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In 1993 Estes and Guralnick conjectured that any totally real 
separable monic polynomial with rational integer coefficients 
will occur as the minimal polynomial of some symmetric 
matrix with rational integer entries. They proved this to be 
true for all such polynomials that have degree at most 4.
In this paper, we show that for every d ≥ 6 there is a 
polynomial of degree d that is a counterexample to this 
conjecture. The only case still in doubt is degree 5.
One of the ingredients in the proof is to show that there are 
Salem numbers of degree 2d and trace −2 for every d ≥ 12.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Salem numbers of trace −2

A Salem number is a real algebraic integer τ > 1, conjugate to its reciprocal 1/τ , of 
degree at least 4, and with all conjugates other than τ and 1/τ lying on the unit circle 
in the complex plane. See [20] for a recent survey. Smyth [19] considered the problem 
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of finding Salem numbers of negative trace, and found examples that had trace −1 of 
every (even) degree greater than or equal to 8. He asked how small the trace could be. 
McMullen [18] raised the question of whether or not there are any Salem numbers of 
trace less than −1, still none being known at that time. The first examples having trace 
−2 were found by McKee and Smyth [12], and indeed they showed that there are Salem 
numbers of every trace [13].

In this paper we shall show that there are Salem numbers of trace −2 for every (even) 
degree greater than or equal to 24: Proposition 1 below. The key new idea is to use an 
interlacing construction from [12] to produce a finite number of infinite families of Salem 
numbers that between them cover all sufficiently large degrees.

1.2. A conjecture of Estes and Guralnick

Let A be an integer symmetric matrix, and let mA(x) be its minimal polynomial. 
Then certainly mA(x) is a monic integer polynomial with all roots real. Moreover it is 
separable, since A is diagonalisable over Q. In [7, page 84] Estes and Guralnick make the 
conjecture ‘that any totally real separable monic integral polynomial can occur as the 
minimal polynomial of a symmetric integral matrix’. In support of this conjecture, they 
prove it to be true if the polynomial in question has degree at most 4.

Dobrowolski [4] showed that there are infinitely many counterexamples to the conjec-
ture, by obtaining a lower bound on the discriminant of any polynomial that appears as 
the minimal polynomial of an integer symmetric matrix and noting that infinitely many 
totally real separable monic integral polynomials have a discriminant that is lower than 
his bound. The smallest known degree for any of his counterexamples is 2880.

McKee [10] found counterexamples that had much lower degrees, including three of 
degree 6. This was based on a classification of all integer symmetric matrices such that 
the difference between the largest and smallest eigenvalues is less than 4. Recently [17]
we found a sharp lower bound for the trace of the minimal polynomial of an integer 
symmetric matrix, and used this to provide some further counterexamples to the Estes–
Guralnick conjecture.

The current paper finds counterexamples for every degree greater than or equal to 6. 
All sufficiently large degrees are covered by minimal polynomials of numbers of the form 
τ +1/τ +2, where τ is a Salem number of trace −2. Smaller degrees are dealt with by ad 
hoc arguments. It is still not known whether the conjecture is true or false for degree-5
polynomials.

1.3. Statement of results

We now list the main results of the paper, and deduce some immediate corollaries, 
leaving the proofs of the main results until later. We start with an existence theorem for 
Salem numbers of trace −2 for all large enough degrees.
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Proposition 1. For all d ≥ 12 there is a Salem number of degree 2d and trace −2.

The proof will be in Section 2. There are also three Salem numbers of degree 2d and 
trace −2 for d = 10 [12]. It is known that there are none for d < 10 [19], and none for 
d = 11 [8].

If τ is a Salem number of degree 2d and trace t, then τ + 1/τ + 2 is a totally positive 
algebraic integer of degree d and trace 2d +t. As an immediate corollary to Proposition 1
we have:

Corollary 2. For all d ≥ 12 there is a totally positive algebraic integer of degree d and 
trace 2d − 2.

In [17] we showed that the minimal polynomial of any totally positive algebraic integer 
of degree d and trace < 2d − 1 cannot be the minimal polynomial of integer symmetric 
matrix. Hence we have:

Corollary 3. There are counterexamples to the conjecture of Estes and Guralnick for all 
degrees d ≥ 12.

Using small-span arguments, we find counterexamples for all degrees between 6 and 
11 inclusive (Section 3), establishing our main result:

Theorem 4. For all d ≥ 6, there exists a totally real separable monic integer polynomial 
of degree d that is not the minimal polynomial of any integer symmetric matrix.

Thus the conjecture of Estes and Guralnick has counterexamples for all degrees greater 
than or equal to 6. There remains the question of whether or not there exists a totally 
real separable monic integer polynomial of degree 5 that is not the minimal polynomial 
of any integer symmetric matrix.

2. Proof of Proposition 1

Following [13], we say that a pair of relatively prime polynomials p and q satisfies
the circular interlacing condition if they both have real coefficients and positive leading 
terms, and all their zeros interlace on the unit circle (progressing round the unit circle, 
zeros of p and q are encountered alternately). If m and n are coprime integers, then 
q = (zm+n − 1)/(z − 1) and p = (zm − 1)(zn − 1)/(z − 1) satisfy the circular interlacing 
condition (see the first entry in [1, Table 8.3], or family 1 in [16, Table 1], or the interlacing 
quotient of An(a, b) in [14, Table 7]). For n ≥ 1, let Φn(z) be the minimal polynomial 
of the primitive nth root of unity e2πi/n. It will prove convenient to use the terminology 
cyclotomic polynomial to mean any monic polynomial with integer coefficients that has 
all its roots on the unit circle. After Kronecker [9], a cyclotomic polynomial is a product 
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of one or more of the Φn. A Pisot number is a real algebraic integer τ > 1 such that all 
conjugates of τ (other than τ itself) have modulus strictly less than 1.

Applying Propositions 3.3 and 3.2(a) of [13] gives the following lemma.

Lemma 5. Let p1, p2, p3, p4, p5 and n be pairwise coprime integers, all at least 2. Put

q(z)
p(z) = zp1+p2 − 1

(zp1 − 1)(zp2 − 1) + zp3+p4 − 1
(zp3 − 1)(zp4 − 1) + zp5+n − 1

(zp5 − 1)(zn − 1) , (1)

where p and q are relatively prime. Then (z2 − 1)p(z) − zq(z) = f(z)g(z), where f(z) is 
the minimal polynomial of a Salem number (or possibly a quadratic Pisot number), and 
g(z) is either a cyclotomic polynomial or is equal to 1.

The distinction of the naming of n will become apparent in the next lemma. We note 
that a difficulty with applying Lemma 5 to construct Salem numbers of specified trace 
is the possibility of cyclotomic factors appearing in (z2 − 1)p(z) − zq(z). We apply a 
method that was used in [12, Section 2.3] to find infinite families where the irreducibility 
of (z2 − 1)p(z) − zq(z) is guaranteed (in the notation of Lemma 5, g(z) = 1).

Lemma 6. Let (p1, p2, p3, p4, p5) be one of the following 5-tuples:

(2, 3, 5, 7, 11), (2, 3, 5, 7, 13), (2, 3, 5, 11, 13),
(2, 3, 5, 11, 19), (2, 3, 5, 13, 17), (2, 3, 5, 13, 19),
(2, 3, 5, 17, 19), (2, 3, 7, 11, 13), (2, 3, 7, 11, 17),
(2, 3, 7, 11, 19), (2, 3, 7, 13, 17), (2, 3, 7, 13, 19),
(2, 3, 11, 13, 19), (2, 3, 11, 17, 19), (2, 3, 13, 17, 19).

Then for every n ≥ 5 such that gcd(n, p1p2p3p4p5) = 1, and with p(z) and q(z) defined 
by Lemma 5, the polynomial (z2 − 1)p(z) − q(z) is the minimal polynomial of a Salem 
number of trace −2 and degree n + p1 + p2 + p3 + p4 + p5 − 3.

Before embarking on the proof, we make a few remarks.
The coprimeness condition ensures that in each of the three fractions on the right 

of (1), the only common factor in the numerator and denominator is z − 1. Hence the 
degree of p (and q) is n +

∑
(pi− 1) = n − 5 +

∑
pi. The leading coefficient of q is 3, and 

p(z) = zd +5zd−1 + · · ·, where d = n − 5 +
∑

pi. Put f(z) = (z2 − 1)p(z) − zq(z). If f(z)
is irreducible, then any root of f(z) has degree n − 3 +

∑
pi, and trace −5 + 3 = −2. 

After Lemma 5, we would have that f(z) is the minimal polynomial of a Salem number. 
All that remains to be proved, therefore, is that f(z) is irreducible for all the claimed 
values of n and (p1, . . . , p5).

The restriction on n implies that it is odd, and with p1 = 2 and the other pi odd, 
we see that the stated degree is even. The proof technique will not work (and the result 
is not always true) for all 5-tuples, which explains some of the gaps in the list of 15
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given. The proof does work for the 5-tuples (2, 3, 5, 7, 17) and (2, 3, 7, 17, 19), but neither 
of these is needed for the sequel.

Proof of Lemma 6. After our previous remarks, all that remains to be shown is that 
f(z) = (z2 − 1)p(z) − zq(z) is irreducible for all the advertised values of (p1, . . . , p5) and 
with n ≥ 5 coprime to their product. After Lemma 5, we need merely exclude cyclotomic 
factors. To this end we use a trick from [2]: if ζ is a root of unity, then one of −ζ, ζ2, or 
−ζ2 is a Galois conjugate of ζ. Hence if ζ is a root of unity that is a zero of a certain 
integer polynomial, then at least one of −ζ, ζ2, or −ζ2 is a zero of the same polynomial.

Put

Q(y, z)
P (y, z) = zp1+p2 − 1

(zp1 − 1)(zp2 − 1) + zp3+p4 − 1
(zp3 − 1)(zp4 − 1) + yzp5 − 1

(zp5 − 1)(y − 1) ,

in lowest terms. Note that Q(zn,z)
P (zn,z) = q(z)

p(z) , but that the left hand side here will not be in 
lowest terms: both numerator and denominator will be divisible by z − 1.

We look for cyclotomic points on the curve C : (z2 − 1)P (y, z) − zQ(y, z) = 0 (that 
is, points where both y and z are roots of unity), and, if convenient, we use that y = zn. 
In particular, if z is replaced by −z (respectively z2 or −z2), then y is replaced by −y

(respectively y2 or −y2), since n must be odd (gcd(n, p1) = 1). This implies that if (y, z)
is a cyclotomic point on C with y = zn, then one of (−y, −z), (y2, z2), (−y2, −z2) is a 
cyclotomic point on C. Hence (y, z) lies on both C and one of C1 : (z2 − 1)P (−y, −z) +
zQ(−y, −z) = 0, C2 : (z4 − 1)P (y2, z2) − z2Q(y2, z2) = 0, or C3 : (z2 − 1)P (−y2, −z2) +
z2Q(−y2, −z2) = 0.

For each of the fifteen 5-tuples (p1, p2, p3, p4, p5), and each of the three pairs (C, C1), 
(C, C2), (C, C3) we eliminate y to get a single-variable polynomial in z which restricts z
to a finite set. Similarly one can eliminate z to limit y to a finite set.

For example, with (p1, p2, p3, p4, p5) = (2, 3, 13, 17, 19) one finds immediately that 
there are no cyclotomic points on the intersection of C and C1, or of C and C3, as 
the single-variable polynomial in z obtained by eliminating y has no cyclotomic roots. 
But eliminating y between C and C2 gives a polynomial with cyclotomic factors Φ2(z), 
Φ3(z), Φ13(z), Φ17(z) and Φ19(z). These cyclotomic polynomials, however, are all factors 
of p but not q, so cannot divide f(z). Thus there are no cyclotomic points on C that 
correspond to solutions to (z2 − 1)p(z) − zq(z) = 0, for this choice of (p1, p2, p3, p4, p5).

A more complicated example arises with (p1, p2, p3, p4, p5) = (2, 3, 11, 17, 19), and four 
other cases. Here eliminating y between C and C1 gives a polynomial with cyclotomic 
factor Φ12(z), which cannot be excluded as trivially as in the previous example. In this 
case we resort to eliminating z between C and C1, and find that there is a cyclotomic 
factor Φ4(y) = y2+1. Since y = zn and the only awkward cases are where z is a primitive 
12-th root of unity, we must have n divisible by 3, contradicting coprimeness to p2 = 3.

Similar calculations were performed for each of the advertised 5-tuples, and in all 
cases it was established that (z2 − 1)p(z) − zq(z) has no cyclotomic roots, for any value 
of n coprime to p1p2p3p4p5. As remarked before the proof, there are 5-tuples, such as 
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(2, 3, 5, 7, 19), for which this process fails. For example, when (p1, . . . , p5) = (2, 3, 5, 7, 19)
and n = 43, the polynomial f(z) is not irreducible. �

Now as n varies over positive integers prime to p1, . . . , p5, where (p1, . . . , p5) is one 
of the 5-tuples in the above lemma, one finds Salem numbers of degree n + p1 + p2 +
p3 + p4 + p5 − 3 and trace −2. This gives infinitely many degrees for Salem numbers of 
trace −2, lying in residue classes that repeat modulo p1p2p3p4p5, and in particular they 
repeat modulo 2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 = 9 699 690.

Lemma 7. There are Salem numbers of trace −2 and degree 2d for all d ≥ 21.

Proof. Each of the fifteen infinite families of Salem numbers of trace −2 provided by 
the previous lemma gives examples of degrees that lie in certain residue classes modulo 
9 699 690, with degrees at least p1 + p2 + p3 + p4 + p5 + 2 (we need n ≥ 5 since 2 and 
3 are among our pi in all cases). A computation shows that all even residue classes 
modulo 9 699 690 are covered, and that all even degrees greater than or equal to 42 are 
covered. �

For example, suppose we wish to find a Salem number of degree 1000 and trace −2
(or indeed degree 1000 + 9 699 690t for any t). We cannot use (2, 3, 5, 7, 11), as we would 
need n = 1000 −2 −3 −5 −7 −11 +3 = 975, which is not prime to all of 2, 3, 5, 7, 11. But 
we can use (2, 3, 7, 11, 13), as then n = 1000 −2 −3 −7 −11 −13 +3 = 967 is prime to all 
of 2, 3, 7, 11, 13. We produce the polynomial z1000 +2z999−2z998−19z997 + · · ·+2z+1.

The given fifteen infinite families form a minimal covering set in the sense that each of 
the families contributes to at least one residue class modulo 9 699 690 that is not covered 
by any of the others. No covering set exists using only the primes 2, 3, 5, 7, 11, 13, 17: 
we are forced to use primes up to 19.

To finish the proof of Proposition 1, we need to find Salem numbers of degree 2d
and trace −2 for 12 ≤ d ≤ 20. For d = 19 we can use the family corresponding to 
(2, 3, 5, 7, 11), with n = 13. For d ∈ {13, 14, 16, 20} we appeal to another interlacing 
argument.

Write

q(z)
p(z) = (z − 1)(z8 + z7 − z5 − z4 − z3 + z + 1)

(z + 1)(z3 − 1)(z5 − 1) + (zp1+p2 − 1)
(zp1 − 1)(zp2 − 1)

where the fraction on the left is in lowest terms, and p1, p2 are distinct primes greater 
than 5. Then p and q satisfy the circular interlacing condition (see [15, §9.2]). If it is irre-
ducible, the polynomial (z2−1)p(z) −zq(z) is the minimal polynomial of a Salem number 
of trace −2 and degree p1 + p2 + 8. Taking (p1, p2) ∈ {(7, 11), (7, 13), (11, 13), (13, 19)}
give us examples of Salem numbers of trace −2 and degrees 26, 28, 32, 40. (Sadly for 
(7, 19) and (11, 17) the polynomial (z2 − 1)p(z) − zq(z) is not irreducible.)

The smallest degree of a Salem number of trace −2 is degree 20 [12]: there are exactly 
three such Salem numbers. It is known that there are none of degree 22 [8]. In [11], a 
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method was given for computing totally positive algebraic integers of small trace. In 
particular, some 209 examples of degree 12 and trace 22 were computed. Many of these 
correspond to Salem numbers of degree 24 and trace −2, for example the larger real root 
of the palindromic polynomial

z24 + 2z23 − 4z22 − 28z21 − 72z20 − 116z19 − 116z18 − 27z17 + 166z16

+ 431z15 + 701z14 + 900z13 + 973z12 + 900z11 + 701z10 + · · · + 1 .

In [5], 321 totally positive monic integer polynomials of degree 15 and trace 28 were 
found. Of these, 6 correspond to Salem numbers of trace −2 and degree 30.

To complete the proof of Proposition 1, we need to find examples for d = 17 and 
d = 18. Applying the technique of [11], we found examples for d = 17 and d = 18:

z34 + 2z33 + z32 − 3z31 − 8z30 − 12z29 − 14z28 − 15z27 − 15z26 − 14z25

− 13z24 − 13z23 − 13z22 − 12z21 − 9z20 − 4z19 + z18 + 3z17 + z16

− 4z15 − 9z14 + · · · − 3z3 + z2 + 2z + 1 ,

and

z36 + 2z35 + z34 − 3z33 − 8z32 − 12z31 − 13z30 − 11z29 − 8z28 − 7z27 − 9z26

− 13z25 − 17z24 − 20z23 − 21z22 − 19z21 − 15z20 − 12z19 − 11z18 − 12z17

− 15z16 + · · · − 3z3 + z2 + 2z + 1 .

The methods of [5] and [6] would be also presumably effective in searching for such 
examples.

This completes the proof of Proposition 1.
Whenever there is a Salem number of trace −2 and degree 2d, there is a totally positive 

algebraic integer of degree d and trace 2d −2 (this is the case t = −2 of the remark before 
Corollary 2). By [17] these give counterexamples to the conjecture of Estes and Guralnick. 
We therefore have counterexamples for degree 10, and for all degrees ≥ 12. Moreover 
these examples can be explicitly constructed: given any particular degree there is a finite 
process to produce a counterexample. In the next section we fill in most of the gaps for 
other degrees: the only outstanding case being degree 5.

3. Smaller degrees

The span of a totally real algebraic integer is the difference between the largest and 
smallest conjugates. If a polynomial has all its roots real, then its span is defined to be 
the difference between the largest and smallest roots. Thus the span of a totally real alge-
braic integer equals the span of its minimal polynomial. The span of an integer symmetric 
matrix is defined to be the difference between the largest and smallest eigenvalues, i.e., 
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the span of its characteristic polynomial. Any of these three things is said to have small 
span if its span is strictly less than 4. For small-span algebraic integers/polynomials/ma-
trices one can assume that all conjugates/roots/eigenvalues lie in the interval [−2, 2.5)
(for algebraic integers θ, replace θ by ±θ + c for some c ∈ Z; for polynomials apply the 
transformation x �→ ±x + c; for matrices apply the transformation A �→ ±A + cI).

In [10], a complete description was given of all small-span integer symmetric matrices. 
As a consequence, two arguments were given [10, §5] for potentially determining if a 
small-span polynomial is the minimal polynomial of an integer symmetric matrix. If all 
the roots lie in the interval [−2, 2], then a ‘growing’ procedure allows one to bound the 
size of the matrix, and hence bound the search: it was in this way that three degree-6
counterexamples to the Estes–Guralnick conjecture were found. A simpler argument 
applies if not all the roots are in the interval [−2, 2] (but with all the roots in the 
interval [−2, 2.5)). Then one needs only to check matrices up to 12 × 12 (Theorem 3 
of [10]). From the table at the end of §3 of [10], we see that there are counterexamples of 
degrees 7, 8, 9, 10, 11, 12, 13. These are already more than enough to complete the proof 
of Theorem 4, although we remark that Capparelli et al. [3] give small-span examples 
of degrees 14, 15 and 16 that do not correspond to Salem numbers but give further 
counterexamples to the Estes–Guralnick conjecture.
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