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in the Mathieu moonshine phenomenon discovered by Eguchi, 
Ooguri, and Tachikawa.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let q = e2πiτ for τ in the complex upper half plane. Then the classical modular 
function j : H → C possesses the following Fourier expansion
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j(τ) =
∞∑

n=−1
c(n)qn = 1

q
+ 744 + 196 884q + · · ·

The moonshine phenomenon discovered by McKay and precisely formulated by Conway 
and Norton [2] asserts that the Fourier coefficients of the j-function are related to the 
dimensions of the irreducible representations of the Monster group. Subsequently, the 
moonshine conjecture was proven by Borcherds [1]. It is remarkable that the coefficients 
c(n) have the following congruences [5,6] for n ≥ 1, a ≥ 1, and 1 ≤ b ≤ 3:

n ≡ 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(mod 2a)
(mod 3a)
(mod 5a)
(mod 7a)
(mod 11b)

⇒ c(n) ≡ 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(mod 23a+8)
(mod 32a+3)
(mod 5a+1)
(mod 7a)
(mod 11b).

In 2010, Eguchi, Ooguri, and Tachikawa [3] discovered a similar phenomenon corre-
sponding to the Mathieu group M24. To describe their observation, we introduce the 
following functions:

θ1(z; τ) = −
∞∑

n=−∞
eπiτ(n+ 1

2 )2+2πi(n+ 1
2 )(z+ 1

2 ),

μ(z; τ) = ieπiz

θ1(z; τ)
∑
n∈Z

(−1)n q
1
2n(n+1)e2πinz

1 − qne2πiz ,

and we set Σ(τ) and A(n) as follows:

Σ(τ) := −8
∑

z∈{1/2,τ/2,(1+τ)/2}
μ(z; τ)

= −q−
1
8

(
2 −

∞∑
n=1

A(n)qn
)

= q−
1
8
(
−2 + 90q + 462q2 + 1540q3 + 4554q4 + 11 592q5 + 27 830q6 + · · ·

)
.

Then the Mathieu moonshine phenomenon is the statement that the first five coeffi-
cients appearing in the Fourier expansion divided by 2,

{45, 231, 770, 2277, 5796},

are equal to the dimensions of the irreducible representations of M24, and the other coeffi-
cients can be written as linear combinations of the dimensions of the Mathieu group M24, 
for example 13 915 = 3520 + 10 395. The reason for this mysterious phenomenon is still 
unknown. In this case the dimensions of the irreducible representations no longer appear 
in the Fourier coefficients of a modular form but rather in a mock modular form.
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Recently, the first author numerically found some congruences of the coefficients A(n)
of the Mathieu mock theta function [7]:

n ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (mod 3)
1, 3 (mod 5)
2, 3, 5 (mod 7)
2, 3, 4, 6, 9 (mod 11){

4, 5, 6, 7, 9,
11, 12, 15, 16, 19, 21

(mod 23)

⇒ A(n) ≡ 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(mod 3)
(mod 5)
(mod 7)
(mod 11)
(mod 23).

(1)

Furthermore, although one expects congruences for infinitely many primes, no con-
gruences of such a simple form had been discovered. Remarkably, Zwegers made the 
observation that the primes occurring in these congruences are exactly the prime factors 
of the order of the Mathieu group M24. (We note that the primes occurring in these con-
gruences for the j-function are characterized as being of the group Γ0(p), which has genus 
zero.) Note that the conditions on n are such that n is not congruent to minus a triangular 
number modulo 3, 5, 7, 11 or 23. This is a crucial part of the proof of Proposition 4.1.

The first author was able to establish the first two congruences [7]. In principal, the 
same method may also be used to establish the remaining congruences. However, the 
proof relies heavily on computer calculations, and these turn out to be infeasible for 
congruences modulo 7, modulo 11, and modulo 23.

In this paper we prove the remaining congruences. The proof essentially uses a modifi-
cation of the argument of [10,7], where a certain sieving operator is replaced by a twisting 
operator. The reason why this works is the remarkable fact that the congruences appear 
at residue classes modulo 7 (modulo 11 and 23) whose characteristic function modulo 7
(modulo 11 and 23) may be written in terms of the unique quadratic character mod-
ulo 7 (modulo 11 and 23). In general, for an arbitrary subset of residue classes modulo 7
(modulo 11 and 23) one would need nonquadratic characters to express the characteristic 
function, and our argument would break down.

Theorem 1.1. The relations in (1) are true.

Remark 1.1. We note that the relations in (1) are slightly different from the relations 
in [7]. In fact, Zwegers pointed out that the method in [7] does not work for the case for 
n ≡ 2 (mod 3), A(n) ≡ 0 (mod 3). However, Zwegers found the following proof:

Σ(τ) =
−2(E2(τ) + 24

∑∞
n=1(−1)n nqn(n+1)/2

1−qn )
η(τ)3 (cf. [12])

≡ − 2
η(3τ) (mod 3)

= −2q− 1
8
(
1 + q3 + 2q6 + · · ·

)
.

We can see directly that A(n) ≡ 0 (mod 3) if n ≡ 1, 2 (mod 3).
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2. Setup

Σ(τ) is a mock theta series [13,10] and we call it the Mathieu mock theta function.
For the reader’s convenience, we recall the notion of modular forms and harmonic 

weak Maass forms for an arbitrary multiplier system (for more information, the reader is 
referred to [10]). A function f : H → C is called a weakly holomorphic modular form of 
weight k/2 with respect to a congruence subgroup Γ ≤ SL2(Z) and a multiplier system 
ν if the following conditions hold:

(1) f satisfies the modular transformation property:

f

(
aτ + b

cτ + d

)
= ν

(
ab

cd

)
(cτ + d) k

2 f(τ).

(2) f is holomorphic on H.
(3) f has at most linear exponential growth at the cusps.

We call a function f : H → C a harmonic Maass form if the second condition is replaced 
by the weaker condition that f is annihilated by the weight k/2 hyperbolic Laplacian 
Δ k

2
:= −y2( ∂2

∂x2 + ∂2

∂y2 ) + ik
2 ( ∂

∂x + ∂
∂y ). The η-multiplier νη : SL2(Z) → {z ∈ C | |z| = 1}

is defined by

νη

(
ab

cd

)
:= 1√

cτ + d

η(aτ+b
cτ+d )
η(τ) .

The η-multiplier system and the integer powers of it are multiplier systems for all half-
integral weights [10].

Let

ga,b(τ) :=
∑

ν∈a+Z

νeπiν
2τ+2πiνb,

where a, b ∈ R. We define μ̃(u; τ) and Σ(z) as follows:

μ̃(z; τ) := μ(z; τ) − i

2R(0; τ)

Σ̃(τ) := 8
∑

z∈{1/2,τ/2,(1+τ)/2}
μ̃(z; τ),

where R(0; τ) is defined as

R(0; τ) :=
∞∫

−τ̄

g 1
2 ,

1
2
(t)√

−i(t + τ)
dt.

Then it follows from [13] and [10, Lemma 3.3] that the following proposition holds:
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Proposition 2.1. The function Σ̃(τ) is a harmonic weak Maass form of weight 1/2 with 
respect to the group SL2(Z) with multiplier system ν−3

η .

It follows from [13, Propositions 3.6 and 3.7] that μ(1/2; τ), μ(τ/2; τ), and μ((1 +
τ)/2; τ) are the holomorphic parts of μ̃(1/2; τ), μ̃(τ/2; τ), and μ̃((1 +τ)/2; τ), respectively.

3. Twisting

To define twisting, let f be a harmonic weak Maass form of weight k2 (k ∈ Z) with a 
Fourier expansion of the form

f(τ) =
∑
n∈Z

an(y)q n
N .

Let m be a positive integer, and let ψ be a Dirichlet character modulo m. We define the 
twist fψ by

fψ(τ) :=
∑
n∈Z

ψ(n)an(y)q n
N .1

We may express the twist as a linear combination of shifts of f . More precisely, in the 
situation above, we have the following proposition (for a proof see, for example, [4]):

Proposition 3.1.

fψ(τ) = gψ
m

∑
s (mod m)

ψ(s)f
(
τ − Ns

m

)
= gψ

m

∑
s (mod m)

ψ(s)f
∣∣∣∣
k
2

(
1 −Ns

m

0 1

)
, (2)

where

gψ :=
∑

r (mod m)

e
2πir
m ψ(r)

is the Gauss sum associated with ψ.

The following is a generalization of a lemma in the thesis of the second author and is 
modeled along the proof for modular forms as in [4].

Proposition 3.2. Let f be a harmonic weak Maass form of weight 1
2 for SL2(Z) with 

multiplier ν−3
η . Suppose f has a Fourier expansion at ∞ in terms of q 1

N with N = 8. 
Let m be a positive integer, and let ψ be a Dirichlet character modulo m. Then, fψ is a 
harmonic weak Maass form of weight 1

2 on Γ0(m2) and multiplier ν−3
η ψ2.

If m is a multiple of N = 8, then fψ is a harmonic weak Maass form on Γ0(m2/N2).

1 In fact there is also a dependency on N , which we suppress for simplicity.
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Proof. Using representation 2 it is easy to establish that fψ has at most exponential 
growth at any cusp, and it is also annihilated by Δ 1

2
.

To prove the transformation properties, we define

A =
(
a b

c d

)
and As,m =

(
1 −Ns

m

0 1

)

with a, b, c, d, s ∈ Z. For any s, s′ ∈ Z we have

As,mAA−1
s′,m =

(
a− Ncs

m b + Ns′a−Nsd
m + N2css′

m2

c d + Ncs′

m

)
.

Now suppose A ∈ Γ0(m2). Then it is easy to see that As,mAA−1
s′,m ∈ SL2(Z) if s′a −sd ≡

0 (mod m). Since a and d are coprime, we can always choose s′ in such a way that this 
is satisfied, namely s′ = sda−1 (mod m), where a−1 denotes the integer inverse of a
modulo m.

Then we have

fψ(Aτ) = gψ
m

∑
s (mod m)

ψ(s)f
(
Aτ − Ns

m

)
= gψ

m

∑
s (mod m)

ψ(s)f(As,mAτ)

= gψ
m

∑
s (mod m)

ψ(s)f
(
As,mAA−1

s′,mAs′,mτ
)
.

We have seen that As,mAA−1
s′,m ∈ SL2(Z). Using the fact that f is a harmonic weak 

Maass form of weight 1
2 with character ν−3

η , we conclude

fψ(Aτ) = gψ
m

∑
s (mod m)

ψ(s)ν−3
η

(
a− cNs

m b + Ns′a−Nsd
m + cN2ss′

m2

c d + cNs′

m

)

×
√
cAs′,mτ + d + Ncs′

m
f(As′,mτ).

We see that 
√
cAs′,mτ + d + cs′

m =
√
cτ + d. Furthermore, since N = 8, every entry 

of the matrix in the argument of ν3
η differs from the matrix 

(
a b
c d

)
by some multiple of 8. 

Then the lemma implies

fψ(Aτ) = gψ
m

∑
s (mod m)

ψ(s)ν−3
η

(
a b

c d

)
√
cτ + df(As′,mτ)

= gψ
m

ν−3
η

(
a b

c d

)
√
cτ + d

∑
ψ(s)f(As′,mτ).
s (mod m)
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With s ranging through all the residue classes modulo m, the same is true for s′ = sda−1. 
This change of variables then yields

fψ(Aτ) = gψ
m

ν−3
η

(
a b

c d

)
√
cτ + d

∑
s′ (mod m)

ψ
(
s′
)
ψ
(
ad−1)f(As′,mτ).

However, ψ(ad−1) = ψ(a)ψ(d), and ψ(ad) = ψ(1 + cb) = ψ(1) = 1. Hence, ψ(ad−1) =
ψ2(d), and this implies that

fψ(Aτ) = ν−3
η

(
a b

c d

)
ψ2(d)

√
cτ + dfψ(τ). �

4. Proof of Theorem 1.1

4.1. Characters

Recall that

Σ(τ) = −q−
1
8

(
2 −

∞∑
n=1

A(n)qn
)

= −2q− 1
8 + q

1
8
(
90q + 462q2 + 1540q3 + 4554q4 + 11 592q5 + 27 830q6 + · · ·

)
.

Since the Fourier expansion is in terms of q 1
8 , we immediately see that congruences

n ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (mod 3)
1, 3 (mod 5)
2, 3, 5 (mod 7)
2, 3, 4, 6, 9 (mod 11){

4, 5, 6, 7, 9,
11, 12, 15, 16, 19, 21

(mod 23)

⇒ A(n) ≡ 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(mod 3)
(mod 5)
(mod 7)
(mod 11)
(mod 23)

are equivalent to the fact that all coefficients appearing in the Fourier expansion in front 
of q k

8 , with

k ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

7 (mod 24)
7, 23 (mod 40)
15, 23, 39 (mod 56)
15, 23, 31, 47, 51 (mod 88){

31, 39, 47, 55, 71,
87, 95, 119, 127, 151, 167

(mod 184)
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are divisible by 3, 5, 7, 11, and 23, respectively. Let us define

Σ3(τ) =
∑

k≡7 (mod 24)

a(n)q k
n = q−

1
8

∑
n≡1 (mod 3)

A(n)qn,

Σ5(τ) =
∑

k≡7,23 (mod 40)

a(n)q k
n = q−

1
8

∑
n≡1,3 (mod 5)

A(n)qn,

Σ7(τ) =
∑

k≡15,23,39 (mod 56)

a(n)q k
n = q−

1
8

∑
n≡2,3,5 (mod 7)

A(n)qn,

Σ11(τ) =
∑

k≡15,23,31,47,71 (mod 88)

a(n)q k
n = q−

1
8

∑
n≡2,3,4,6,9 (mod 11)

A(n)qn,

Σ23(τ) =
∑

k≡31,39,47,55,71,
87,97,119,127,151,167 (mod 184)

a(n)q k
n = q−

1
8

∑
n≡4,5,6,7,9,

11,12,15,16,19,21 (mod 23)

A(n)qn.

In order to apply the proposition from Section 3, we will write the characteristic functions 
in terms of characters. For p = 3, 5, 7, 11, 23, let χtriv

p denote the trivial character and 
χp the following quadratic characters modulo p (in the case 7, 11, and 23, these are the 
unique quadratic characters):

residue class 0 1 2
order 0 1 −1
χ3 0 1 −1

residue class 0 1 2 3 4
order 0 1 4 4 2
χ5 0 1 −1 −1 1

residue class 0 1 2 3 4 5 6
order 0 1 3 6 3 6 2
χ7 0 1 1 −1 1 −1 1

residue class 0 1 2 3 4 5 6 7 8 9 10
order 0 1 10 5 5 5 10 10 10 5 2
χ11 0 1 −1 1 1 1 −1 −1 −1 1 1

residue class 0 1 2 3 4 5 6 7 8 9 10
order 0 1 11 11 11 22 11 22 11 11 22
χ23 0 1 1 1 1 −1 1 −1 1 1 −1

residue class 11 12 13 14 15 16 17 18 19 20 21 22
order 22 11 11 22 22 11 22 11 22 22 22 2
χ23 −1 1 1 −1 −1 1 −1 1 −1 −1 −1 −1

Furthermore we consider the following characters modulo 8:

0 1 2 3 4 5 6 7

χ
(0)
8 0 1 0 1 0 1 0 1

χ
(1)
8 0 1 0 1 0 −1 0 −1

χ
(2)
8 0 1 0 −1 0 1 0 −1

χ
(3) 0 1 0 −1 0 −1 0 1
8
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Then we have

1
4
(
χ

(0)
8 (n) − χ

(1)
8 (n) − χ

(2)
8 (n) + χ

(3)
8 (n)

)
=

{
1 if n ≡ 7 (mod 8),
0 if n 
≡ 7 (mod 8),

and

1
2
(
χtriv

3 (n) + χ3(n)
)

=
{

1 if n ≡ 1 (mod 3),
0 else,

1
2
(
χtriv

5 (n) − χ5(n)
)

=
{

1 if n ≡ 1, 4 (mod 5),
0 else,

1
2
(
χtriv

7 (n) + χ7(n)
)

=
{

1 if n ≡ 1, 2, 4 (mod 7),
0 else,

1
2
(
χtriv

11 (n) + χ11(n)
)

=
{

1 if n ≡ 1, 3, 4, 5, 9 (mod 11),
0 else,

1
2
(
χtriv

23 (n) + χ23(n)
)

=
{

1 if n ≡ 1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 (mod 23),
0 else.

Multiplying these characteristic functions mod p with those mod 8, we obtain the char-
acteristic functions:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

7 (mod 24)
7, 23 (mod 40)
15, 23, 39 (mod 56)
15, 23, 31, 47, 71, (mod 88)
31, 39, 47, 55, 71, 87, 95, 119, 127, 151, 167 (mod 184)

for

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mod 3
mod 5
mod 7
mod 11
mod 23.

Proposition 4.1. For p = 3, 5, 7, 11, 23, the function Σp(τ) is a weakly holomorphic mod-
ular form of weight 1/2 with respect to ν−3

η for the group Γ0(p2).

Proof. By Proposition 2.1, Σ̃(τ) is a harmonic weak Maass form. We write the Fourier 
expansion of Σ̃(τ) as

Σ̃(z) =
∑
n∈Z

Ã(n, y)q n
8 ,

where Ã(n, y) might also depend on the imaginary part of τ . For p = 3, 5, 7, 11, 23, we 
set Σ̃(τ) as follows:
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Σ̃3(τ) = q−
1
8

∑
n≡1 (mod 3)

Ã(n, y)qn,

Σ̃5(τ) = q−
1
8

∑
n≡1,3 (mod 5)

Ã(n, y)qn,

Σ̃7(τ) = q−
1
8

∑
n≡2,3,5 (mod 7)

Ã(n, y)qn,

Σ̃11(τ) = q−
1
8

∑
n≡2,3,4,6,9 (mod 11)

Ã(n, y)qn,

Σ̃23(τ) = q−
1
8

∑
n≡4,5,6,7,9,

11,12,15,16,19,21 (mod 23)

Ã(n, y)qn.

Then by Proposition 3.2, Σ̃p is a harmonic Maass form for Γ0(p2). As the holomorphic 
part of Σ̃p is Σp, it remains to show that the function is holomorphic, i.e., its non-
holomorphic part vanishes. To prove that, we argue as in [10, Proposition 3.6] that the 
nonholomorphic part is

i

2
√
π

∑
n∈Z

(−1)nq−
(2n+1)2

8 Γ

(
1
2 , π

(2n + 1)2

2 y

)

and is supported at Fourier coefficients of the form q−
(2n+1)2

8 with n ∈ Z (we note that 
i
√

2
4
√
π
, q−

(2n+1)2
4 , and Γ (1

2 , π(2n + 1)2y) which appear in [10, Proposition 3.6], should be 

i
2
√
π
, q−

(2n+1)2
8 , and Γ (1

2 , π
(2n+1)2

2 y)). For p = 3, it is easy to see that 24n + 7 can never 
be a negative square of an odd number. Namely, we have Σ3(τ) = Σ̃3(τ). The other 
cases are proven in a similar way. �
4.2. Cusp behavior, eta function, and computation

The following lemma appears in [10].

Lemma 4.1. (Cf. [10, Lemma 3.11].) Suppose 0 ≤ s < m. Set � := gcd(cm, Nsc + am). 
For r = 3, 5, 7, 11, 23, the first Fourier coefficient of the holomorphic part of Σr(τ) at the 
cusp a/c up to a nonzero constant is given by q−�2/8m2 .

Using Lemma 4.1, one can determine upper bounds for the pole orders of Σ3, Σ5, Σ7, 
Σ11, and Σ23. Using this information and a computer program, which can be found on 
the homepage of one of the authors

https :/ /sites .google .com /site /tmiezaki /mmt _pole/

one can check the following lemma:

https://sites.google.com/site/tmiezaki/mmt_pole/
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Lemma 4.2. For p = 3, 5, 7, 11, 23, we have that

η(pτ)3pΣp(τ)

is a modular form on Γ0(p2) of weight 3p+1
2 having no poles at the cusps of Γ0(p2).

The following lemma provides a variant of the Sturm bound for modular forms whose 
q-expansion has fractional powers of q.

Lemma 4.3. (See [11, Lemma 4.4], [9], [8].) Suppose that f is a modular form of half-
integral weight k2 with respect to a congruence subgroup Γ and some multiplier system ν, 
and with Fourier expansion of the form

∞∑
n=0

anq
n
N .

Let p be some prime number. Then, p|an for all n if, and only if, p|an for all n with 
n ≤ Nk

24 [SL2(Z) : Γ ].

In our situation, we obtain the following values for the Sturm bound.

p 3 5 7 11 23

[SL2(Z) : Γ0(p2)] 12 30 56 132 552
Sturm bound for Σp 40 160 411 1496 12 880

We have checked numerically that the divisibility holds up to the Sturm bound for 
each prime p for the function η(pτ)3pΣp(τ). This in turn implies the divisibility prop-
erties of the Fourier coefficients of η(pτ)3pΣp(τ) and, as a consequence, also of Σp(τ). 
Therefore the proof of Theorem 1.1 is completed. The Fourier coefficients can be obtained 
electronically from

https :/ /sites .google .com /site /tmiezaki /mmt _coef
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