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Abstract

In this paper, we show a Schmidt’s subspace type theorem with moving
hyperplanes, in which these moving hyperplanes are assumed to be non-
degenerate. As the application of this result, we discuss the number of integer
solutions to a sequence of decomposable form inequalities.
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1. Introduction

Schmidt’s subspace theorem is a very powerful tool from Diophantine ap-
proximation, which has some significant applications to Diophantine equa-
tions, Diophantine geometry, and various other things. To state subspace
theorem, we first recall some standard notations and definitions in number
theory.

Let k be a number field of degree [k : Q]. Denote by Mk the set of places
(i.e., equivalence classes of absolute values) of k. We choose the normalized
absolute value | |v such that | |v = | | on Q (the standard absolute value) if
v ∈ Mk is archimedean. For a non-archimedean place v, the absolute value
| |v is defined such that |p|v = p−1 if v lies above the rational prime p.
Let M∞

k be the set of archimedean places of k, and let M0
k be the set of

non-archimedean places of k.
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Denote by kv the completion of k with respect to v. For v ∈ M∞
k , let

‖ ‖v =
{ | |1/[k:Q] if kv = R,

| |2/[k:Q] if kv = C.

For v ∈ M0
k (with respect to the prime p), let ‖ ‖v = | |[kv :Qp]/[k:Q]

v , where Qp

is the completion of Q with respect to the p-adic absolute value. The norm
‖ ‖v satisfies the following properties:

(i) ‖x‖v ≥ 0, with equality if and only if x = 0;
(ii) ‖xy‖v = ‖x‖v‖y‖v for all x, y ∈ k;
(iii) ‖x1 + · · ·+ xn‖v ≤ nNv max{‖x1‖v, . . . , ‖xn‖v} for all x1, . . . , xn ∈ k,

n ∈ N, where

Nv =

⎧⎨
⎩

0 if v is non-archimedean,
1/[k : Q] if v is real,
2/[k : Q] if v is complex;

(iv) for any x ∈ k\{0}, we have the product formula:
∏

v∈Mk
‖x‖v = 1.

For v ∈ Mk, we also extend ‖ ‖v to an absolute value on the algebraic
closure k̄v. Let S be a finite subset of Mk containing M∞

k . An element x ∈ k
is said to be a S-integer if ‖x‖v ≤ 1 for each v ∈ Mk \ S. Denote by OS

the set of S-integers. The unit of OS is called S-unit. The set of all S-units
forms a multiplicative group which is denoted by O∗

S.
For x = [x0 : · · · : xn] ∈ Pn(k), let ‖x‖v = max0≤i≤n ‖xi‖υ. Moreover,

define the logarithmic height of x by

h(x) =
∑
v∈Mk

log ‖x‖v.

By the product formula, its definition is independent of the choice of the rep-
resentations. LetH ⊂ Pn(k) be a hyperplane, and let L = a0x0+· · ·+anxn be
the linear form defining H with a0, . . . , an ∈ k. Set ‖L‖v = max0≤i≤n ‖ai‖v.
We also define the height of H (or L) as

h(H) = h([a0 : · · · : an]) =
∑
v∈Mk

log ‖L‖v.

The Weil function with respect to H is given by, for any v ∈ Mk and
x = [x0 : · · · : xn] ∈ Pn(k)\H,

λH,v(x) = log
‖x‖v · ‖L‖v

‖a0x0 + · · ·+ anxn‖v .
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Let S ⊂ Mk be a finite set containing M∞
k . Define

mS(H,x) =
∑
v∈S

λH,v(x), NS(H,x) =
∑
v �∈S

λH,v(x).

Then, by the product formula,

mS(H,x) +NS(H,x) = h(x) + h(H)

holds for all x with L(x) �= 0.
The following version of Schmidt’s subspace theorem is given by Vojta

[12].
Theorem A. (Schmidt’s subspace theorem) Let k be a number field and

let S ⊂ Mk be a finite set containing M∞
k . Let H1, . . . , Hq be hyperplanes

in Pn(k) with defining linear forms L1, . . . , Lq. Assume that H1, . . . , Hq are
in general position, which means any n + 1 linear forms in {L1, . . . , Lq} are
linearly independent over k. Then, for every ε > 0, there exists a finite
collection V of proper subspaces of Pn(k) such that the inequality

q∑
j=1

mS(Hj,x) ≤ (n+ 1 + ε)h(x)

holds for all points x ∈ Pn(k)−⋃
V ∈V V .

Due to the work of Osgood, Lang, Vojta, etc., people have started to
realize that there is a close relationship between Nevanlinna theory in com-
plex analysis and Diophantine approximation. Especially, Vojta formulated
an analogue of these two theories by giving a so-called dictionary (see [12]).
Via Vojta’s dictionary, Schmidt’s subspace theorem corresponds to Cartan’s
second main theorem for holomorphic curves in Nevanlinna theory (see [1]).
As the generalization of Cartan’s second main theorem, Ru and Stoll [8]
proved a second main theorem with slowly moving hyperplanes. Motivated
by this result, Ru and Vojta [9] obtained the Schmidt’s subspace theorem
with moving hyperplanes.

Definition 1.1. Let Λ be an infinite index.
(i) A moving hyperplane indexed by Λ in Pn(k) is a map H defined by

α(∈ Λ) �→ H(α), where H(α) is a hyperplane in Pn(k).
(ii) Let H := {H1, . . . , Hq} be a family of moving hyperplanes indexed

by Λ. For each j = 1, . . . , q and α ∈ Λ choose aj,0(α), . . . , aj,n(α) ∈ k such
that Hj(α) is defined by the linear form Lj(α) = aj,0(α)x0 + · · ·+ aj,n(α)xn.
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Then a subset A ⊆ Λ is said to be coherent with respect to H if, for every
polynomial

P ∈ k[x1,0, . . . , x1,n, . . . , xq,0, . . . , xq,n]

that is homogeneous in xj,0, . . . , xj,n for each j = 1, . . . , q, either

P (a1,0(α), . . . , a1,n(α), . . . , aq,0(α), . . . , aq,n(α))

vanishes for all α ∈ A or it vanishes for only finitely many α ∈ A. (For the
existence of an infinite coherent subset A ⊆ Λ with respect to H, see Lemma
1.1 in [9] or Lemma 2.1 in [3].)

(iii) For a subset A ⊆ Λ, we define R0
A as the set of equivalence classes of

pairs (C, a), where C ⊆ A is a cofinite subset, a : C → k is a map, and the
equivalence relation is defined by (C, a) ∼ (C ′, a′) if there exists C ′′ ⊆ C ∩C ′

such that C ′′ is a cofinite subset of A and a|C′′ = a′|C′′ . This is a ring
containing k as its subring.

(iv) If A is coherent with respect to H, and aj,t(α) �= 0 for all but finitely
many α ∈ A, then aj,l/aj,t defines an element of R0

A. Moreover, by coherence,
the subring of R0

A generated by all such elements is an integral domain. We
define RA as the field of fractions of that integral domain. It is clear that if
B ⊆ A then B is also coherent and RB ⊆ RA.

In [9], Ru and Vojta proved the follows.
Theorem B. (Schmidt’s subspace theorem with moving hyperplanes)

Let k be a number field and let S ⊂ Mk be a finite set containing M∞
k .

Let Λ be an infinite index set and let H = {H1, . . . , Hq} be a set of moving
hyperplanes indexed by Λ in Pn(k). Let x = [x0 : · · · : xn] : Λ → Pn(k) be a
sequence of points. Assume that

(i) for all α ∈ Λ, H1(α), . . . , Hq(α) are in general position;
(ii) x is linearly non-degenerate with respect to H, which means, for each

infinite coherent subset A ⊆ Λ with respect to H, x0|A, . . . , xn|A are linearly
independent over RA;

(iii) h(Hj(α)) = o(h(x(α))) for all j = 1, . . . , q (that is, for all δ > 0,
h(Hj(α)) ≤ δh(x(α)) for all but finitely many α ∈ Λ).

Then, for every ε > 0, there exists an infinite index subset A ⊆ Λ such
that

q∑
j=1

mS(Hj(α),x(α)) ≤ (n+ 1 + ε)h(x(α))

holds for all α ∈ A.
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As a generalization of Ru and Wong’s result [11], they also obtained a
Schmidt’s subspace type theorem for moving targets without condition (ii)
in Theorem B.

Theorem C. [9] Let k, S,Λ,H, H1, . . . , Hq, and x be as in the first three
sentences of the above theorem. Suppose that

(i) for each α ∈ Λ, H1(α), . . . , Hq(α) are in general position;
(ii) h(x(α)) is unbounded and h(Hj(α)) = o(h(x(α))) for all j = 1, . . . , q;
(iii) x(α) �∈ Hj(α) for all j = 1, . . . , q and α ∈ Λ.
Then, for every ε > 0, there exists an infinite index subset A ⊆ Λ such

that
q∑

j=1

mS(Hj(α),x(α)) ≤ (2n+ ε)h(x(α))

holds for all α ∈ A.
In 2005, Chen and Ru [2] proved a generalized Schmidt’s subspace type

theorem for fixed hyperplanes, which is the counterpart of a second main
theorem given in [10].

Definition 1.2. LetH = {H1, . . . , Hq} be a family of (fixed) hyperplanes
in Pn(k) and L = {L1, . . . , Lq} be the set of pairwise linearly independent
linear forms defining H1, . . . , Hq. We say H (or L) is non-degenerate if

(i) dim(L)k = n+ 1, where (L)k is the linear span of L over k;
(ii) for each proper nonempty subset L1 ⊂ L, (L1)k ∩ (L \ L1)k ∩ L �= ∅.
Theorem D. [2] Let k be a number field and let S ⊂ Mk be a finite set

containing M∞
k . Let H = {H1, . . . , Hq} be a set of hyperplanes in Pn(k).

Assume that H is non-degenerate. Then, for every ε > 0,

(1− ε)h(x) ≤
q∑

j=1

n(2n− 1)NS(Hj,x) +O(1)

holds for every x ∈ Pn(k) with Lj(x) �= 0 for all j = 1, . . . , q.
Motivated by the development in Nevanlinna theory (see [5]), Liu [7]

improved Theorem D as follows.
Theorem E. Assume that H is non-degenerate. Then, for every ε > 0,

(1− ε)h(x) ≤
q∑

j=1

NS(Hj,x) +O(1)

holds for every x ∈ Pn(k) with Lj(x) �= 0 for all j = 1, . . . , q.
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We note that, in [5, 10], the second main theorems are established for
moving hyperplanes. The purpose of this paper is to extend Theorem E to
moving hyperplanes and give its application on decomposable form inequal-
ities.

Our main results are stated as follows.
Theorem 1.1. Let k be a number field and let S ⊂ Mk be a finite set

containing M∞
k . Let Λ be an infinite index set and let H = {H1, . . . , Hq} be

a set of moving hyperplanes indexed by Λ in Pn(k). Let x = [x0 : · · · : xn] :
Λ → Pn(k) be an infinite collection of points in Pn(k) (which implies h(x(α))
is unbounded). Assume that

(i) {H1(α), . . . , Hq(α)} is non-degenerate for each α ∈ Λ;
(ii) h(Hj(α)) = o(h(x(α))) for all j = 1, . . . , q;
(iii) Lj(α)(x(α)) �= 0 for all j = 1, . . . , q and α ∈ Λ.
Then, for every ε > 0, there exists an infinite index subset A ⊆ Λ such

that
q∑

j=1

mS(Hj(α),x(α)) ≤ (q − 1 + ε)h(x(α))

or

(1− ε)h(x(α)) ≤
q∑

j=1

NS(Hj(α),x(α))

holds for all α ∈ A.

2. Proof of Theorem 1.1

Since x(α) is a collection of infinitely many points in Pn(k), we may
assume x(α) are pairwise distinct on Λ. There exists an infinite index subset
A ⊆ Λ which is coherent with respect to H. If B is any infinite subset of A,
then B is still coherent. Therefore, in the proof, we may freely pass to infinite
subsets which are still denote by A for simplicity. From the assumption (ii)
and h(x(α)) → ∞, we also note that, for each a ∈ RA and v ∈ Mk,

log ‖a(α)‖v ≤
∑

v′∈Mk

log+ ‖a(α)‖v′ = h(a(α)) ≤ o(h(x(α))) for all α ∈ A.

Set L = {L1(α), . . . , Lq(α)} be the set of linear forms defining H. By the
assumption (i), for any α ∈ A, we have dim(L(α))k = n + 1 and (L1(α))k ∩
(L(α) \ L1(α))k ∩ L(α) �= ∅ for any nonempty subset L1(α) ⊂ L(α). Since
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there are only finitely many choices of n + 1 linear forms in L. We can find
an infinite subset A and {j1, . . . , jn+1} ⊂ {1, . . . , q} such that

Lj1(α), . . . , Ljn+1(α)

are linearly independent over k for every α ∈ A. For any subset L1 ⊂ L, by
the same reason, we can find an integer m with 1 ≤ m ≤ n + 1 such that
dim(L1(α))k = m for each α. Moreover, we can find {l1, . . . , lt} ⊂ {1, . . . , q}
such that

(L1(α))k ∩ (L(α) \ L1(α))k ∩ L(α) = {Ll1(α), . . . , Llt(α)}

for each α ∈ A.
By the above argument, we can pick out an infinite subset A satisfying:

i) (L(α))k = (Lj1(α), . . . , Ljn+1(α))k for all α ∈ A, where j1, . . . , jn+1 are
independent of α;
ii) for any L1 ⊂ L, (L1(α))k ∩ (L(α) \ L1(α))k ∩L(α) = {Ll1(α), . . . , Llt(α)}
for all α ∈ A, where l1, . . . , lt and t depend only on L1.

By coherence of A, for each j, there exists aj,ij(α), one of the coefficients
in Lj(α), such that aj,ij(α) �= 0 for all but finitely many α ∈ A. Fix this
aj,ij(α) and set

L̃j(α) =
aj,0(α)

aj,ij(α)
x0 + · · ·+ aj,n(α)

aj,ij(α)
xn.

Note that
aj,i
aj,ij

:= ({α ∈ A|aj,ij(α) �= 0}, α �→ aj,0(α)

aj,ij (α)
) defines an element of

RA. Let ãj,i :=
aj,i
aj,ij

for i = 0, . . . , n and L̃j := ãj,0x0 + · · · + ãj,nxn be the

linear form with coefficients in RA. Hence, L̃ = {L̃1, . . . , L̃q} satisfies

(i) L̃ is pairwise linearly independent over RA;

(ii) dim(L̃)RA
= n+ 1;

(iii) for any proper nonempty subset L̃1 ⊂ L̃, (L̃1)RA
∩(L̃\L̃1)RA

∩L̃ �= ∅.
Lemma 2.1. (Lemma 2.5 in [7] or Lemma 3.1 in [13]) There exists an

integer u ≥ 1 and disjoint subsets I1, . . . , Iu of {L̃j}qj=1 with the following
properties:
(a) {L̃j(α)(x(α))|A}L̃j∈I1 is minimal and {L̃j(α)(x(α))|A}L̃j∈Ik is linearly in-

dependent over RA for 2 ≤ k ≤ u, where {L̃j(α)(x(α))|A}L̃j∈I1 is mini-

mal means {L̃j(α)(x(α))|A}L̃j∈I1 is linearly dependent over RA but each

7



nonempty proper subset of {L̃j(α)(x(α))|A}L̃j∈I1 is linearly independent over
RA.
(b) u is the minimal positive integer such that(

{L̃j(α)(x(α))|A}L̃j∈
⋃u

k=1 Ik

)
RA

=
(
{L̃j(α)(x(α))|A}qj=1

)
RA

.

(c) For each l with 2 ≤ l ≤ u, there exists cj ∈ RA \ {0} such that∑
L̃j∈Il

cjL̃j(α)(x(α))|A ∈
(
{L̃j(α)(x(α))|A}L̃j∈

⋃l−1
k=1 Ik

)
RA

.

Proof. Since L̃1 ∈ (L̃ \ {L̃1})RA
, this implies that

L̃1(α)(x(α))|A ∈
(
{L̃j(α)(x(α))|A}qj=2

)
RA

.

We can choose a subset I1 of L̃ containing L̃1 such that {L̃j(α)(x(α))|A}L̃j∈I1
is minimal. Assume that I1 = {L̃1, . . . , L̃t1}. Then there exists cj ∈ RA,
1 ≤ j ≤ t1 − 1, and ct1 = −1 such that

t1∑
j=1

cjL̃j(α)(x(α))|A = 0.

If ({L̃j(α)(x(α))|A}L̃j∈I1)RA
= ({L̃j(α)(x(α))|A}qj=1)RA

, by taking u = 1,
then the proof is finished.

Otherwise, there is an L̃ ∈ (I1)RA
∩ (L̃ \ I1)RA

∩ L̃. Then one of the
following two cases holds:

(i) L̃ ∈ L̃ \ I1, and we may assume that L̃ = L̃t1+1 ∈ (I1)RA
, i.e.,

L̃t1+1(α)(x(α))|A ∈
(
{L̃j(α)(x(α))|A}L̃j∈I1

)
RA

.

Put I2 = {L̃t1+1} and ct1+1 = 1.

(ii) L̃ ∈ I1, since L̃ ∈ (L̃ \ I1)RA
, there exists a subset of L̃ \ I1, which

may be assumed to be {L̃t1+1, . . . , L̃t2}, such that {L̃j(α)(x(α))|A}t2j=t1+1 is
linearly independent over RA and

L̃(α)(x(α))|A =

t2∑
j=t1+1

cjL̃j(α)(x(α))|A
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with cj ∈ RA \ {0} for j = t1 + 1, . . . , t2. Set I2 = {L̃t1+1, . . . , L̃t2}.
If ({L̃j(α)(x(α))|A}L̃j∈I1∪I2)RA

= ({L̃j(α)(x(α))|A}qj=1)RA
, then the proof

is finished; Otherwise, repeating the above argument, we would get another
subset I3. By continuing this process, since dim(L̃)RA

= n + 1 is finite,
there exists an u and subsets I1, . . . , Iu satisfying the assertions (a)–(c) of
the lemma. �

Remark 2.1. We may assume that the cardinality of Il satisfies �I1 ≥ 3
and �Il ≥ 2 for 2 ≤ l ≤ u.

(a) If �Il = 1, for some l with 2 ≤ l ≤ u, i.e., Il = {L̃tl}, L̃tl ∈ L̃, then
L̃tl(α)(x(α)) ∈ ({L̃j(α)(x(α))|A}L̃j∈

⋃l−1
k=1 Ik

)RA
, so(

{L̃j(α)(x(α))|A}L̃j∈
⋃l

k=1 Ik

)
RA

=
(
{L̃j(α)(x(α))|A}L̃j∈

⋃l−1
k=1 Ik

)
RA

,

and we can always delete Il from {I1, . . . , Iu}, hence �Il ≥ 2 for any l.

(b) If �I1 = 2, then L̃1(α)(x(α))|A and L̃2(α)(x(α))|A are linearly depen-

dent over RA. If u ≥ 2, we replace I1 by {L̃1} ∪ I2 which is minimal. Oth-

erwise, (L̃1(α)(x(α))|A)RA
= ({L̃j(α)(x(α))|A}L̃j∈L̃)RA

, which means that
there exists ck,l ∈ RA such that

L̃k(α)(x(α))|A = ck,lL̃l(α)(x(α))|A (1)

for any 1 ≤ k < l ≤ q. Since dim(L̃)RA
= n+ 1, (1) implies xi(α)

x0(α)
|A ∈ RA for

i = 1, . . . , n. (Here, without loss of generality, we may assume x0(α) �= 0.)

Hence h(x(α)) ≤ ∑n
i=0 h(

xi(α)
x0(α)

) ≤ o(h(x(α))), which is a contradiction.

For an integer N with 1 ≤ N ≤ u, put I :=
⋃N

k=1 Ik = {L̃1, . . . , L̃tN},
�I = tN . By the assumption (iii), we consider

XI(α) = [L̃1(α)(x(α)) : · · · : L̃tN (α)(x(α))], α ∈ A,

which is the point in P�I−1(k), and {XI(α)|α ∈ A} can be regarded as a map
XI : A → P�I−1(k). Now, we show the following conclusion for XI(α).

Lemma 2.2. For every ε > 0, there exists an infinite index subset A
such that∑

L̃j∈I

∑
v∈S

log
‖XI(α)‖v

‖L̃j(α)(x(α))‖v
≤ (�I − 1 + ε)h(XI(α)) + o(h(x(α))) (2)

holds for all α ∈ A.
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Proof. We now prove Lemma 2.2 by induction on N .
If N = 1, then I = I1 = {L̃1, . . . , L̃t1} := I0 ∪ {L̃t1}. By the construction

in the proof of Lemma 2.1, {L̃j(α)(x(α))|A}L̃j∈I1 is minimal and

L̃t1(α)(x(α)) =

t1−1∑
j=1

cjL̃j(α)(x(α)), cj ∈ RA \ {0}.

Take

X′
I0
(α) = [c1L̃1(α)(x(α)) : c2L̃2(α)(x(α)) : · · · : ct1−1L̃t1−1(α)(x(α))]

which is a map from A to Pt1−2(k). Let

Hj = {xj−1 = 0}, j = 1, . . . , t1 − 1, and Ht1 = {x0 + · · ·+ xt1−2 = 0}
be fixed hyperplanes in Pt1−2(k). By applying Schmidt’s subspace theorem
to points X′

I0
(α) and Hj, 1 ≤ j ≤ t1, there is a finite collection V of proper

linear subspaces of Pt1−2(k) such that

t1−1∑
j=1

∑
v∈S

log
‖X′

I0
(α)‖v

‖cjL̃j(α)(x(α))‖v
+
∑
v∈S

log
‖X′

I0
(α)‖v

‖L̃t1(α)(x(α))‖v
≤ (t1 − 1 + ε)h(X′

I0
(α)) (3)

for all α such that X′
I0
(α) �∈ ⋃

V ∈V V . We note that {cjL̃j(α)(x(α))|A}t1−1
j=1

is linearly independent over k. Hence, by passing to an infinite index subset
satisfying X′

I0
(α) �∈ ⋃

V ∈V V , we may assume (3) holds for all α ∈ A.
Now, we compare h(X′

I0
(α)) and h(XI1(α)). By

‖X′
I0
(α)‖v ≤ max

1≤i≤t1−1
‖ci‖v · max

1≤i≤t1−1
‖L̃i(α)(x(α))‖v

≤ max
1≤i≤t1−1

‖ci‖v · ‖XI1(α)‖v,

it yields

h(X′
I0
(α)) ≤ h(XI1(α)) + o(h(x(α))). (4)

On the other hand, by L̃t1(α)(x(α)) =
∑t1−1

j=1 cjL̃j(α)(x(α)), we have

‖L̃t1(α)(x(α))‖v ≤ (t1 − 1)Nv‖X′
I0
(α)‖v ≤ c‖X′

I0
(α)‖v

10



for all v ∈ S, where c is a positive constant. Together with

max
1≤i≤t1−1

‖L̃i(α)(x(α))‖v ≤ max
1≤i≤t1−1

∥∥∥∥ 1

ci

∥∥∥∥
v

· ‖X′
I0
(α)‖v,

we deduce

‖XI1(α)‖v = max
1≤i≤t1

‖L̃i(α)(x(α))‖v ≤ max

{
max

1≤i≤t1−1

∥∥∥∥ 1

ci

∥∥∥∥
v

, c

}
· ‖X′

I0
(α)‖v,

which implies that∑
v∈S

log ‖XI1(α)‖v ≤
∑
v∈S

log ‖X′
I0
(α)‖v + o(h(x(α))).

Therefore,

t1∑
j=1

∑
v∈S

log
‖XI1(α)‖v

‖L̃j(α)(x(α))‖v
≤

t1−1∑
j=1

∑
v∈S

log
‖X′

I0
(α)‖v

‖cjL̃j(α)(x(α))‖v

+
∑
v∈S

log
‖X′

I0
(α)‖v

‖L̃t1(α)(x(α))‖v
+ o(h(x(α))). (5)

Combining (3), (4) and (5), we derive that

t1∑
j=1

∑
v∈S

log
‖XI1(α)‖v

‖L̃j(α)(x(α))‖v
≤ (t1 − 1 + ε)h(XI1(α)) + o(h(x(α))).

Lemma 2.2 is proved for N = 1.
Let us assume that Lemma 2.2 holds for some integer N with 1 ≤ N < u.

Let IcN+1 :=
⋃N

k=1 Ik and I :=
⋃N+1

k=1 Ik = IcN+1 ∪ IN+1.
By induction, we obtain

∑
L̃j∈IcN+1

∑
v∈S

log
‖XIcN+1

(α)‖v
‖L̃j(α)(x(α))‖v

≤ (tN − 1 + ε)h(XIcN+1
(α)) + o(h(x(α))), (6)

where tN = �IcN+1. By (c) of Lemma 2.1, set

L̃(α)(x(α)) :=

tN+1∑
j=tN+1

cjL̃j(α)(x(α)), cj ∈ RA \ {0}, (7)

11



and we have L̃(α)(x(α)) ∈ ({L̃j(α)(x(α))}L̃j∈IcN+1
)RA

. There exists c′j ∈ RA

such that

L̃(α)(x(α)) =
∑

L̃j∈IcN+1

c′jL̃j(α)(x(α)). (8)

Take

X′
IN+1

(α) = [ctN+1L̃tN+1(α)(x(α)) : · · · : ctN+1
L̃tN+1

(α)(x(α))] ∈ P�IN+1−1(k).

Let

Hj = {xj = 0}, j = 0, . . . , �IN+1−1, and H�IN+1
= {x0+ · · ·+x�IN+1−1 = 0}

be fixed hyperplanes in P�IN+1−1(k). Applying Schmidt’s subspace theorem
for X′

IN+1
(α) and Hj, 0 ≤ j ≤ �IN+1, we have

∑
L̃j∈IN+1

∑
v∈S

log
‖X′

IN+1
(α)‖v

‖cjL̃j(α)(x(α))‖v
+
∑
v∈S

log
‖X′

IN+1
(α)‖v

‖L̃(α)(x(α))‖v
≤ (�IN+1 + ε)h(X′

IN+1
(α)) (9)

for all α ∈ A. Denote by XIN+1
(α) = [L̃tN+1(α)(x(α)) : · · · : L̃tN+1

(α)(x(α))]
and note that ‖XIN+1

(α)‖v ≤ maxL̃i∈IN+1
‖ 1
ci
‖v · ‖X′

IN+1
(α)‖v, which leads to

∑
v∈S

log
‖XIN+1

(α)‖v
‖L̃j(α)(x(α))‖v

≤
∑
v∈S

log
‖X′

IN+1
(α)‖v

‖cjL̃j(α)(x(α))‖v
+ o(h(x(α)))

for L̃j ∈ IN+1, and

∑
v∈S

log
‖XIN+1

(α)‖v
‖L̃(α)(x(α))‖v

≤
∑
v∈S

log
‖X′

IN+1
(α)‖v

‖L̃(α)(x(α))‖v
+ o(h(x(α))).

Further, similar to (4), h(X′
IN+1

(α)) ≤ h(XIN+1
(α)) + o(h(x(α))). Thus, (9)

can be rewritten as∑
L̃j∈IN+1

∑
v∈S

log
‖XIN+1

(α)‖v
‖L̃j(α)(x(α))‖v

+
∑
v∈S

log
‖XIN+1

(α)‖v
‖L̃(α)(x(α))‖v

≤ (�IN+1 + ε)h(XIN+1
(α)) + o(h(x(α))). (10)

12



It follows from (6) and (10) that

∑
L̃j∈I

∑
v∈S

log
‖XI(α)‖v

‖L̃j(α)(x(α))‖v
≤ (�IcN+1 − 1 + ε)h(XIcN+1

(α))

+ �IcN+1

∑
v∈S

log
‖XI(α)‖v

‖XIcN+1
(α)‖v + (�IN+1 + ε)h(XIN+1

(α))

+ �IN+1

∑
v∈S

log
‖XI(α)‖v

‖XIN+1
(α)‖v −

∑
v∈S

log
‖XIN+1

(α)‖v
‖L̃(α)(x(α))‖v

+o(h(x(α))).(11)

Now, we consider the right hand side of (11). Firstly, we show that

∑
v∈S

log
‖XIN+1

(α)‖v
‖L̃(α)(x(α))‖v

+ o(h(x(α))) ≥
∑
v∈S

log
‖XI(α)‖v

‖XIcN+1
(α)‖v . (12)

For every α ∈ A, let S1,α = {v ∈ S : ‖XI(α)‖v = ‖XIcN+1
(α)‖v} and S2,α =

S \ S1,α. For any v ∈ S, by (7) and (8), there is some positive constant c
such that

‖L̃(α)(x(α))‖v ≤ c max
L̃j∈IN+1

‖cj‖v · ‖XIN+1
(α)‖v

and
‖L̃(α)(x(α))‖v ≤ c max

L̃j∈IcN+1

‖c′j‖v · ‖XIcN+1
(α)‖v

for all α ∈ A. It follows that∑
v∈S1,α

log
‖XIN+1

(α)‖v
‖L̃(α)(x(α))‖v

+ o(h(x(α))) ≥ 0 =
∑

v∈S1,α

log
‖XI(α)‖v

‖XIcN+1
(α)‖v (13)

and ∑
v∈S2,α

log
‖XIN+1

(α)‖v
‖L̃(α)(x(α))‖v

+ o(h(x(α))) ≥
∑

v∈S2,α

log
‖XIN+1

(α)‖v
‖XIcN+1

(α)‖v

=
∑

v∈S2,α

log
‖XI(α)‖v

‖XIcN+1
(α)‖v . (14)

Hence, by (13) and (14), we proved (12). Next, we note that

(�IcN+1 − 1 + ε)h(XIcN+1
(α)) + (�IcN+1 − 1)

∑
v∈S

log
‖XI(α)‖v

‖XIcN+1
(α)‖v

13



≤ (�IcN+1 − 1 + ε)h(XIcN+1
(α)) + (�IcN+1 − 1)

∑
v∈Mk

log
‖XI(α)‖v

‖XIcN+1
(α)‖v

≤ (�IcN+1 − 1)h(XI(α)) + εh(XIcN+1
(α)) ≤ (�IcN+1 − 1 + ε)h(XI(α)).(15)

Similarly,

(�IN+1 + ε)h(XIN+1
(α)) + �IN+1

∑
v∈S

log
‖XI(α)‖v

‖XIN+1
(α)‖v

≤ (�IN+1 + ε)h(XI(α)). (16)

(11), (12), (15) and (16) yield

∑
L̃j∈I

∑
v∈S

log
‖XI(α)‖v

‖L̃j(α)(x(α))‖v
≤ (�IN+1 + ε)h(XI(α)) + (�IcN+1 − 1 + ε)h(XI(α)) + o(h(x(α)))

= (�I − 1 + 2ε)h(XI(α)) + o(h(x(α))).

Therefore, Lemma 2.2 is proved. �
We continue the proof of Theorem 1.1. From Lemma 2.2, we can pick

N = u, I =
⋃u

k=1 Ik.

By the fact dim(L̃)RA
= n + 1, there exist n + 1 elements of L̃, we may

assume they are L̃1, . . . , L̃n+1, which are linearly independent. By solving
the linear system

ãj,0x0(α) + · · ·+ ãj,nxn(α) = L̃j(α)(x(α)), 1 ≤ j ≤ n+ 1,

we obtain

xi(α) = ci,1L̃1(α)(x(α)) + · · ·+ ci,n+1L̃n+1(α)(x(α)), 0 ≤ i ≤ n,

with ci,j ∈ RA. By (b) of Lemma 2.1, xi(α) =
∑

L̃j∈I c
′
i,jL̃j(α)(x(α)), 0 ≤

i ≤ n, with c′i,j ∈ RA. Clearly, there is a positive constant c such that
‖xi(α)‖v ≤ c ·maxL̃j∈I ‖c′i,j‖v · ‖XI(α)‖v, 0 ≤ i ≤ n, for all α ∈ A. We have

∑
v∈S

log
‖x(α)‖v

‖L̃j(α)(x(α))‖v
≤

∑
v∈S

log
‖XI(α)‖v

‖L̃j(α)(x(α))‖v
+ o(h(x(α))), L̃j ∈ I.(17)
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On the other hand, L̃j(α)(x(α)) =
∑n

i=0 ãi,jxi(α), L̃j ∈ I. Similarly,

‖XI(α)‖v ≤ c · max
0≤i≤n,L̃j∈I

‖ãi,j‖v · ‖x(α)‖v

for some positive c, which means that

h(XI(α)) ≤ h(x(α)) + o(h(x(α))). (18)

By (2), (17) and (18), we have

∑
L̃j∈I

∑
v∈S

log
‖x(α)‖v

‖L̃j(α)(x(α))‖v
≤

∑
L̃j∈I

∑
v∈S

log
‖XI(α)‖v

‖L̃j(α)(x(α))‖v
+ o(h(x(α)))

≤ (�I − 1 + ε)h(XI(α)) + o(h(x(α)))

≤ (�I − 1 + ε)h(x(α)) + o(h(x(α))).

This is equivalent to

q∑
j=1

mS(Hj(α),x(α)) ≤ (q − 1 + ε)h(x(α)) + o(h(x(α))) for α ∈ A.

3. Decomposable form inequalities

In this section, we will give an application of our main theorem on the
decomposable form inequalities.

Let S be a finite subset of Mk containing M∞
k . For x = (x0, . . . , xm) ∈

km+1, we also define the S-height as

HS(x) =
∏
v∈S

‖x‖v,

and the logarithmic S-height as hS(x) = logHS(x). If x ∈ Om+1
S \ {0},

then HS(x) ≥ 1 and HS(αx) = HS(x) for all α ∈ O∗
S.

Let F (x0, . . . , xm) be a homogeneous polynomial in m+ 1(≥ 2) variables
with coefficients in k. For each finite set S of places of k containing M∞

k ,
and for given two positive real numbers c and λ, we consider the solutions of
the inequality

0 <
∏
v∈S

‖F (x0, . . . , xm)‖v ≤ cHλ
S(x0, . . . , xm) for (x0, · · · , xm) ∈ Om+1

S . (19)
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If x is a solution of (19), then so is x′ = ηx for every η ∈ O∗
S. Such solutions

x, x′ are called O∗
S-proportional.

Definition 3.1. Let F (x0, . . . , xm) be a form (homogeneous polynomial)
in m+ 1(≥ 2) variables with coefficients in k. F is decomposable if it can
be factorized into linear factors over some finite extension of k.

As a consequence of Theorem C, Györy and Ru [6] studied integer solution
of a sequence of decomposable form inequalities.

Theorem F. [6] Let q, m be positive integers. Let c, λ be real numbers
with c > 0, λ < q − 2m and k′ be a finite extension of k. For n = 1, 2, . . .,
let Fn(x) = Fn(x0, . . . , xm) ∈ OS[x] denote a decomposable form of degree
q which can be factorized into linear factors over k′, and suppose that these
factors are in general position for each n. Then there does not exist an infinite
sequence of O∗

S-nonproportional xn ∈ Om+1
S , n = 1, 2, . . . , for which

0 <
∏
v∈S

‖Fn(xn)‖v ≤ cHλ
S(xn)

and
h(Fn) = o(h(xn)) if h(xn) → ∞ as n → ∞.

Using Theorem E, Liu [7] proved a conjecture posed in [2] as follows.
Theorem G. Let q, m be positive integers. Let c, λ be real numbers

with c > 0, λ < 1 and k′ be a finite extension of k. Let F (x0, . . . , xm) be a
decomposable form of degree q with coefficients in OS which can be factorized
into linear factors over k′, and suppose that these factors are non-degenerate
(over k′). Then (19) has only finitely many O∗

S-nonproportional solutions.
Now, we will show Theorem G remains valid for the sequences of decom-

posable form inequalities.
Theorem 3.1. Let q, m be positive integers. Let c, λ be real numbers

with c > 0, λ < 1 and k′ be a finite extension of k. For n = 1, 2, . . ., let
Fn(x) = Fn(x0, . . . , xm) ∈ OS[x] denote a decomposable form of degree q
which can be factorized into linear factors over k′, and suppose that these
factors are non-degenerate (over k′) for each n. Then there does not exist an
infinite sequence of O∗

S-nonproportional xn ∈ Om+1
S , n = 1, 2, . . . , for which

0 <
∏
v∈S

‖Fn(xn)‖v ≤ cHλ
S(xn) (20)

and
h(Fn) = o(h(xn)) if h(xn) → ∞ as n → ∞. (21)
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Proof. Let S ′ ⊂ Mk′ consist of the extension of the places of S to k′,
then every S-integer in k is also an S ′-integer in k′. Moreover, we have
HS(xn) = HS′(xn) and

∏
v∈S ‖Fn(xn)‖v =

∏
w∈S′ ‖Fn(xn)‖w for xn ∈ Om+1

S .
So (20) is preserved when we work on k′. Therefore, for simplicity, we assume
that k′ = k.

Assume that there is an infinite sequence xn = (x0,n, . . . , xm,n) ∈ Om+1
S

which satisfies (20).
First we consider the case that the values h(xn) are bounded. Without

loss of generality, we may assume that x0,n �= 0 for each n. Then h(xn/x0,n)
are bounded and this implies that there are infinitely many n’s such that
xn = x0,nx0 for some x0 ∈ km+1. For these n’s we deduce from (20) that

0 < (
∏
v∈S

‖x0,n‖v)q
∏
v∈S

‖Fn(x0)‖v ≤ c(
∏
v∈S

‖x0,n‖v)λHλ
S(x0)

and hence
∏

v∈S ‖x0,n‖v are bounded. Since x0,n ∈ OS, it follows that there
are infinitely many n’s for which x0,n = ηnx

′
0 with some ηn ∈ O∗

S and fixed
x′
0 ∈ OS (see [4]). This implies that for these n’s the xn considered above

are O∗
S-proportional, which is a contradiction.

Next we consider the case that h(xn) are not bounded. We may assume
that h(xn) → ∞, n → ∞, and xn/x0,n is distinct for each n. Then, by
assumption, (21) also holds. Further it follows that HS(xn) → ∞ as n → ∞.
By maxj h(Lj,n) ≤ h(Fn) + O(1) and (21), we have h(Lj,n) = o(h(xn)) for
each j. On the other hand, by Theorem 1.1, there is an infinite subsequence
of {xn}, which may be denoted by {xn} itself, such that

∑
v∈S

q∑
j=1

log
‖xn‖v · ‖Lj,n‖v
‖Lj,n(xn)‖v ≤ (q − 1 + ε)h(xn) ≤ logH

(q−1+ε)
S (xn).

Hence

HS(xn)
q ·∏v∈S

∏q
j=1 ‖Lj,n‖v∏

v∈S ‖Fn(xn)‖v ≤ H
(q−1+ε)
S (xn),

where
∏

v∈S
∏q

j=1 ‖Lj,n‖v ≥ c′
∏

v∈S ‖Fn‖v ≥ c′ for some positive constant c′.
Furthermore, it follows from (20) that

HS(xn)
q ≤ 1

c′
∏
v∈S

‖Fn(xn)‖v ·H(q−1+ε)
S (xn) ≤ c

c′
H

(λ+q−1+ε)
S (xn).

Hence H
(1−λ−ε)
S (xn) ≤ c/c′, this is a contradiction. �
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