψn(x)

= −
∑
x∈k×

n

γ (xq)−1
ψn(x) = −

∑
x∈k×

n

γ (xq)−1
ψn(xq)

= −
∑
x∈k×

n

γ (x)−1
ψn(x) = τ(γ, ψn).

Therefore, we can define the Gauss sum of an F -orbit. Let f be an F -orbit of γ ∈ Γn, 
we define

τ(f, ψn) := τ(γ, ψn).

Theorem 2.3 ([10]). There is a natural bijection from Pn(Γ) onto Φt
I(GLn).

Given λ ∈ Pn(Γ), we use φλ = (ρλ, Nλ) to denote a representative in the correspond-
ing I-equivalence class of tamely ramified Weil-Deligne representations. The underlying 
vector space of ρλ is denoted by Vλ. If there is no ambiguity, we will use φλ to denote 
its I-equivalence class. If λ is supported on a (single) degree n F -orbit f , i.e., λ(γ) = (1)
for γ ∈ f and λ(γ) = () otherwise, then we will sometimes use φf = (ρf , Nf ) to mean 
φλ = (ρλ, Nλ). We will also use Vf for Vλ in this case.

With Theorem 2.3 and the notations introduced above, we can restate Theorem 2.1
as follows. See [10, Section 3] for more details.

Theorem 2.4. Let λ ∈ Pn(Γ) and φλ = (ρλ, Nλ) be as above.

(1) Let (ρλ)I be the restriction of ρλ to I. Then

(ρλ)I =
∑
γ∈Γ

|λ(γ)|γ =
∑

f∈F\Γ
|λ(f)|

∑
γ∈f

γ,

where F\Γ is the set of F -orbits in Γ, and the sums above are direct sums.
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(2) Let ψ, ψk and dx be as in Theorem 2.1. For an F -orbit f in Γ, let ψd(f) = ψk ◦
Trkd(f)/k be the additive character of kd(f) defined by ψk. Then

ε0(φλ, ψ, dx) = (−1)nq−n
2
∏
f

τ(f, ψd(f))|λ(f)|.

Let γ ∈ Γn and let f be the F -orbit of γ, i.e., f is the set {γ, Fγ, · · · , Fn−1γ}
with duplicated elements removed. The size of f , or equivalently the degree of f , is 
not necessary n. Let m = d(f), then m|n. In this case, γ is actually an element in the 
subgroup Γm ⊂ Γn, where the embedding of Γm into Γn is given by the norm map 
Nn,m : kn → km. We introduce the notion of the F -set generated by γ with respect to Γn

to be the (multi-)set {γ, Fγ, · · · , Fn−1γ}, possibly with duplicated elements. Let h be 
the F -set generated by γ with respect to Γn, then h consists of n

m copies of f . Since the 
elements of h are in the same F -orbit, we can define the Gauss sum for h to be

τ(h, ψn) := τ(α, ψn),

for any α ∈ h.

Theorem 2.5 (Hasse-Davenport, [3, 5.12]). Let m|n and let γ ∈ Γm be a character of 
k×m, such that its F -orbit f is of degree m. Let h be the F -set generated by γ with respect 
to Γn. Then τ(h, ψn) = τ(f, ψm) n

m .

Let

G = Gal(K/K) ⊃ G0 = I ⊃ G1 = P ⊃ G2 ⊃ · · · ⊃ GN = 1

be the filtration of the ramification subgroups [16]. For a Weil-Deligne representation 
φ = (ρ, N), where ρ : W → GL(V ) for some complex vector space V , we define its Artin 
conductor a(φ) by

a(φ) =
N∑
j=0

dim
(
V/V Gj

) |ρ(Gj)|
|ρ(G0)|

,

where V Gj is the subspace of ρ(Gj)-fixed vectors in V . We note that by definition, ker ρ
contains an open subgroup of G0 = I, and since I is compact, the image ρ(G0) of G0 is 
finite. Hence so are the other ρ(Gj) for j = 1, . . . , N , as Gj ⊂ G0. Isolating the j = 0
term in a(φ), we can write

a(φ) = dim
(
V/V I

)
+ b(φ),

where b(φ) is called the Swan conductor of φ. Deligne defines ε(s, φ, ψ, dx), which is an 
indispensable ingredient in the local Langlands correspondence, by the formula
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ε(s, φ, ψ, dx) = ε(φ, ψ, dx)q(dimV−a(φ))s.

See [3, 5.5 and 8.18] for details, and note that n(ψ) = −1 for our choice of ψ.
Let λ ∈ Pn(Γ) and φλ = (ρλ, Nλ) be the tamely ramified Weil-Deligne repre-

sentation under the bijection in Theorem 2.3. Since ρλ(P ) acts trivially on Vλ, we 
have dim

(
Vλ/V

P
λ

)
= 0, so b(φλ) = 0. Thus in this case, a(φ) = dim

(
Vλ/V

I
λ

)
=

dimVλ − dimV I
λ . Therefore,

ε(s, φλ, ψ, dx) = ε(φλ, ψ, dx)q
(
dimV I

λ

)
s = ε(φλ, ψ, dx)q|λ(1)|s, (4)

where λ(1) is the partition of λ evaluated at the trivial character 1 of k×.
Finally, we want to discuss when ε(φλ, ψ, dx) = ε0(φλ, ψ, dx). From Equation (2) and 

Equation (3), we have

ε(φλ, ψ, dx) = ε0(φλ, ψ, dx) det
(
−F, V I

Nλ

)−1
.

Thus, we want to know when det
(
−F, (Vλ)INλ

)
equals 1. An obvious sufficient condition 

is V I
λ = 0.

Proposition 2.6. Let λ ∈ Pn(Γ) and let φλ = (ρλ, Nλ) be the corresponding I-equivalence 
class of a tamely ramified Weil-Deligne representation. Then V I

λ = 0 if and only if 
λ(1) = ().

Proof. Since we only concentrate on the I-fixed subspace, it makes sense to work with 
I-equivalence classes directly. By Theorem 2.4,

(ρλ)I =
∑
γ∈Γ

|λ(γ)|γ.

Therefore, Vλ has a non-trivial I-fixed vector if and only if λ(1) �= (). �
Corollary 2.7. Let λ ∈ Pn(Γ) be such that λ(1) = (), i.e., λ is not supported on 1. Then

ε(s, φλ, ψ, dx) = ε(φλ, ψ, dx) = ε0(φλ, ψ, dx).

Proof. The first equality comes from Equation (4) and λ(1) = (). Since V I
λ = 0 by 

Proposition 2.6, (Vλ)INλ
= 0, so det

(
−F, (Vλ)INλ

)
= 1. Then the second equality fol-

lows. �
3. Macdonald’s correspondence and epsilon factors

From now on, we fix an additive character ψ on K of conductor p, and let dx be the 
Haar measure on K such that 

∫
p
dx = q−

1
2 . dx is self dual with respect to ψ. We also 

use ψ to denote the additive character on k defined by ψ via the isomorphism k ∼= o/p. 
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Let kn be the (unique) field extension of k of degree n. Let ψn be the additive character 
on kn defined by ψn = ψ ◦ Trkn/k.

Let Π(GLn(k)) be the set of equivalence classes of irreducible representations of 
GLn(k). Green [5] established a natural bijection between Π(GLn(k)) and Pn(Γ), see 
also [10, Section 1]. If λ ∈ Pn(Γ), we denote by πλ ∈ Π(GLn(k)) the corresponding 
(equivalence class of the) irreducible representation. If λ is supported only on a (single) 
orbit f of degree n, we will also write πf for πλ.

In light of Green’s correspondence and Theorem 2.3, Macdonald obtained the following

Theorem 3.1 (Macdonald’s correspondence, [10]). There is a canonical bijection

M : Π(GLn(k)) → Φt
I(GLn)

such that M(πλ) = φλ for λ ∈ Pn(Γ) and

ε(πλ, ψ) = ε0(φλ, ψ, dx), (5)

where ε(π, ψ) is the Godement-Jacquet epsilon factor defined in [10, Section 2].

Macdonald’s correspondence M and Equation (5) inspire the following definition of 
epsilon factors:

Definition 3.2. Let π ∈ Π(GLn(k)), and let r be an operation on Weil-Deligne represen-
tations of W that preserves tame ramification, for example r can be direct sum, tensor 
product, exterior power or symmetric power. We define a non-zero constant ε0(π, r, ψ)
associated to the pair (π, r) by

ε0(π, r, ψ) := ε0(r (M(π)) , ψ, dx),

Remark 3.3.

(1) There is exactly one Haar measure dx on K such that 
∫
p
dx = q−

1
2 , but there are 

q − 1 different additive characters of conductor p on K. Therefore, we keep ψ and 
omit dx in the notation ε0(π, r, ψ), though we have fixed ψ and dx at the beginning 
of the section. One should keep in mind that the definition of ε0(π, r, ψ) depends on 
the choices of both ψ and dx.

(2) If r = id is the identity operation, then Equation (5) is the same as

ε(π, ψ) = ε0(π, id, ψ),

where ε(π, ψ) is the Godement-Jacquet epsilon factor of π.
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(3) If r is either the direct sum or the tensor product, then it is a binary operator, so 
the corresponding epsilon factors should receive as input two representations. For 
example, when r = ⊕ is the direct sum, it should be understood that the epsilon 
factors are defined for two representations π1 ∈ Π(GLn(k)) and π2 ∈ Π(GLm(k))
and we write

ε0(π1 � π2, ψ) := ε0(π1, π2,⊕, ψ) = ε0(M(π1) ⊕M(π2), ψ).

And for r = ⊗ the tensor product, we write

ε0(π1 × π2, ψ) := ε0(π1, π2,⊗, ψ) = ε0(M(π1) ⊗M(π2), ψ).

(4) If r is one of these four operations listed in Definition 3.2, then it preserves tame 
ramification. That is to say, if φ is tamely ramified Weil-Deligne representation of 
W (or a pair of tamely ramified Weil-Deligne representations when r is the direct 
sum or the tensor product), then so is r(φ).

It follows immediately from the definition of ε0(π, r, ψ) that epsilon factors of irre-
ducible representations of general linear groups over k enjoy the same good properties 
as those of epsilon factors of tamely ramified Weil-Deligne representations over K. For 
example, they satisfy multiplicativity [3, (5.2)], and they can be written as products of 
Gauss sums by Theorem 2.1 or Theorem 2.4. To illustrate these properties, we will look 
at the case where r is the identity operator for the rest of this section. For simplicity of 
notations, we define

ε0(π, ψ) := ε0(π, id, ψ) = ε0(M(π), ψ).

Let λ ∈ Pn(Γ) and μ ∈ Pm(Γ). Then by multiplicativity of ε0-factors of Weil-Deligne 
representations,

ε0(πλ � πμ, ψ) = ε0(φλ ⊕ φμ, ψ) = ε0(φλ, ψ)ε0(φμ, ψ) = ε0(πλ, ψ)ε0(πμ, ψ).

This is the multiplicativity property for ε0-factors of irreducible representations of general 
linear groups over k. On the other hand, from Theorem 2.4 and Definition 3.2, we can 
express ε0(πλ, ψ) as a product of Gauss sums:

ε0(πλ, ψ) = ε0(φλ, ψ) = (−1)nq−n
2
∏
f

τ(f, ψd(f))|λ(f)|.

There are two ways to express ε0(πλ � πμ, ψ) as a product of Gauss sums. The first 
way is to use the multiplicativity of ε0-factors:
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ε0(πλ � πμ, ψ) = ε0(πλ, ψ)ε0(πμ, ψ)

= (−1)n+mq−
n+m

2
∏
f

τ(f, ψd(f))|λ(f)|+|μ(f)|.

On the other hand, by the explicit correspondence between Pn(Γ) and Φt
I(GLn) as in 

[10, Section 3], we see that φλ ⊕ φμ is a tamely ramified representation of degree n +m

corresponding to ν = λ + μ ∈ Pn+m(Γ). Here, we have for γ ∈ Γ,

ν(γ) = λ(γ) + μ(γ),

where addition above is the concatenation of two partitions. Thus,

ε0(πλ � πμ, ψ) = ε0(φν , ψ) = (−1)n+mq−
n+m

2
∏
f

τ(f, ψd(f))|ν(f)|.

These two ways agree because |ν(f)| = |λ(f)| + |μ(f)|. Moreover, since φν = φλ ⊕ φμ, 
we can define the addition πλ � πμ to be πν .

4. Tensor product epsilon factors

This section is devoted to the tensor product epsilon factors ε0(πλ × πμ, ψ). First of 
all, we show that they are equal to products of Gauss sums. Secondly, we relate them to 
the Rankin-Selberg gamma factors defined in [15,12,19]. Their relation to the Rankin-
Selberg gamma factors can be used to solve a conjecture made by Nien and Zhang [14, 
Conjecture 2.2].

4.1. Gauss sums

In terms of Green’s classification, irreducible cuspidal representations of GLn(k) are 
in a one-to-one correspondence with F -orbits in Γ of degree n. In other words, if π
is an irreducible cuspidal representation of GLn(k), then it corresponds to λ ∈ Pn(Γ)
supported on a (single) degree n F -orbit f , i.e., λ(γ) = (1) if γ ∈ f and λ(γ) = ()
otherwise. In this case, we will use πf instead of πλ, and we will define φf and ρf by 
M(πf ) = φf = (ρf , 0). Note that the nilpotent map corresponding to πf is 0, since πf

is cuspidal, and the corresponding φf is irreducible.

Theorem 4.1. Let πλ and πμ be two irreducible representations parameterized by λ ∈
Pn(Γ) and μ ∈ Pm(Γ) respectively. Then

ε0(πλ × πμ, ψ) =
∏
f,g

ε0(πf × πg, ψ)|λ(f)||μ(g)|,

where f and g run over all the F -orbits in Γ.
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Proof. Let φλ = (ρλ, Nλ) = M(πλ) and φμ = (ρμ, Nμ) = M(πμ). Then by Theorem 2.4,

(ρλ)I =
∑
γ∈Γ

|λ(γ)|γ =
∑

f∈F\Γ
|λ(f)|

∑
γ∈f

γ,

and

(ρμ)I =
∑
γ∈Γ

|μ(γ)|γ =
∑

g∈F\Γ
|μ(g)|

∑
γ∈g

γ.

Let φ = (ρ, N) = φλ ⊗ φμ. Then ρ = ρλ ⊗ ρμ, and

ρI = (ρλ)I ⊗ (ρμ)I =
∑
f,g

|λ(f)||μ(g)|
∑

γ1∈f,γ2∈g

γ1γ2 =
∑
f,g

|λ(f)||μ(g)|(ρf ⊗ ρg)I .

Here (ρf , 0) are (ρg, 0) correspond to the cuspidal representations πf and πg respectively. 
The last equality above comes from

(ρf ⊗ ρg)I = (ρf )I ⊗ (ρg)I =
∑
γ1∈f

γ1 ·
∑
γ2∈g

γ2 =
∑

γ1∈f,γ2∈g

γ1γ2.

Therefore, we have by Corollary 2.2 and multiplicativity of ε0 [3, (5.2)] (see also the 
example at the end of Section 3),

ε0(φ, ψ) =
∏
f,g

ε0(ρf ⊗ ρg, ψ)|λ(f)||μ(g)|.

Now by Definition 3.2,

ε0(πλ × πμ, ψ) = ε0(φ, ψ) =
∏
f,g

ε0(ρf ⊗ ρg, ψ)|λ(f)||μ(g)|

=
∏
f,g

ε0(πf × πg, ψ)|λ(f)||μ(g)|. �

With Theorem 4.1, we can reduce the study of ε0(πλ×πμ, ψ) to that of ε0(πf ×πg, ψ)
for F -orbits f and g in Γ. Let n ≥ m be two positive integers. Let f be an F -orbit of 
degree n. Fix an α ∈ f , then α ∈ Γn and f = {αqi : i = 0, 1, . . . , n − 1}. Similarly, let 
g = {βqj : j = 0, 1, . . . , m − 1} be an F -orbit of degree m for some β ∈ Γm. Let πf and 
πg be the corresponding cuspidal representations of GLn(k) and GLm(k) respectively. 
With these notations, we have the following

Theorem 4.2. Let d = gcd(n, m) be the greatest common divisor of n and m, and let 
l = nm

d be their least common multiple. Then

ε0(πf × πg, ψ) = (−1)nmq−
nm
2

d−1∏
τ(αβqi , ψl),
i=0
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where αβqi ∈ Γl is defined by

(αβqi)(x) = α (Nl,n(x))β
(
(Nl,m(x))q

i
)
,

for x ∈ k×l .

Proof. Let φf = (ρf , Nf ) = M(πf ) and φg = (ρg, Ng) = M(πg). By Theorem 2.4, we 
have

(ρf )I =
n−1∑
i=0

αqi and (ρg)I =
m−1∑
j=0

βqj ,

where (ρf )I , (ρg)I are the restrictions to the inertia subgroup I of ρf , ρg respectively. If 
we set φ = (ρ, N) = φf ⊗ φg ∈ Φt

I(GLnm), then

ρI = (ρf ⊗ ρg)I = (ρf )I ⊗ (ρg)I =
(

n−1∑
i=0

αqi

)
⊗

⎛⎝m−1∑
j=0

βqj

⎞⎠ =
∑
i,j

αqiβqj .

We claim that these αqiβqj ’s are elements of Γl, and that they are partitioned into the d
F -sets (might not be distinct) h0, h1, . . . , hd−1, where hi is the F -set generated by αβqi

with respect to Γl. On one hand, each hi is of size l, so there are ld = nm characters in 
h0, h1, . . . , hd−1 in total. On the other hand, αqiβqj ∈ hδ if and only if there exists an 
integer t such that αqiβqj = αqtβqδ+t . Since αqn = α and βqm = β, αqiβqj ∈ hδ if and 
only if the following system of congruence equations has a solution:{

t ≡ i mod n

t ≡ j − δ mod m
.

This system has a solution if and only if i ≡ j − δ mod d, or equivalently δ ≡ j − i

mod d. Therefore, for each αqiβqj , there exists exactly one δ ∈ {0, 1, . . . , d −1} such that 
αqiβqj ∈ hδ, i.e., the only one satisfying δ ≡ j − i mod d. Since the size of {αqiβqj :
0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1} is nm and each of these appears in hδ for some 
δ ∈ {0, 1, . . . , d − 1}, our claim follows from a counting argument.

For each i = 0, 1, . . . , d − 1, hi consists of ti copies of some F -orbit fi of degree l
ti

. 
Thus, by Theorem 2.4 and Theorem 2.5, we have

ε0(φ, ψ) = (−1)nmq−
nm
2

d−1∏
i=0

τ(fi, ψ l
ti

)ti = (−1)nmq−
nm
2

d−1∏
i=0

τ(hi, ψl).

Thus, by the definition of τ(hi, ψl), we have

ε0(πf × πg, ψ) = ε0(φ, ψ) = (−1)nmq−
nm
2

d−1∏
τ(αβqi , ψl). �
i=0
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If gcd(n, m) = 1, then ε0(πf × πg, ψ) is just a multiple of a Gauss sum τ(αβ, ψnm), 
where αβ ∈ Γnm is defined by (αβ)(x) = α (Nnm,n(x))β (Nnm,m(x)) for x ∈ k×nm. In 
particular if m = 1, we have

ε0(πf × β, ψ) = (−1)nq−n
2 τ(αβ, ψn).

4.2. Rankin-Selberg gamma factors

Let n > m be two positive integers. Let f and g be two F -orbits in Γ such that 
d(f) = n and d(g) = m. Then πf and πg are two irreducible cuspidal representations 
of GLn(k) and GLm(k) respectively. Let φf = (ρf , 0) and φg = (ρg, 0) be the tamely 
ramified Weil-Deligne representations of W corresponding to πf and πg respectively. Let 
Πf be the level zero supercuspidal representation of GLn(K) constructed from the pair 
(πf , 1), see [19, Section 2.1]. That is to say,

Πf = indGLn(K)
K×·GLn(o) (χf · πf ) ,

where πf is a representation of GLn(o) via the natural map GLn(o) → GLn(k), 
χf : K× → C× is the character defined on o× via the central character of πf , and 
on � by χf (�) = 1, (χf · πf ) (z · k) = χf (z)πf (k0) for z ∈ K× and k0 ∈ GLn (o), 
and ind is compact induction. Similarly, let Πg be the level zero supercuspidal repre-
sentation of GLm(K) constructed from the pair (πg, 1). The choices of Πf and Πg here 
are not essential, we can choose any level zero supercuspidal representations Πf and Πg

constructed from πf and πg respectively.
Let γ(s, Πf ×Πg, ψ) and ε(s, Πf ×Πg, ψ) be the Rankin-Selberg factors defined in [8], 

and let γ(πf × πg, ψ) be the Rankin-Selberg gamma factor defined in [15,12] (see also 
[19] for a different normalization). γ(πf × πg, ψ) is related to γ(s, Πf × Πg, ψ) by

Theorem 4.3 ([14, Theorem 3.11], [19, Theorem 3.1]). Let ωg be the central character of 
πg. Then

ωg(−1)n−1γ(s,Πf × Πg, ψ) = q
m(n−m−1)

2 γ(πf × πg, ψ).

Next, we will show that γ(πf × πg, ψ) is also equal to ε0(πf × πg, ψ) up to some 
constant.

Theorem 4.4.

γ(πf × πg, ψ) = q−
m(n−m−1)

2 ωg(−1)n−1ε0(πf × πg, ψ).

Proof. Since n > m and Πf and Πg are supercuspidal, L (s,Πf × Πg) = 1. Similarly, 
L 
(
1 − s,Π∨

f × Π∨
g

)
= 1, where Π∨

f and Π∨
g are the contragredient representations of Πf , 

Πg respectively. Thus, we have
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γ(s,Πf × Πg, ψ) = ε(s,Πf × Πg, ψ). (6)

We have from [17, Proposition 1 in A.2] the following commutative diagram:

Π0(GLn(K)) Φt(GLn)

Π0(GLn(k)) Φt
I(GLn)

LLC0

p1 p2

M

,

where Π0(GLn(K)) is the set of equivalence classes of level zero supercuspidal representa-
tions of GLn(K), Π0(GLn(k)) is the set of equivalence classes of cuspidal representations 
of GLn(k), LLC0 is the restriction of the local Langlands correspondence to level zero 
supercuspidal representations, M is Macdonald’s correspondence, p1 is the map sending 
a level zero supercuspidal representation to the cuspidal representation from which it 
was constructed, and p2 is the canonical projection.

Therefore, there exist φf = (ρf , 0) ∈ Φt(GLn) and φg = (ρg, 0) ∈ Φt(GLm) in the 
I-equivalence classes of tamely ramified Weil-Deligne representations parameterized by 
f and g respectively that are images of Πf and Πg under the local Langlands corre-
spondence. Since the local Langlands correspondence matches epsilon factors of pairs [6, 
Corollary VII.2.17], we get

ε(s,Πf × Πg, ψ) = ε(s, φf ⊗ φg, ψ, dx). (7)

Note that it is important to normalize dx in Equation (7) to be self dual with respect to 
ψ, which is exactly what we do.

Since ρf and ρg are tamely ramified, ρf ⊗ ρg is also tamely ramified and

(ρf ⊗ ρg)I =
∑

γ1∈f,γ2∈g

γ1γ2.

Since ρf and ρg are of different degrees, γ1γ2 is not fixed by the action of F , so γ1γ2 in 
the summand above will never be the trivial character of k. In other words, if λ′ ∈ Pn(Γ)
is the partition-valued function on Γ corresponding to φf ⊗ φg under Theorem 2.3, 
then λ′(1) = (). Therefore, by Corollary 2.7, we have ε(s, φf ⊗ φg, ψ, dx) = ε0(φf ⊗
φg, ψ). Thus, we conclude the theorem from Theorem 4.2, Theorem 4.3, Equation (6)
and Equation (7). �

As a corollary of Theorem 4.2 and Theorem 4.4, we get

Corollary 4.5. Using the notations of Theorem 4.2 and Theorem 4.4, we have

γ(πf × πg, ψ) = (−1)nmq−nm+m(m+1)
2 β(−1)n−1

d−1∏
τ(αβqi , ψl).
i=0
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Remark 4.6. After this paper was written, the preprint [18] of Yang appeared, in which 
a different proof of Corollary 4.5 is given.

Proof. It is a direct consequence of Theorem 4.2 and Theorem 4.4, with an observation 
that ωg, the central character of πg, is β|k× , i.e., the restriction of β to k×. �

The appearance of β(−1)n−1 in Corollary 4.5 is due to the different choices of nor-
malization of the Rankin-Selberg gamma factors in [8] and [12]. The result when m = 1
has already been proven in [13, Theorem 1.1]. The corollary also answers [14, Conjecture 
2.2]. Nien and Zhang conjecture that

γ(πf × πg, ψ) = (−1)nm−m+1q−nm+m(m+1)
2 α(−1)m−1β(−1)n−1τ(αβ, ψnm), (8)

which in general is not correct. If n and m are coprime, then their conjecture is correct, 
possibly up to a sign. However, if they are not coprime, one can find examples in which 
Nien-Zhang’s conjecture does not compute gamma factors correctly, as illustrated in the 
following example.

Example. Let k = F3, the field of 3 elements. Let ψ : k → C× be defined by ψ(x) = e
2πix

3 . 
Let n = 4 and m = 2. l = lcm(n, m) = 4 and d = gcd(n, m) = 2. Let ξ be a root of 
x4 + 2x3 + 2 = 0 and ζ = ξ10 be a root of x2 + 2x + 2 = 0. Then k4 = k(ξ) and 
k2 = k(ζ), and ξ, ζ are generators of the cyclic groups k×4 and k×2 respectively. Let α be 
the multiplicative character of k4 defined by α(ξ) = e

33πi
20 and β be the multiplicative 

character of k2 defined by β(ζ) = e
πi
4 . Let f be the F -orbit of α, then f = {α, α3, α9, α27}

with evaluations at ξ being

{e 33πi
20 , e

19πi
20 , e

17πi
20 , e

11πi
20 }.

Similarly, if g = {β, β3} is the F -orbit of β with evaluations at ζ being {eπi
4 , e

3πi
4 }. Then 

πf is an irreducible cuspidal representation of GL4(k) and πg is an irreducible cuspidal 
representation of GL2(k).

Gauss sums can be computed easily with the help of SageMath. We computed the 
right hand side of the equation in Corollary 4.5:

(−1)nmq−nm+m(m+1)
2 β(−1)n−1

d−1∏
i=0

τ(αβqi , ψl) = −2
9 +

√
5

9 i.

The right hand side of Equation (8) is

(−1)nm−m+1q−nm+m(m+1)
2 α(−1)m−1β(−1)n−1τ(αβ, ψnm) = − 1

27 − 4
√

5
27 i.

To compute γ(πf × πg, ψ), we use the formula involving Bessel functions, see [13, 
Proposition 2.8]:
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γ(πf × πg, ψ) =
∑

h∈Um\GLm(k)

Bf,ψ

(
0 In−m

h 0

)
Bg,ψ−1(h), (9)

where Um ⊂ GLm(k) is the standard maximal unipotent subgroup, Bf,ψ is the nor-
malized Bessel function of πf with respect to ψ and Bg,ψ−1 is the normalized Bessel 
function of πg with respect to ψ−1. To be more explicit, the algorithm runs by the fol-
lowing steps. First, we compute the trace of πf and πg using [4, (6.1)]. Secondly, we 
compute the normalized Bessel functions using [4, Proposition 4.5]. Finally, we compute 
the gamma factor using Equation (9). We implement the algorithm using SageMath and 
get

γ(πf × πg, ψ) = −2
9 +

√
5

9 i.

5. Exterior square epsilon factors

In this section, we perform a similar analysis for ε0(π, ∧2, ψ) as in Section 4. Since 
some techniques have already been presented in the previous section, we will present 
only the core of the proofs of some of the theorems.

Let λ ∈ Pn(Γ), and πλ be the corresponding irreducible representation of GLn(k). 
Suppose that the support of λ is {f1, f2, . . . , ft}, where the fi’s are F -orbits in Γ, i.e., 
λ(γ) is a non-empty partition if and only if γ ∈ fi for some i. ε0(πλ, ∧2, ψ) satisfies the 
following multiplicativity theorem.

Theorem 5.1. Denote by πfi the (equivalence class of the) irreducible cuspidal represen-
tation corresponding to the F -orbit fi as before. Let ni = |λ(fi)|. Then

ε0(πλ,∧2, ψ) =
∏

1≤i<j≤t

ε0(πfi × πfj , ψ)ninj ·
t∏

i=1
ε0(πfi × πfi , ψ)(

ni
2 ) ·

t∏
i=1

ε0(πfi ,∧2, ψ)ni .

Proof. Similar to the proof of Theorem 4.1. By definitions,

ε0(πλ,∧2, ψ) = ε0(∧2(φλ), ψ) = ε0(∧2(ρλ), ψ).

Since ρλ is tamely ramified, so is ∧2(ρ). Thus, by Corollary 2.2,

ε0(∧2(ρλ), ψ) = ε0(∧2(ρλ)I , ψ) = ε0
(
∧2 ((ρλ)I) , ψ

)
.

By Theorem 2.4, we have

(ρλ)I =
∑

f∈F\Γ
|λ(f)|

∑
γ∈f

γ,

and for any F -orbit f ,



JID:YJNTH AID:6566 /FLA [m1L; v1.291; Prn:22/07/2020; 8:40] P.18 (1-21)
18 R. Ye, E. Zelingher / Journal of Number Theory ••• (••••) •••–•••
(ρf )I =
∑
γ∈f

γ.

Therefore

(ρλ)I =
∑
f

|λ(f)|(ρf )I .

Now the theorem follows by repeatedly using

ε0(∧2(ρ1 + ρ2), ψ) = ε0(ρ1 ⊗ ρ2, ψ)ε0(∧2(ρ1), ψ)ε0(∧2(ρ2), ψ),

and Definition 3.2. �
By Theorem 4.2, we know how to compute the tensor product epsilon factors in 

terms of Gauss sums. Thus in order to compute ε0(πλ, ∧2, ψ), we just need to compute 
ε0(πf , ∧2, ψ) in light of Theorem 5.1.

Theorem 5.2. Let f = {αqi : i = 0, 1, . . . , n − 1} be an F -orbit of degree n for some 
α ∈ Γn. Let m =

⌊
n
2
⌋

be the biggest integer smaller or equal to n2 . Then

ε0(πf ,∧2, ψ) = (−1)(
n
2)q− 1

2(n2)τ(α1+qm , ψd)
m−1∏
i=1

τ(α1+qi , ψn),

where d = n if n is odd and d = m if n is even.

Proof. Similar to the proof of Theorem 4.2. The key is that

(
∧2(ρf )

)
I

=
∑

1≤i<j≤n

αqi+qj =
m∑
j=1

∑
β∈hj

β,

where hj is the F -set generated by α1+qj with respect to Γn if 1 ≤ j < n
2 , and if 

n = 2m is even, then hm is the F -set generated by α1+qm with respect to Γm (Note 
that when n = 2m is even, αq2m = α and (α1+qm)qm = αqm+q2m = αqm+1 = α1+qm

so α1+qm ∈ Γm). It can be checked that these hj’s, for 1 ≤ j ≤ m, form a partition of 
{αqi+qj : 1 ≤ i < j ≤ n}. �

Let f = {αqi : i = 0, 1, . . . , n − 1} be an F -orbit in Γn for some α ∈ Γn. Assume 
that α is not trivial when restricted to k×m if n = 2m, or equivalently, α1+qm is not 
the trivial character. This assumption assures that the cuspidal representation πf does 
not have non-trivial Shalika vectors [21, Section 2.3.3]. The authors define the exterior 
square gamma factor γ(πf , ∧2, ψ) in [21], and show that

γ(πf ,∧2, ψ) = γJS(s,Πf ,∧2, ψ), (10)



JID:YJNTH AID:6566 /FLA [m1L; v1.291; Prn:22/07/2020; 8:40] P.19 (1-21)
R. Ye, E. Zelingher / Journal of Number Theory ••• (••••) •••–••• 19
where, as before, Πf is a level zero supercuspidal representation constructed from πf , 
and γJS(s, Πf , ∧2, ψ) is the Jacquet-Shalika gamma factor from [9,11,1]. It is natural 
to ask what is the relation between ε0(πf , ∧2, ψ) and γ(πf , ∧2, ψ), which might enable 
us to express γ(πf , ∧2, ψ) as a product of Gauss sums. Unfortunately, we don’t have 
the matching between εJS(s, Πf , ∧2, ψ) and ε(s, ∧2(φf ), ψ) under the local Langlands 
correspondence. Thus, the arguments in Theorem 4.4 can not go through. We want to 
mention that εLS(s, Πf , ∧2, ψ), the exterior square epsilon factor coming from Langlands-
Shahidi method, does match ε(s, ∧2(φf ), ψ). This is the work of Cogdell, Shahidi and 
Tsai [2]. But we don’t know whether or not the two exterior square epsilon factors coming 
from the Jacquet-Shalika integral representation and the Langlands-Shahidi method are 
the same.

Nevertheless, since γ(πf , ∧2, ψ) and ε0(π, ∧2, ψ) are constants, there must exist a 
constant cf depending on f such that

γ(πf ,∧2, ψ) = cf ε0(πf ,∧2, ψ)

= cf · (−1)(
n
2)q− 1

2 (n2)τ(α1+qm , ψd)
m−1∏
i=1

τ(α1+qi , ψn).

We know from [21] that |γ(πf , ∧2, ψ)| = 1 and that the absolute value of a Gauss sum 
τ(α, ψn) is q n

2 if α is not trivial. Therefore, by taking absolute values on both sides of 
the equation above, we get |cf | = 1. We conjecture that cf = 1. For n = 2, γ(πf , ∧2, ψ)
degenerates into a Godement-Jacquet gamma factor of the central character ωf of πf , 
thus cf = 1 is a consequence of Corollary 4.5. For n = 3, γ(πf , ∧2, ψ) has a nice expression 
in terms of the Bessel function of πf [21], which can be manipulated into the 3 × 1
Rankin-Selberg gamma factor γ(πf × ω−1

f , ψ). Thus cf = 1 is again a consequence of 
Corollary 4.5. We don’t know how to prove cf = 1 for n ≥ 4. Let Πf be any level zero 
representation constructed from πf . We know that εJS(s, πf , ∧2, ψ) = γ(πf , ∧2, ψ) [21]. 
On the other hand, by Corollary 2.7 and [2], εLS(s, Πf , ∧2, ψ) = ε0(πf , ∧2, ψ). Therefore, 
cf = 1 is equivalent to εJS(s, Πf , ∧2, ψ) = εLS(s, Πf , ∧2, ψ).

The above discussion requires α|k×
m
�= 1 if n = 2m, because γ(πf , ∧2, ψ) is not defined 

in this special case. Interestingly, if we assume n = 2m and α|k×
m

= 1, we can show by 
computations that εJS(s, Πf , ∧2, ψ) = εLS(s, Πf , ∧2, ψ) for any level zero supercuspidal 
representation Πf constructed from πf .

Let n = 2m and α|k×
m

= 1. We have computed in [21] that

εJS(s,Πf ,∧2, ψ) = ωΠf
(�)−1qm

(
s− 1

2
)
s,

where ωΠf
is the central character of Πf . Let φf be the image of Πf under the local 

Langlands correspondence. Let W = ∧2(φf ). Then from Equation (4),

ε(s,∧2(φf ), ψ) = ε(W,ψ)q
(
dimW I

)
s = ε0(W,ψ) det(−F,W I)−1q

(
dimW I

)
s
.
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We computed that ε0(W, ψ) = −q−
m
2 using Theorem 5.2 and computations of the 

Gauss sums, det(−F, W I) = −ωΠf
(�) using the local Langlands correspondence, 

and dimW I = m by counting the multiplicity of the trivial character in WI =∑
1≤i<j≤n αqi+qj , where WI is the restriction of W to I. See also [20, Section 4.4] for 

details. Therefore,

ε(s,∧2(φf ), ψ) = ωΠf
(�)−1qm

(
s− 1

2
)
s = εJS(s,Πf ,∧2, ψ).

We know εLS(s, Πf , ∧2, ψ) = ε(s, ∧2(φf ), ψ) from [2], so

εJS(s,Πf ,∧2, ψ) = εLS(s,Πf ,∧2, ψ).
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