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To date, the class number one problem for non-normal CM-fields
is solved only for quartic CM-fields. Here, we solve it for a family
of non-normal CM-fields of degree 2p, p � 3 and odd prime. We
determine all the non-isomorphic non-normal CM-fields of degree
2p, containing a real cyclic field of degree p, and of class number
one. Here, p � 3 ranges over the odd primes. There are 24 such
non-isomorphic number fields: 19 of them are of degree 6 and 5
of them are of degree 10. We also construct 19 non-isomorphic
non-normal CM-fields of degree 12 and of class number one, and
10 non-isomorphic non-normal CM-fields of degree 20 and of class
number one.
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1. Introduction

It is conjectured that there are only finitely many non-isomorphic CM-fields of class number equal
to one (see [Bes] and the bibliography therein).

The class number one problem for the abelian CM-fields was completed in [Yam]. The class number
one problem for the non-abelian normal CM-fields is almost completed (see [LK,PK] and the bibliogra-
phy therein).
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The class number one problem for the non-normal CM-fields is solved only for quartic CM-fields
(see [LO94, Theorem 9]), and almost solved for sextic CM-fields (see [BL1,BL2] and [Lou08]).

Here, we solve the class number one problem in a rather general non-normal situation: for the
non-normal CM-fields K of degree 2p, p � 3 any odd prime, whose maximal totally real subfields are
cyclic of degree p. The case p = 3 was considered in [BL1].

Solving the class number one problem for this general family of non-normal CM-fields of not
fixed degree is to be compared with what was done for normal CM-fields: we first solved in [LO94]
the class number one problem for the octic dihedral CM-fields. Then, in [LO98], we solved the class
number one problem for the general dihedral CM-fields of any 2-power degree 2n = 2m � 8.

The main steps are
(i) to characterize such CM-fields K of odd class number (see Theorem 4),
(ii) to obtain lower bounds on their relative class numbers h−

K to deduce the bound p � 23 when
hK = 1 (see Corollary 8),

(iii) to further improve this upper bound down to p � 13 by using cyclotomic units (see Corol-
lary 10),

(iv) to further improve this upper bound down to p � 11 (see Corollary 11),
(v) to build a list of 12221 possible K ’s (see the fifth column of Table 1 below),
(vi) to use a necessary condition for the class number of K to be one to further reduce this list

down to a list of 402 possible K ’s (see the sixth column of Table 1 below),
(vii) and finally to compute the relative class numbers of these 402 remaining CM-fields to solve

our problem.
We point out that up to point (iii) we do not use any software dedicated to number theory.

However, from point (iv) we need any software dedicated to number theory that can compute a
system of fundamental units of real cyclic fields of prime degree p � 13.

Throughout this paper, we adopt the following notation.
If k is a number field of degree n � 1, then dk , ρk = d1/n

k , Ak , hk and ζk(s) are the absolute value
of the discriminant of k, its root discriminant, its ring of algebraic integers, its class number and its
Dedekind zeta function.

If k is abelian, then fk denotes its conductor. For K/k an abelian extension, FK/k is the finite part
of its conductor.

If K is a CM-field with maximal totally real subfield K + = k, Q K ∈ {1,2} is the Hasse unit index
of K , the class number hk of k divides the class number hK of K , and the relative class number h−

K =
hK /hk of K is a positive integer that divides hK .

2. The simplest non-normal 2p-CM-fields

The aim of this section is to characterize in Theorem 4 the non-normal CM-fields K of degree
2p � 6 of odd class number whose maximal totally real subfields K + = k are cyclic of degree p � 3.
We point out that R. Okazaki proved (unpublished) that the class number hK of a CM-field K of
degree 2n � 6, n � 3 odd, is odd if and only if its relative class number h−

K is odd.

Proposition 1. Let K be a CM-field of degree 2n, n > 1 odd. Let k denote its maximal totally real subfield (of
degree n). At least one prime ideal of k is ramified in the quadratic extension K/k. Therefore, dK � 3d2

k and
the narrow class number h+

k of k divides the class number hK of K . Consequently, hK is odd if and only if the
narrow class number h+

k of k is odd and a unique prime ideal Q of k is ramified in the quadratic extension K/k.

Proof. Let χ be the quadratic character associated with the quadratic extension K/k. According to
class field theory (e.g., see [Neu, Chapter VII, §6]), there exists a primitive quadratic character χ0 on
the multiplicative group (Ak/FK/k)

∗ such that χ((α)) = ν(α)χ0(α) for α ∈ Ak , where ν(α) ∈ {±1} is
the sign of the norm Nk/Q(α) of α �= 0. In particular, if K/k were unramified at all the finite places
of k, then we would obtain 1 = χ((−1)) = ν(−1) = (−1)n and n would be even, a contradiction.
Conversely, assume that h+

k is odd. Since K is a totally imaginary number field which is a quadratic
extension of the totally real number field k of odd narrow class number, then, the 2-rank of the ideal
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class group of K is equal to t −1, where t denotes the number of prime ideals of k which are ramified
in the quadratic extension K/k (see [CH, Lemma 13.7]). Hence hK is odd if and only if exactly one
prime ideal Q of k is ramified in the quadratic extension K/k. �
Remark 2. Here is another proof of the first assertion which does not use class field theory (from
the referee). If no ideal of k were ramified in K/k, there would exist a totally negative element
α ∈ k with K = k(

√
α ), with (α) coprime with (2), with (α) = A2 a square of a fractional ideal of k

and with α ≡ 1 (mod (4)) (e.g., see [He, Theorem 120]). Taking norms down to Q, we would obtain
N(α) = −N(A)2 ≡ 1 (mod 4), a contradiction.

Proposition 3. Let K be a non-normal CM-field of degree 2p whose maximal totally real subfield k is cyclic of
prime degree p � 3 and conductor fk. Assume that hK is odd, stick to the notation introduced in Proposition 1
and let q � 2 denote the rational prime such that Q ∩ Z = qZ. Then, (i) The number of complex roots of unity
in K is equal to 2, Q K = 1 and

h−
K = 2

(2π)p

√
dK

dk

Ress=1(ζK (s))

Ress=1(ζk(s))
;

(ii) K = Kk,Q := k(
√−αQ ) for any totally positive algebraic integer αQ ∈ k such that Qh+

k = (αQ); (iii)
FK/k = Qe(q) with e(q) � 1 odd; (iv) q splits completely in k; (v) e(q) = 1 and q ≡ 3 (mod 4) if q > 2, and

e(q) = 3 if q = 2. Hence, dK = d2
k q̃ = f 2(p−1)

k q̃, where q̃ = Nk/Q(FK/k) (hence, q̃ = q if q > 2 and q̃ = 23 is
q = 2), and

h−
K =

√
q̃

π

(√
fk

2π

)p−1 Ress=1(ζK (s))

Ress=1(ζk(s))
. (1)

Proof. We set h = h+
k , which is odd (Proposition 1). Let Uk and U+

k be the groups of units and totally
positive units of the ring of algebraic integers of k, respectively. Since h+

k is odd, we have U+
k = U 2

k .

1. We have Q K = (U K : Uk). If we had Q K = 2, then we would have K = k(
√−ε ) for some ε ∈

U+
k = U 2

k and K = k(
√−1 ) would be a cyclic number field of degree 2p. A contradiction. Hence,

Q K = 1. As in Section 10 below, one could also use [Lou96, Proposition 6] and the oddness of h−
K

to deduce that Q K = 1. For the formula for h−
K , see [Was, Chapter 4].

2. Since Q is the only prime ideal of k which is ramified in the quadratic extension K/k =
k(

√−α )/k, where α is some totally positive algebraic integer of k, there exists some integral
ideal I of k such that (α) = I2Ql , with l ∈ {0,1}, which implies αh = εα2

Iαl
Q for a totally posi-

tive generator αI of Ih and some ε ∈ U+
k . Since U+

k = U 2
k , we have ε = η2 for some η ∈ Uk and

K = k(
√−α ) = k(

√
−αh ) = k(

√
−αl

Q ). If we had l = 0 then K = k(
√−1 ) would be a cyclic field

of degree 2p. A contradiction. Therefore, l = 1 and K = k(
√−αQ ).

3. Since Q is the only prime ideal of k ramified in the quadratic extension K/k, there exists e � 1
such that FK/k =Qe . Since K/k = k(

√−αQ )/k is quadratic, (4αQ) = I2FK/k some integral ideal
I of k (see [LYK, Proposition 1]). Hence, (4αQ) = (2)2Qh = I2FK/k = I2Qe and e is odd.

4. If (q) = Q is inert in k, then K = k(
√−qh ) = k(

√−q ). If (q) = Qp is ramified in k, then

K = k(
√−αQ ) = k(

√
−α

p
Q ) = k(

√−qh ) = k(
√−q ). In both cases, K would be abelian. A con-

tradiction. Hence, q splits in k.
5. According to class field theory, there exists a primitive quadratic characters χ0 on the multiplica-

tive groups (Ak/Qe)∗ which satisfy χ0(ε) = ν(ε) for all ε ∈ Uk . In particular, χ0(−1) = ν(−1) =
(−1)p = −1 and χ0 is odd. Since we have a canonical isomorphism from Z/qeZ onto Ak/Qe ,
there exists an odd primitive quadratic character on the multiplicative group (Ak/Qe)∗ , e odd, if
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and only if there exists an odd primitive quadratic character on the multiplicative group (Z/qeZ)∗ ,
e odd, hence if and only if [q = 2 and e = 3] or [q ≡ 3 (mod 4) and e = 1], in which cases there
exists only one such odd primitive quadratic character modulo Qe , which we denote by χQ . �

Clearly, Q is ramified in the quadratic extension Kk,Q/k. However, Kk,Q/k could also be ramified
at primes ideals of k above the rational prime 2. We define a simplest non-normal 2p-CM-field as being
a Kk,Q such that Q is the only prime ideal of k ramified in the quadratic extension Kk,Q/k. Hence, the
simplest non-normal 2p-CM-fields are the non-normal CM-fields of degree 2p of odd class numbers
and whose maximal real subfields are cyclic of degree p. We are now in a position to characterize
these CM-fields:

Theorem 4. A number field K is a non-normal CM-field of degree 2p, of odd class number and of maximal
totally real subfield a cyclic field k of prime degree p � 3 if and only if the narrow class number h+

k of k is odd

and K = Kk,Q := k(
√−αQ ), where αQ is any totally positive algebraic integer of k such that Qh+

k = (αQ),
with Q a prime ideal of k above a prime q �≡ 1 (mod 4) which splits completely in k and for which the odd
primitive quadratic modular character χQ on (Ak/Qe(q))∗ satisfies χQ(ε) = Nk/Q(ε) for all ε ∈ Uk.

We let Kk,q denote anyone of the p pairwise isomorphic simplest non-normal 2p-CM-fields Kk,Q
as Q ranges over the p prime ideals of k above q.

3. Lower bounds on relative class numbers

Our aim is to obtain in Theorem 7 lower bounds for relative class numbers of non-normal CM-
fields of degree 2p � 6 of odd class number whose maximal totally real subfields are cyclic of degree
p � 3. We deduce in Corollary 8 that if h−

K = 1 then 2p � 46, a better upper bound than the one
obtained in [Bes, Theorem 2] under the assumption of the Generalized Riemann Hypothesis.

Lemma 5. Let k be a cyclic number field of prime degree p � 3, let K/k be a quadratic extension with K not
normal. Then, ζK (1 − 1/4c log dK ) � 0, where c = (3 + 2

√
2 )/2.

Proof. This improves upon [Sta, Lemma 10]. Let α ∈ k be such that K = k(
√

α ). Let α′ be any conju-
gate of α in k such that K ′ = k(

√
α′ ) �= K (this is possible for K/Q is not normal). Set K ′′ = k(

√
αα′ )

and L = k(
√

α,
√

α′ ). Let f , f ′ and f ′′ be the norms of the finite parts of the conductors of the
quadratic extensions K/k, K ′/k and K ′′/k. Then, dK = d2

k f , dK ′ = d2
k f ′ , dK ′′ = d2

k f ′′ and ζL(s)ζk(s)2 =
ζK (s)ζK ′ (s)ζK ′′ (s). Now, f ′′ divides f f ′ and K ′ and K are isomorphic. Hence, f ′ = f , ζK ′ (s) = ζK (s),
dL = dK dK ′dK ′′/d2

k = d2
k f d2

k f ′d2
k f ′′/d2

k = d4
k f f ′ f ′′ divides d4

k f 4 = (dK /dk)
4, hence divides d4

K . Since
ζL(s) = (ζK (s)/ζk(s))2ζK ′′ (s), any real zero of the entire function ζK (s)/ζk(s) would be a double real
zero of ζL(s). It is known that ζL(s) has at most 1 real zero in the range 1 − 1/c log dL � s < 1 (e.g.,
see [LLO, Lemma 15]). Hence, (ζK /ζk)(s) > 0 for 1 − 1/c log dL � s < 1. In particular,

(ζK /ζk)(1 − 1/4c log dK ) > 0.

Since k is a cyclic of odd degree, using the factorization of ζk(s) has a product of Dirichlet L-functions
and noticing that L(s,χ)L(s, χ̄ ) = |L(s,χ)|2 � 0 and ζ(s) < 0 for 0 < s < 1, we obtain that ζk(s) � 0
for 0 < s < 1. In particular,

ζk(1 − 1/4c log dK ) � 0.

The desired result follows. �
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Lemma 6. (See [Lou03, Proposition 4].) Let K be a totally imaginary number field of degree 2n � 4. Set
Jn = ∫ π/2

0 sinn/2−1(t)dt � π/2 and Kn = 2e Jn/π2 . Assume that dK > e4 . If ζK (β) � 0 for some β ∈
[1 − (2/ log dK ),1), then

Ress=1
(
ζK (s)

)
� εn(ρK )

1 − β

d(1−β)/2
K

,

where

εn(ρ) := 1 − Kn
n logρ − 1

n logρ − 2

(
2π2

ρ

)n/2

increases with ρ > e, and with n for ρ � 2π2 . If n � 5, then Kn � 0.48144 . . . .

Theorem 7. Let K be a non-normal CM-field of degree 2p, p � 3 a prime, as in Proposition 3. Hence, ρK =
f 1−1/p
k q̃1/2p , where fk is the conductor of k. Set c = (3 + 2

√
2 )/2 and C := 4πce1/8c = 38.226 . . . . Then,

h−
K � Fk(q̃), where

m 	→ Fk(m) := εp( f 1−1/p
k m1/2p)

√
m

C Ress=1(ζk(s)) log( f 2p−2
k m)

(√
fk

2π

)p−1

(2)

increases with m > 1, and h−
K � F (p, fk, q̃), where

F (p, f ,m) := εp( f 1−1/p)
√

m

C log( f 2p−2m)

( √
f

π log f

)p−1

(3)

increases with m > 1 and with f � 21.

Proof. By Lemmas 5 and 6, we obtain

Ress=1
(
ζK (s)

)
� εp(ρK )

4ce1/8c log dK
= εp(ρK )

π

C log dK
. (4)

Using (1), we obtain the first lower bound on h−
K .

Now, if k is a real cyclic field of prime degree p � 3 and conductor fk , then

Ress=1
(
ζk(s)

)
�

(
1

2
log fk

)p−1

(by [Ram, Corollary 1]), and we obtain the second lower bound on h−
K .

Finally, we notice that in setting f = ex , we have x > 3 for f � 21 and

1

log( f 2p−2m)

( √
f

log f

)p−1

= 1

(2p − 2)x + log m

(
ex/2

x

)p−1

=: G(x)

satisfies

G ′(x)

G(x)
= p − 1

2
− p − 1

x
− 2p − 2

(2p − 2)x + logm
� p − 1

2
− p − 1

3
− 2p − 2

3(2p − 2)
= p − 3

6

and G ′(x) � 0. �
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Corollary 8. Let K be a non-normal CM-field of degree 2p, p � 3 an odd prime, and containing a real cyclic
field k of degree p. Assume that hK = 1. Then, p � 23. Moreover, either (i) p = 23 and fk = 47, or (ii) p =
13 and fk ∈ {53,79}, or (iii) p = 11 and fk ∈ {23,67,121,331}, or (iv) p � 7. Finally, since m 	→ Fk(m)

increases with m > 1, for a given cyclic number field k of degree p � 3, we can compute an upper bound q̃max

on q̃ when hK = 1 by

q̃max = max
{

q̃; q �≡ 1 (mod 4) prime, qφ( fk)/p ≡ 1 (mod fk) and Fk(q̃) � 1
}
. (5)

Proof. Assume that hK = 1. Then, hk = 1. Hence, p does not divide hk . Therefore, fk = p2 or fk ≡ 1
(mod 2p) is an odd prime (with fk � 2p + 1). Conversely, for any such fk there is only one cyclic real
number field of degree p and conductor fk .

1. First, assume that p > 23. Since fk � 2p +1 > 21 and ρK � ρk = f 1−1/p
k � ρp := (2p +1)1−1/p �

2π2, we obtain F (p) � h−
K = 1, where

F (p) := F (p,2p + 1,3) = εp(ρp)

√
3

C log(3 · (2p + 1)2p−2)

( √
2p + 1

π log(2p + 1)

)p−1

,

by (3), which implies p < 197.
2. Second, for a given prime p < 197 we use F (p, fk,3) � h−

K = 1, by (3), to compute an upper
bound f p on fk when hK = 1. Then, for each possible conductor fk = p2 or fk ≡ 1 (mod 2p) a prime,
with fk � f p , we compute

Ress=1
(
ζk(s)

) =
(p−1)/2∏

l=1

1

fk

∣∣∣∣∣
φ( fk)−1∑

a=0

exp(2π ial/p) log
∣∣sin

(
π ga

k/ fk
)∣∣∣∣∣∣∣

2

(see [Was, Theorem 4.9]), where gk is any generator of the cyclic group (Z/ fkZ)∗ . Moreover, a prime
q splits in k if and only if qφ( fk)/p ≡ 1 (mod fk) and we let

q̃min := min
{

q̃; q �≡ 1 (mod 4) prime and qφ( fk)/p ≡ 1 (mod fk)
}

(6)

be the least prime not equal to 1 mod 4 which splits in k. Since q � q̃min , by (2), we must have
Fk(q̃min) � h−

K = 1.
If follows that hK > 1 for p = 17, p = 19, and 23 < p < 197. The results for p = 23, p = 13, p = 11

and the last assertion also follow. �
4. A special situation

We would like to have a better bound than the one p � 23 obtained in Corollary 8. In fact, if
we could dispose of the case p = 23, we would have the better bound p � 13 (see Corollary 8). For
a given p and a given k, we can use any software for algebraic number theory to decide whether
for a given prime q �≡ 1 (mod 4) which splits completely in k the odd primitive quadratic character
χQ satisfies χQ(ε) = Nk/Q(ε) for the p − 1 units ε of any system of fundamental units of the unit
group Uk of k. However, this could be tricky for fields of large degree, i.e. if p = 23. The aim of this
section is to prove that this can be done much more easily whenever k is the maximal real subfield
of the cyclotomic field Q(ζ fk ), hence for the three cases (p, fk) ∈ {(5,11), (11,23), (23,47)}. That will
enable us to obtain in Corollary 10 the bound p � 13, a better result than the bound p � 23 given in
Corollary 8.

Proposition 9. Assume that p � 3 and l = 2p + 1 � 7 are prime. Let ζl be any complex primitive lth root
of unity. Assume that the relative class number h−

l of the cyclotomic field Q(ζl) is odd, which is the case for
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l ∈ {11,23,47} (e.g., see [Was, pp. 412–420]). Set k = Q(ζl)
+ , of degree (l − 1)/2 = p. Let q �≡ 1 (mod 4)

be a prime that splits in k, i.e. assume that q ≡ −1 (mod 4l) or q ≡ 1 + 2l (mod 4l). Let Q be a prime
ideal of k above q. Let χQ be the odd quadratic character on the cyclic group (Ak/Q)∗ of order q − 1. Then,
χQ(ε) = Nk/Q(ε) for all ε ∈ Uk if and only if (n(a)

q ) = ( a
l ) for 2 � a � p = (l−1)/2, where n(0) = 0, n(1) = 1

and n(a) = T · n(a − 1) − n(a − 2) for a � 2 (Legendre’s symbols), with T any rational integer such that
ζl + ζ−1

l ≡ T (mod Q).

Proof. It is clear that χQ(ε) = Nk/Q(ε) for all ε ∈ Uk if and only if this holds true for the all the
generators of a subgroup of odd index in Uk . The cyclotomic units of k are defined by

ξa = (
ζ a

l − ζ−a
l

)
/
(
ζl − ζ−1

l

)
, 2 � a � p = (l − 1)/2

(they are not exactly the ones defined in [Was, Chapter 8]), −1 and these p − 1 cyclotomic units
generate a subgroup of index h+

l = hk in Uk (see [Was, Theorem 8.2]), and if h−
l is odd then so is h+

l
(see [Was, Theorem 10.2]). Notice that h−

l is much easier to compute than h+
l . Since q ≡ 3 (mod 4),

we have χQ(−1) = (−1
q ) = −1 = (−1)p = Nk/Q(−1). Hence, to complete the proof, it suffices to prove

that

χQ(ξa) =
(

n(a)

q

)
and Nk/Q(ξa) =

(
a

l

)
, 2 � a � p = (l − 1)/2.

Since ξa = (ζl + ζ−1
l )ξa−1 − ξa−2 for a � 2, where ξ0 := 0 and ξ1 := 1, we have ξa ≡ n(a) (mod Q) and

χQ(ξa) = χQ(n(a)) = (
n(a)

q ). Since ξa ≡ a (mod (ζl − 1)), we have Nk/Q(ξa) = ( a
l ). �

Now, we explain how to compute such a T .
1. Assume that q ≡ 1 + 2l (mod 4l). Then q splits in Q(ζl). Let Q̃ be any prime ideal of Q(ζl) above

the prime q. Let Q be the prime ideal of k below Q̃. For any algebraic integer α ∈ Q(ζl), there exists
nα ∈ Z, unique mod q, such that α ≡ nα (mod Q̃). As ζ runs over the l − 1 primitive lth complex roots
of unity, nζ mod q runs over the l − 1 elements of order l in the cyclic group (Z/qZ)∗ of order q − 1
divisible by l. Hence, if we have chosen some integer Zl mod q of order l in the cyclic group (Z/qZ)∗ ,
we may assume that ζl ≡ Zl (mod Q̃), which yields T = Zl + Z−1

l in Z/qZ. Finally, to find some Zl ∈ Z
of order l in the cyclic group (Z/qZ)∗ , we compute Zmin := min{Z � 1; Z (q−1)/l �≡ 1 (mod q)} and
take Zl := Z (q−1)/l

min . If we assume the generalized Riemann hypothesis, then Zmin � 2 log2 q (see [Bach,
Theorem 2, p. 372]).

2. Assume that q ≡ −1 (mod 4l). Then q splits in k and is inert in L := Q(
√−l ) ⊆ Q(ζl) = kL, for

(−l
q ) = (

q
l ) = (−1

l ) = −1. Let Q be any prime ideal of k above the prime q. Then Q is inert in Q(ζl). Let

Q̃ be the prime ideal of Q(ζl) above Q. For any algebraic integer α ∈ Q(ζl), there exists λα ∈ Z[√−l ],
unique mod qZ[√−l ], such that α ≡ λα (mod Q̃). As ζ runs over the l − 1 primitive lth complex
roots of unity, λζ runs over the l − 1 elements of order l in the cyclic group G := (Z[√−l ]/qZ[√−l ])∗
of order q2 − 1 divisible by l. Hence, if we have chosen some Λl ∈ Z[√−l ] of order l in G , we may
assume that ζl ≡ Λl (mod Q̃), which yields T = Λl + Λ̄l . Indeed, since λq ≡ λ̄ (mod qZ[√−l ]) for
λ ∈ Z[√−l ], and since l divides q + 1, it follows that Λ−1

l ≡ Λ
q
l ≡ Λ̄l (mod qZ[√−l ]). Finally, to find

some Λl ∈ Z[√−l ] of order l in G , we find some Λ ∈ Z[√−l ] such that Λ(q2−1)/l �≡ 1 (mod qZ[√−l ])
and take Λl = Λ(q2−1)/l . We may assume that Z is of the form Z = z + √−l and using Zq ≡ Z̄ (mod
qZ[√−l ]), we obtain Z (q2−1)/l = (Zq−1)(q+1)/l ≡ ( Z̄/Z)(q+1)/l (mod qZ[√−l ]). To sum up, we have T =
2 A2−lB2

A2+lB2 in Z/qZ, where zmin � 1 is the least positive integer such that (z + √−l )(q+1)/l ≡ A + B
√−l

(mod qZ[√−l ]) with B �≡ 0 (mod q). These computations are efficiently performed by using the binary
expansion of the large exponent (q + 1)/l.

3. Hence, we have an easy to implement and fast algorithm to generate the primes q with q ≡
1 + 2l (mod 4l) or q ≡ −1 (mod 4l) for which χQ(ε) = Nk/Q(ε) for all the ε ∈ Uk . For example, for
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p = 23 and fk = 47, we obtain that q = 1184829391 ≈ 109, is the least prime q �≡ 1 (mod 4) which
splits in k and for which χQ(ε) = Nk/Q(ε) for ε ∈ Uk .

Corollary 10. Let K be a non-normal CM-field of degree 2p, p � 3 an odd prime, and containing a real cyclic
field k of degree p. If hK = 1, then p � 13.

Proof. For p = 23 and fk = 47, we have just seen that q � 1184829391. Hence, h−
K � Fk(q̃) �

Fk(1184829391) = 278.408 . . . > 1, with m 	→ Fk(m) as in (2). �
We point out that we have arrived at this bound p � 13 without using any software dedicated to

algebraic number theory. To conclude this section, by using any such software, we further improve
this bound p � 13 down to p � 11:

Corollary 11. Let K be a non-normal CM-field of degree 2p, p � 3 an odd prime, and containing a real cyclic
field k of degree p. If hK = 1, then p � 11. Moreover, if p = 11, then fk = 23, q � 56128463 and that are 146
possible q’s.

Proof. By Corollaries 8 and 10, to prove the first assertion we only have to settle the cases p = 13 and
fk ∈ {53,79}. If fk = 53, using any software for algebraic number theory we obtain that q = 940327
is the least prime q �≡ 1 (mod 4) which splits completely in k for which the odd primitive quadratic
character χQ satisfies χQ(ε) = Nk/Q(ε) for the p − 1 units ε of any system of fundamental units
of the unit group Uk of k. Hence, in that case, we have q � 940327, which implies h−

K � Fk(q̃) �
Fk(940327) = 5.607 . . . > 1, with n 	→ Fk(n) as in (2). In the same way, if fk = 79, the least prime q
to consider is q = 936151, but here again we obtain h−

K � Fk(q̃) � Fk(936151) = 57.894 . . . > 1.
To prove the second assertion, we use Corollary 8 and notice that, in the same way, if fk = 67,

fk = 121 or fk = 331, we respectively found that q = 31259, q = 179807 or q = 402763 are the
least possible prime to consider. In these three cases we respectively have h−

K � Fk(q̃) � Fk(31259) =
2.749 . . . > 1, h−

K � Fk(q̃) � Fk(179807) = 2.526 . . . > 1 and h−
K � Fk(q̃) � Fk(402763) = 15.444 . . . > 1.

Finally, assume that p = 11 and fk = 23. Then q̃ � qmax = 56128463 (see (5)), and the computation
of the number of q’s less than or equal to 56128463 follows from the method developed in this
section. �

We point out that we have arrived at this bound p � 11 without doing any relative class number
computation. However, to deal with the remaining cases p ∈ {3,5,7,11}, we will have to construct a
list containing all the possibles K ’s with hK = 1, and then to compute their relative class numbers (see
Section 8). Since computations of relative class numbers are a bit time consuming, (i) in Section 5 we
improve upon Theorem 7 to further reduce our list in the cases p = 3 and p = 5 and (ii) in Section 6
we give a necessary condition for the class number to be equal to one to drastically reduce this list.

5. The case that p is small: p = 3 and p = 5

For p = 3 and p = 5, we give a better result than Lemma 5 and obtain better lower bounds on
relative class numbers:

Lemma 12. Let k be a cyclic field of degree p. Let K/k be a quadratic extension, with K not normal. Let N
be the normal closure of K . Then, for dN > exp(2(

√
p − 1)) it holds that ζK (1 − (cp−1/ log dN )) � 0, where

cp−1 = 2(
√

p − 1)2 . Moreover, if K is as in Proposition 3, then dN = (dK q̃p−1)2p−1 = ( f 2(p−1)

k q̃p)2p−1
.

Proof. If dN > exp(2(
√

m + 1 − 1)), then the Dedekind zeta function ζN (s) of a number field N has
at most m real zeros in the range 1 − (cm/ log dN ) � s < 1, where cm = 2(

√
m + 1 − 1)2 (see [LLO,

Lemma 15]). Write Gal(k/Q) = 〈σ 〉, K = k(
√

α ) and N = k(
√

α1, . . . ,
√

αp ), where αi = σ i−1(α). The
p quadratic extensions Ki/k = k(

√
αi )/k are pairwise distinct. Indeed, since K is not normal it follows
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that σ(α)/α ∈ k \ k2, which implies σ i(α)/α ∈ k \ k2 for 1 � i � p − 1 and σ i(α)/σ j(α) ∈ k \ k2 for
0 � j < i � p − 1 (for σ i(α)/α ∈ k2 implies σ i j(α)/α ∈ k2 (by induction on j) and σ(α)/α ∈ k2 by
choosing j such that i j ≡ 1 (mod p)). Since the L-function associated with any quadratic extension
of k is entire, using the factorization of ζN (s)/ζk(s) has a product of quadratic L-functions, we have
ζN (s) = f (s)ζk(s)

∏p
i=1(ζKi (s)/ζk(s)) where f (s) is entire. Each Ki being isomorphic to K , we have∏p

i=1(ζKi (s)/ζk(s)) = (ζK (s)/ζk(s))p . Hence, any real zero of ζK (s)/ζk(s) is a zero of ζN (s) of multiplic-
ity � p, hence is < 1 − (cp−1/ log dN ). Therefore,

(ζK /ζk)
(
1 − (cp−1/ log dN)

)
> 0.

Now, as in the proof of Lemma 5, we have ζk(s) � 0 for 0 < s < 1. In particular,

ζk
(
1 − (cp−1/ log dN)

)
� 0.

The desired result follows. The last assertion follows from the conductor-discriminant formula. �
Instead of Theorem 7, we obtain:

Theorem 13. Let K be a non-normal CM-field of degree 2p, p � 3 a prime, as in Proposition 3. Set

C p := 2p−2 · π · e(
√

p−1)2/2p−1

(
√

p − 1)2
.

Hence, C3 = 13.40546 . . . and C5 = 18.09783 . . . . Then, h−
K � Gk(q̃), where

m 	→ Gk(m) := εp( f 1−1/p
k m1/2p)

√
m

C p Ress=1(ζk(s)) log( f 2p−2
k mp)

(√
fk

2π

)p−1

(7)

increases with m > 1.

Proof. Set β = 1 − (cp−1/ log dN ). Since cp−1 � 2p−1 and dN � d2p−1

K , we have

1 − (2/ log dK ) � 1 − (
cp−1/2p−1 log dK

)
� 1 − (cp−1/ log dN) = β

and, instead of (4), we obtain

Ress=1
(
ζK (s)

)
� εp(ρK )

2p−1π

C p log dN
= εp(ρK )

π

C p log( f 2(p−1)

k q̃p)
,

by using d(1−β)/2
K = exp(cp−1

log dK
2 log dN

) � exp(cp−1/2p). The result follows. �
6. Necessary conditions for the class number to be equal to one

For some values of p and fk , say for (p, fk) = (5,11), there are many possible simplest non-normal
2p-CM-fields Kk,q with q̃ � q̃max (see Table 1). We give a necessary condition for the class number to
be equal to one to drastically reduce this list and end up with only few CM-fields Kk,q for which we
will have to compute their relative class numbers to settle our class number one problem.
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Theorem 14. Let K = Kk,q be a simplest non-normal 2p-CM-field associated with a real cyclic field k of prime
degree p � 3 and a prime q �≡ 1 (mod 4) which splits completely in k. If hK = 1, then any prime l which splits
completely in k and L = Q(

√−q ) satisfies l � q̃/4p .

Proof. Use [Lou94, Theorem D] and the last assertion of Proposition 3 (see also [Lou97b]). �
For example, if (p, fk) = (5,11), then among the 7354 prime numbers q � q̃max = 18536363 (ob-

tained by the method given in Section 4), only 31 of them satisfy this necessary condition.

7. A table of the finite cases to deal with

Assume that 5 � p � 11 and that hK = 1. By using the method given in the proof of Corollary 8, we
can make a list of possible cyclic number fields k such that K + must be in this list. For (p = 3 or) p =
5, not only can we use (5), but we can use it with Gk(m) instead of Fk(m). For example, for p = 5 and
fk = 11, Theorem 7 yields q̃max = 18536363 (and Nk(q̃max) = 7354 by Section 4), whereas Theorem 13
yields q̃max = 34898819 (and Nk(q̃max) = 13313). However, for p = 5 and fk = 281, Theorem 7 yields
q̃max = 59, whereas Theorem 13 yields Gk(q̃min) = Gk(47) > 1 and shows that this number field k
needs not appear in our list. Hence, for (p = 3 or) p = 5 we use (5) with min(Fk(m), Gk(m)) instead
of Fk(m). We obtained that k is one of the 58 cyclic fields given in Table 1. In fact, since the eight
ones of conductors in bold face letters have narrow class numbers greater than one, there are only
50 = 58−8 fields k to consider. For p = 3 there are too many possible fields k to give them in Table 1,
but for p = 3 our problem has been solved in [BL1]. In Table 1, for a given p and a given cyclic field
k of degree p and conductor fk , q̃max as in (5) is an upper bound on q̃ if h−

K = 1, and Nk(q̃max),
computed with any software dedicated to number theory, is the number of prime q �≡ 1 (mod 4) with
q̃ � q̃max which split completely in k and for which the odd primitive quadratic character χQ satisfies
χQ(ε) = Nk/Q(ε) for the p − 1 units ε of any system of fundamental units of the unit group Uk of k,
i.e., Nk(q̃max) is the number of simplest non-normal 2p-CM-fields with q̃ � q̃max . We expect Nk(q̃max)

to be asymptotic to

Ñk(q̃max) = 1

p2p

q̃max

log q̃max
.

For some cases, there are many possible values for q. We use Theorem 14 to get rid of most of them,
and let N ′

k(q̃max) denote the number of q̃ � q̃max which satisfy this necessary condition. According
to this Table 1, we only have 402 relative class numbers to compute to settle our class number one
problem. We will explain in the next section how we performed this relative class number computa-
tions. The last two columns of Table 1 give the least such q and the relative class number h−

K of the
CM-field Kk,q .

8. Computation of relative class numbers

We refer the reader to [Lou97a]. Let K be a CM-field of degree 2n � 2. Let k be its maximal
totally real subfield, of degree n. Let w K be the number of roots of unity in K . Let χK/k be the
quadratic character associated with the quadratic extension K/k. Let φm = ∑

Nk/Q(I)=m χK/k(I) be the
coefficients of the Dirichlet series

ζK (s)/ζk(s) = L(s,χK/k) =
∑
m�1

φmm−s (�(s) > 1
)
.

Set AK/k = √
dK /πndk . We have

h−
K = Q K w K

(2π)n

√
dK

dk

∑
m�1

φm

m
Kn(m/AK/k), (8)
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Table 1

p fk q̃min q̃max Nk(q̃max) N ′
k(q̃max) q h−

K

5 11 23 18536363 7354 31 1451 1
5 25 7 2715007 1226 28 251 3
5 31 67 1812571 867 24 811 3
5 41 3 3557327 1555 24 331 5
5 61 11 76099 53 12 2731 49
5 71 23 10463 8 8 811 25
5 101 107 1483 2 2 971 63
5 131 19 739 0
5 151 8 810191 416 14 491 1425
5 181 7 1567 1 1 659 149
5 191 11 3163
5 211 31 67 0
5 241 8 187219 102 13 719 1429
5 251 8 430603 219 18 3947 8315
5 271 23 619 1 1 331 339
5 311 7 331 0
5 331 23 31 0
5 431 3 329143 179 14 107 215
5 491 3 251 2 2 179 225
5 571 8 3251 3 2 3019 4775
5 641 8 13463
5 661 3 431 0
5 761 3 463 1 1 103 2931
5 911 7 2399 3 1 1823 39421
5 971 7 1571 1 1 607 8739
5 1021 3 19 0
5 1051 3 3 0
5 1091 3 67 0
5 1171 3 7 0
5 1181 8 263 1 1 107 4265
5 1811 7 71 0
5 1871 3 3 0
5 2351 8 11
5 2381 7 223 0
5 2521 3 3 0
5 3061 8 8 0
5 3121 8 8 0
5 3221 3 179 1 1 179 74487
5 3361 7 8 0
5 3881 3 283 0
5 4861 7 8 0
5 6581 3 8 0
5 8831 3 3
5 11251 3 3 0
7 29 59 1769099
7 43 7 622639 55 37 2887 33
7 49 19 124459 12 12 5879 57
7 71 167 132911 13 8 9803 119
7 113 71 227
7 127 19 359 0
7 211 19 23 0
7 281 7 7 0
7 631 8 983 0
7 673 8 163 0
7 757 3 3 0
7 883 3 3 0
7 953 8 8

11 23 47 56128463 146 146 137771 7
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where Kn(A) is defined for A > 0 and satisfies

0 � Kn(A) � 2n exp
(−A2/n). (9)

According to (9), this series (8) is absolutely convergent. Moreover, set

B(K )
def= AK/k

(
λ

n
log AK/k

)n/2

.

If λ > 1 and n are given, then the limit of |h−
K − h−

K (M)| as dK approaches infinity is equal to 0.
Here, h−

K (M) is the approximation of h−
K obtained by disregarding in (8) the indices m > M � B(K ).

In our situation, we have Q K = 1 and w K = 2 (see Proposition 3). We refer the reader to [Lou97a,
Propositions 3 and 4] for the computation of numerical approximations to Kn(A) for A > 0. Finally,
since m 	→ φm is multiplicative, we only have to explain how to compute φlm for l � 2 a prime and
m � 1:

Proposition 15. Assume that K = Kk,Q . Let l � 2 be a prime.

1. Assume that l is ramified in k. Then, φlm = (−q̃/l)m.
2. Assume that l is inert in k. Then, φlm = (−q̃/l)m if p divides m, and φlm = 0 otherwise.
3. Assume that (l) = L1 · · ·Lp splits completely in k. Set ε j = χK/k(L j) ∈ {−1,0 + 1}. Let a+ � 0 be the

number of ε j ’s that are equal to +1 and a− � 0 be the number of ε j ’s that are equal to −1. Then,

φlm =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)m

(
a− − 1 + m

a− − 1

)
if a+ = 0 and a− � 1,(

a+ − 1 + m
a+ − 1

)
if a+ � 1 and a− = 0,

∑
i+ j=m(−1) j

(
a+ − 1 + i

a+ − 1

)(
a− − 1 + j

a− − 1

)
if a+ � 1 and a− � 1.

Proof.

1. We have (l) = Lp , Lm is the only ideal of norm lm and φlm = χK/k(L)m = χK/k(L)mp =
χK/k((l))m = χ0(l)m = (−q̃/l)m .

2. We have (l) = L and χK/k(L) = χK/k((l)) = χ0(l) = (−q̃/l). There exists an ideal I of norm lm if
and only if p divides m, in which case I = (l)m/p is the only such ideal, and φlm = χK/k(Lm/p) =
χK/k(Lm/p)p = χK/k((l))m = (−q̃/l)m .

3. Notice that ε1 · · ·εp = χK/k((l)) = χ0(l) = (−q̃/l). Here,

φlm =
∑

a1+···+ap=i
a j�0

ε
a1
1 · · ·εap

p

is the coefficient of xm in the power series expansion of 1
(1−x)a+ (1+x)a− . �

9. The determination

Theorem 16. There is no non-normal CM-field of class number one and whose maximal totally real subfield is
cyclic of degree p > 5 a prime.
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Table 2

fk q Pk(X) dK ρK = d1/6
K

7 167 X3 − 18X2 + 101X − 167 74 · 167 8.587 . . .

7 239 X3 − 19X2 + 118X − 239 74 · 239 9.115 . . .

7 251 X3 − 22X2 + 145X − 251 74 · 251 9.190 . . .

7 379 X3 − 26X2 + 181X − 379 74 · 379 9.844 . . .

7 491 X3 − 26X2 + 209X − 491 74 · 491 10.278 . . .

7 547 X3 − 27X2 + 222X − 547 74 · 547 10.464 . . .

7 1051 X3 − 34X2 + 341X − 1051 74 · 1051 10.668 . . .

9 71 X3 − 30X2 + 117X − 71 94 · 71 8.804 . . .

9 199 X3 − 39X2 + 318X − 199 94 · 199 10.454 . . .

9 379 X3 − 30X2 + 237X − 379 94 · 379 11.639 . . .

9 523 X3 − 57X2 + 507X − 523 94 · 523 12.281 . . .

9 739 X3 − 33X2 + 315X − 739 94 · 739 13.009 . . .

13 47 X3 − 15X2 + 62X − 47 134 · 47 10.502 . . .

13 79 X3 − 14X2 + 61X − 79 134 · 79 11.452 . . .

19 31 X3 − 11X2 + 34X − 31 194 · 31 12.620 . . .

19 83 X3 − 18X2 + 89X − 83 194 · 83 14.871 . . .

31 2 X3 − 12X2 + 17X − 2 314 · 23 13.955 . . .

37 11 X3 − 10X2 + 21X − 11 374 · 11 16.558 . . .

61 3 X3 − 15X2 + 14X − 3 614 · 3 18.609 . . .

Table 3

fk q Pk(X) dK ρK = d1/10
K

11 1451 X5 − 43X4 + 612X3 − 3325X2 + 5195X − 1451 118 · 1451 14.102. . .
11 1583 X5 − 28X4 + 296X3 − 1431X2 + 2942X − 1583 118 · 1583 14.225. . .
11 1783 X5 − 34X4 + 337X3 − 1416X2 + 2632X − 1783 118 · 1783 14.395. . .
11 1871 X5 − 45X4 + 623X3 − 2824X2 + 4469X − 1871 118 · 1871 14.465. . .
11 2971 X5 − 45X4 + 711X3 − 4496X2 + 8869X − 2971 118 · 2971 15.149. . .

Theorem 17. (See [BL1].) There are 19 non-isomorphic non-normal CM-fields of degree 6, of class number one
and whose maximal totally real subfields are cyclic cubic fields: the 19 simplest non-normal sextic CM-fields
K = Kk,q given in Table 2. Here, k is defined as the splitting field of Pk(X) = X3 −aX2 + b X −q ∈ Z[X] which
is the minimal polynomial of an algebraic element αq ∈ k of norm q such that Kk,q = k(

√−αq ). Therefore,
Kk,q is generated by any one of the complex roots of P Kk,q

(X) = −Pk(−X2) = X6 + aX4 + b X2 + q.

Theorem 18. There are 5 non-isomorphic non-normal CM-fields of degree 10, of class number one and whose
maximal totally real subfields are cyclic quintic fields: the 5 simplest non-normal CM-fields K = Kk,q of degree
10 given in Table 3. Here, k is defined as the splitting field of Pk(X) = X5 − aX4 + b X3 − c X2 + dX − q ∈
Z[X] which is the minimal polynomial of an algebraic element αq ∈ k of norm q such that Kk,q = k(

√−αq ).
Therefore, Kk,q is generated by any one of the complex roots of P Kk,q (X) = −Pk(−X2) = X10 + aX8 + b X6 +
c X4 + dX2 + q.

10. Conclusion

Let K = k(
√−α ) be a non-normal CM-field of degree 2, p � 3 a prime, whose maximal totally

real subfield k of degree p is cyclic. Here α is a totally positive element of k. Let σ be a generator of
the Galois group Gal(k/Q). Let α′ ∈ {σ l(α); 1 � l � p − 1} be any conjugate of α in k such that K ′ =
k(

√−α′ ) �= K (this is possible for K/Q is not normal). Set L = k(
√−α,

√−α′ ). Then L is a CM-field of
degree 4p and of maximal totally real subfield L+ = k(

√
αα′ ). According to [LO98, Proposition 2(b)],

we have

h−
L = Q L (

h−
K /Q K

)2
,

2
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and if h−
K is odd, then Q K = 1 (see also Proposition 3), Q L = 2, h−

L = (h−
K )2 and hL is odd. In particular,

if h−
K = 1 then h−

L = 1. Hence, we can construct many non-normal non-isomorphic CM-fields L of
degree 12 or 20, of relative class number one and of odd class number. Therefore, nothing prevents
some of them to be of class number one. Since h−

L = 1 we have hL = hL+ . Since L+ is only of degree 6
or 10, using any software dedicated to algebraic number theory, we can compute hL+ . In our situation,
for a given K there are (p − 1)/2 non-isomorphic CM-fields L, the L := k(

√−α,
√

−σ l(α) ) with
1 � l � (p − 1)/2, hence 1 of them for p = 3, and 2 of them for p = 5. Hence, we can construct
19 non-isomorphic non-normal CM-fields L of degree 12, of relative class number one and of odd
class number, and 10 = 2 × 5 non-isomorphic non-normal CM-fields L of degree 20, of relative class
number one and of odd class number. We found that all these 29 = 19 + 10 non-normal CM-fields L
have class number one, i.e. that hL+ = 1 for these 29 = 19 + 10 non-normal CM-fields L.
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