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Abstract

The Selmer trinomials are the trinomials f (X) ∈ {Xn −X − 1,Xn +X + 1 | n > 1 is an integer} over Z.
For these trinomials we show that the ideal C = (f (X),f ′(X))Z[X] has height two and contains the linear
polynomial (n− 1)X + n. We then give several necessary and sufficient conditions for D[X]/(f (X)D[X])
to be a regular ring, where f (X) is an arbitrary polynomial over a Dedekind domain D such that its ideal C

has height two and contains a product of primitive linear polynomials. We next specialize to the Selmer-
like trinomials bXn + cX + d and bXn + cXn−1 + d over D and give several more such necessary and
sufficient conditions (among them is that C is a radical ideal). We then specialize to the Selmer trinomials
over Z and give quite a few more such conditions (among them is that the discriminant Disc(Xn −X−1) =
±(nn − (1−n)n−1) of Xn −X−1 is square-free (respectively Disc(Xn +X+1) = ±(nn + (1−n)n−1) of
Xn +X+1 is square-free)). Finally, we show that nn + (1−n)n−1 is never square-free when n ≡ 2 (mod 3)
and n > 2, but, otherwise, both are very often (but not always) square-free.
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1. Introduction

A classical and much studied question in algebraic number theory is to determine if the in-
tegers ZK of a number field K of degree n has a basis over Z of the form {1, α, . . . , αn−1}.
Such a basis is called a power integral basis and if such a basis exists, K is said to be mono-
genic. Among the advantages of having a power integral basis {1, α, . . . , αn−1} is that in this
case, determining how a rational prime p factors in ZK reduces to factoring the minimal monic
polynomial of α in (Z/pZ)[X]. The monogeneity of quadratic and cyclotomic fields is classical,
and more recent results on the existence of power integral bases have tended to focus on number
fields of small degree, or number fields which are either abelian or very close to abelian. See,
for example, [4,9] and the references listed there. In this note we consider the monogeneity of
number fields which arise from the polynomials sn,1,−1,−1(X) = Xn − X − 1 and sn,1,1,1(X) =
Xn + X + 1 considered by Selmer [14]. He proved in [14, Theorem 1] that the sn,1,−1,−1(X)

are irreducible over Z and, for n �≡ 2 (mod 3), the sn,1,1,1(X) are irreducible over Z, as is
s2,1,1,1(X) = X2 +X+1, but for n ≡ 2 (mod 3) and n �= 2 the sn,1,1,1(X) are each the product of
s2,1,1,1(X) and one other irreducible polynomial. The fields Q[X]/(sn,1,−1,−1(X)Q[X]) (respec-
tively, Q[X]/(sn,1,1,1(X)Q[X])) are far from abelian in that Xn − X − 1 has Galois group Sn, as
does Xn + X + 1 for n �≡ 2 (mod 3) [10, Theorem 1].

Some of these trinomials are well known in other contexts. For example s2,1,−1,−1(X) =
X2 − X − 1 is the characteristic polynomial of the Fibonacci and Lucas sequences [7,16] and,
of course, its positive root is the golden ratio. Similarly s3,1,−1,−1(X) = X3 − X − 1 is the
characteristic polynomial of recurrence sequences that have been considered by several authors
in relation to certain primality tests (for example, see [1,3,11]). The positive root of X3 −X−1 is
sometimes called the plastic number, and in [16] it is shown that it has some properties which are
analogous to properties of the golden ratio. The density of the set of rational primes π such that
sn,1,−1,−1(X) = Xn −X − 1 has a linear factor in (Z/πZ)[X] was considered in [15], especially
for n = 2, 3, and 4.

In the following, we study the structure of Z[X]/(sn,1,−1,−1(X)) = Z[x] and some related
extension rings. To describe our results further, we recall some facts concerning the discrim-
inant (see, for example, [13, Theorem 1, pp. 38–41, 73–76]). Recall that if the commutative
ring B is a free module of rank n over its subring A, which we assume for now to be a prin-
cipal ideal domain, and (x1, . . . , xn) ∈ Bn, then the discriminant of (x1, . . . , xn) is defined as
Disc(x1, . . . , xn) = det(TrB/A(xixj )), where det denotes determinant and TrB/A(y) denotes the
trace of the multiplication map y :B → B for y ∈ B . If (y1, . . . , yn) ∈ Bn and yi =

∑n
j=1 ai,j xj ,

then Disc(y1, . . . , yn) = det(aij )
2 Disc(x1, . . . , xn). It follows that if (x1, . . . , xn) is a basis of B ,

then (y1, . . . , yn) is a basis of B if and only if Disc(x1, . . . , xn) and Disc(y1, . . . , yn) are asso-
ciates. Further, if (y1, . . . , yn) is not a basis of B , then Disc(y1, . . . , yn) is divisible by a square.
Thus the square-freeness of the integer Disc(y1, . . . , yn) is a sufficient condition for (y1, . . . , yn)

to be a Z-basis for B , but it is not a necessary condition.
In the case that B = A[X]/(f (X)A[X]) = A[x] for a monic f (X) ∈ A[X] of degree n, it

turns out that Disc(1, x, . . . , xn−1) = Disc(f(x)) (= the discriminant of the polynomial f (X)

evaluated at x). Among our characterizations of when Z[X]/(sn,1,−1,−1(X)) is regular (equiv-
alently, integrally closed) is Disc(1, x, . . . , xn−1) is square-free. We are then able to show that
Disc(1, x, . . . , xn−1) is not square-free for some sn,1,−1,−1(X).

Instead of working inside of an algebraic number field L = Q(θ), where θ is a root of an
irreducible monic f (X) ∈ Q[X], and considering when {1, θ, . . . , θn−1} is a Z-basis for the
integers ZL of L, we work directly with rings of the form B = A[X]/(f (X)A[X]) and derive
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conditions for B to be regular, since some of our results do not require that f (X) be either
irreducible or monic. However, in (4.5) we give several necessary and sufficient conditions for
{1, α, . . . , αn−1} to be a power integral basis for the integers of Q(α), when α is a root of f (X) =
Xn − X − 1, and the analogous result for α a root of f (X) = Xn + X + 1 is given in (5.21).

In Section 2 we give (in (2.6) and (2.8)) several necessary and sufficient conditions for the
extension ring D[X]/(f (X)D[X]) of D to be a regular ring, where f (X) is a polynomial (with
coefficients in a Dedekind domain D) that has the following property in common with the Selmer
trinomials: C = (f (X),f ′(X))D[X] is a height two ideal that contains a product of primitive
polynomials of degree one in D[X] (here, f ′(X) is the derivative of f (X)). Then in Section 3
we apply (2.6) to the Selmer-like trinomials sn,b,c,d (X) = bXn +cX+d and tn,b,c,d (X) = bXn+
cXn−1 + d (with b, c, d arbitrary nonzero elements in D). In Section 4 we specialize the results
in Sections 2 and 3 to the Selmer trinomials sn,1,−1,−1(X) over D = Z, and for each integer n � 2
we give quite a few additional necessary and sufficient conditions for Z[X]/(sn,1,−1,−1(X)Z[X])
to be a Dedekind domain; among them is that Disc(sn,1,−1,−1(X)) = ±(nn − (1 − n)n−1) is
square-free. In Section 5 we show that the analogous necessary and sufficient conditions apply for
Z[X]/(sn,1,1,1(X)Z[X]) to be a Dedekind domain, and then show that, for all positive integers n

of the form 3k + 2, Disc(sn,1,1,1(X)) = ±(nn + (1 − n)n−1) is never square-free.

2. On the regularity of Selmer-like extensions

The main results in this section, (2.6) and (2.8), give several necessary and sufficient condi-
tions for D[x] = D[X]/(f (X)D[X]) to be a regular ring. (Recall that a ring R is said to be a
regular ring, in case R is a Noetherian ring and Rp is a regular local domain for each maximal
ideal p of R; however, R need not be an integral domain.) Here, f (X) is a polynomial (not nec-
essarily monic) with a certain property in common with the Selmer-like trinomials bXn +cX+d

and bXn + cXn−1 + d (where b, c, d are nonzero elements in a Dedekind domain D). To prove
(2.6) and (2.8), we need to prove several preliminary results. For the first of these, (2.1.2) is a
slight variation of the main result of [2].

Proposition 2.1. Let R be a regular ring and let f (X) be a nonzero divisor in R[X]. Then the
following hold:

(2.1.1) If f ′(X) �= 0, where f ′(X) is the derivative of f (X), then R[X, 1
f ′(X)

]/(f (X)R[X,

1
f ′(X)

]) is a regular ring.

(2.1.2) R[X]/(f (X)R[X]) is a regular ring if and only if f (X) /∈ M2 for each maximal ideal M

of R[X].

Proof. (2.1.1) follows from [12, Proposition II.8] and [12, p. 75, Exercise].
For (2.1.2), assume first that f (X) ∈ M2 for some maximal ideal M of R[X]. Then

f (X) ∈ M2R[X]M , so R[X]M/(f (X)R[X]M) is not a regular ring, by [8, (25.18)], hence
R[X]/(f (X)R[X]) is not a regular ring.

For the converse, assume that f (X) /∈ M2 for each maximal ideal M of R[X]. Then
f (X) /∈ M2R[X]M for each maximal ideal M of R[X], since M2 is primary (so M2 =
M2R[X]M ∩ R[X]). Therefore R[X]M/(f (X)R[X]M) is a regular local domain for each maxi-
mal ideal M of R[X] that contains f (X), by [8, (25.18)], hence R[X]/(f (X)R[X]) is a regular
ring. �
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Corollary 2.2. Let R be a regular ring, let f (X) be a nonzero divisor in R[X], and let R[x] =
R[X]/(f (X)R[X]). Then the following hold:

(2.2.1) If (f (X),f ′(X))R[X] = R[X], then R[x] is a regular ring.
(2.2.2) If P is a prime ideal in R[X] such that f (X) ∈ P and f ′(X) /∈ P , then R[x]p is a regular

local domain, where p = P/(f (X)R[X]).
(2.2.3) If altitude(R) = 1 and ht((f (X),f ′(X))R[X]) = 2, then R[x]p is a regular local domain

for all but finitely many maximal ideals p of R[x]. In particular, if p is a maximal ideal
in R[x] and P is the pre-image in R[X] of p, then R[x]p is not a regular local domain
if and only if f (X) ∈ P 2.

Proof. Parts (2.2.1) and (2.2.2) follow immediately from (2.1.1).
For (2.2.3), if altitude(R) = 1 and ht((f (X),f ′(X))R[X]) = 2, then there are at most fi-

nitely many prime ideals in R[X] that contain (f (X),f ′(X))R[X] (since R (and hence R[X])
is Noetherian and altitude(R[X]) = 2). Also, if P is a prime ideal in R[X] such that f (X) ∈ P

and f ′(X) /∈ P , and if p is the image in R[x] of P , then R[x]p is a regular local domain, by
(2.2.2). The first statement in (2.2.3) clearly follows from this, and the second statement follows
from the proof of (2.1.2). �

In the following lemma and the remainder of this paper, we use Res(g(X),h(X)) to denote
the resultant of the polynomials g(X) and h(X).

Lemma 2.3. Let R be a Noetherian integral domain of altitude one, and let g(X),h(X) ∈ R[X]
with (g(X),h(X))R[X] � pR[X] for any nonzero prime ideal p of R. Then ht((g(X),h(X))

R[X]) = 2 if and only if Res(g(X),h(X)) is a nonzero nonunit of R. If these hold, then a maximal
ideal π of R contains Res(g(X),h(X)) if and only if π = P ∩ R for some maximal ideal P of
R[X] that contains (g(X),h(X))R[X].

Proof. Let K be the quotient field of R and assume ht((g(X),h(X))R[X]) = 2. Then
since Res(g(X),h(X)) ∈ (g(X),h(X))R[X], Res(g(X),h(X)) is not a unit of R. If
Res(g(X),h(X)) = 0, then g(X) and h(X) have a common root α in some extension field
of K , by [6, Corollary 8.4, p. 203]. Then the minimal monic polynomial f (X) ∈ K[X] of
α is a common factor of g(X) and h(X) in K[X], and f (X)K[X] ∩ R[X] is a height one
prime ideal of R[X] containing (g(X),h(X))R[X], by [5, Theorems 39 and 149], contradicting
ht((g(X),h(X))R[X]) = 2. Thus Res(g(X),h(X)) is a nonzero nonunit of R.

Conversely, if Res(g(X),h(X)) ∈ π for some maximal ideal π of R, then the images g(X)

and h(X) in (R/π)[X] of g(X) and h(X) have a common irreducible factor f (X) in (R/π)[X],
for some f (X) ∈ R[X]. Then (π,f (X))R[X] = P is a height 2 prime ideal of R[X] contain-
ing (g(X),h(X))R[X]. Further, every prime ideal P of R[X] containing (g(X),h(X))R[X],
must have Res(g(X),h(X)) ∈ P ∩ R = π (by [6, p. 202]). Thus each prime ideal containing
(g(X),h(X))R[X] must be of the form P = (π,f (X))R[X], where π is a maximal ideal of
R containing Res(g(X),h(X)) and f (X) ∈ R[X] is such that its image f (X) ∈ (R/π)[X] is
irreducible (so ht(g(X),h(X))R[X] = 2). �
Remark 2.4. Let R and g(X),h(X) ∈ R[X] be as in the above lemma. If Res(g(X),h(X)) = 0,
then the first paragraph of the above proof shows that (g(X),h(X))R[X] is contained in a height
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one prime ideal P of R[X] with P ∩R = {0}, so ht((g(X),h(X))R[X]) = 1. If Res(g(X),h(X))

is a unit of R, then clearly (g(X),h(X))R[X] = R[X].

For the remainder of this section and for Section 3, D denotes a Dedekind domain which
is not a field. For simplicity, we also assume D has characteristic zero. (Therefore D[X] is
a regular domain of altitude two. Also, D[X]/(f (X)D[X]) is a regular ring if and only if
D[X]/(f (X)D[X]) is integrally closed, since altitude(D[X]/(f (X)D[X])) � 1.)

If f (X) = c0 + c1X + · · · + cnX
n ∈ D[X], we define the content cD(f (X)) of f (X) by

cD(f (X)) = (c0, c1, . . . , cn)D. If H ⊆ D[X], we define the content cD(H) to be the ideal gen-
erated by {cD(h(X)) | h(X) ∈ H }. It follows that if I is an ideal of D[X] generated by a set H ,
then cD(I) = cD(H). If cD(f (X)) = D, we say f (X) has content one or is primitive, and simi-
larly for an ideal I of D[X]. It is clear that an ideal, or a polynomial has content one if and only
if it is not contained in any prime ideal of the form pD[X], where p is a prime ideal of D. In
particular, a product of primitive polynomials is primitive. Two elements or ideals of D are said
to be coprime if they generate the ideal D.

Lemma 2.5. Let I be an ideal of D[X] of height 2, let P1, . . . ,Pe be the prime ideals in D[X] that
contain I , and let πi = Pi ∩ D for i = 1, . . . , e (possibly πi = πj for some i �= j in {1, . . . , e}).
Then the following are equivalent:

(2.5.1) I contains a product l1(X) · · · lk(X) of primitive polynomials lj (X) = αjX + βj of
degree one (where αj ,βj ∈ D).

(2.5.2) The homomorphism ϕi :D/πi → D[X]/Pi is an isomorphism for i = 1, . . . , e.
(2.5.3) Each Pi is of the form (πi, lj (X))D[X] = (πi,X − ai)D[X] for some j ∈ {1, . . . , e}

and for some ai ∈ D. Further, for each n ∈ N, we may choose the ai ∈ D such that
(πn

i , lj (X))D[X] = (πn
i ,X − ai)D[X].

Proof. (2.5.3) ⇒ (2.5.2) is clear.
For (2.5.2) ⇒ (2.5.1), fix i ∈ {1, . . . , e}, so ht(Pi) = 2 (since ht(I ) = 2 = altitude(D[X])),

hence πi �= (0). Therefore D[X]/Pi
∼= D/πi if and only if X − ai ∈ Pi for some ai ∈ D. It

follows that if D[X]/Pi
∼= D/πi for i = 1, . . . , e, then [(X − a1) · · · (X − ae)]h ∈ I for all large

integers h (so I contains a product of primitive polynomials of degree one).
For (2.5.1) ⇒ (2.5.3), assume that l1(X) · · · lk(X) ∈ I , where lj (X) = αjX +βj (αj ,βj ∈ D)

is a primitive polynomial of degree one for j = 1, . . . , k. If X ∈ Pi , then X − ai ∈ Pi for each
ai ∈ πi , and it is clear that Pi = (πi,X − ai)D[X] for each ai ∈ πi . Further, for each n ∈ N, we
have (πn

i , lj (X))D[X] = (πn
i ,X − ai)D[X] for each ai ∈ πn

i in this case. On the other hand,
if X /∈ Pi , then Pi contains some lj (X) (so Pi = (πi, lj (X))D[X]). Since lj (X) = αjX + βj ,
αj ,βj must be coprime nonzero elements in D such that αjβj /∈ Pi (since αjX+βj is a primitive
polynomial in Pi and X /∈ Pi ). Thus since αj /∈ πi , we may write 1 = r + sjαj (for some r ∈ πn

i

and sj ∈ D \πi ) and let ai = −sjβj . Then sj lj (X) = sjαjX+sjβj ≡ X−ai mod πn
i . Therefore

(2.5.3) holds. �
In the next theorem we use the following: [6, Eq. (2), p. 203],

Res
(
αX + β,f (X)

) = αnf

(−β

α

)
,

where Deg
(
f (X)

) = n and α �= 0, β ∈ D. (∗Res)
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Theorem 2.6. Let f (X) = cnX
n + cn−1X

n−1 + · · · + c1X + c0 ∈ D[X] be a polynomial of
degree n � 2 such that c0 �= 0, and let C = (f (X),f ′(X))D[X]. Assume that ht(C) = 2 and
that C contains a product l1(X)l2(X) · · · lk(X) of primitive polynomials lj (X) = αjX + βj

in D[X] of degree one (where αj ,βj ∈ D). Let P1, . . . ,Pe be the associated prime ideals
of C and let πi = Pi ∩ D for i = 1, . . . , e (possibly πi = πj for some i �= j ). Then Pi =
(πi, lj (X))D[X] = (πi,X − ai)D[X] for some j ∈ {1, . . . , k} and for some ai ∈ D which we
choose so that (π2

i , lj (X))D[X] = (π2
i ,X − ai)D[X]. Also, π1, . . . , πe are the associated prime

ideals of Res(f (X),f ′(X)). Further, the following are equivalent for each i = 1, . . . , e:

(2.6.1) D[x]pi
is a regular local domain, where D[x] = D[X]/(f (X)D[X]) and pi =

Pi/(f (X)D[X]).
(2.6.2) f (X) /∈ P 2

i .
(2.6.3) f (ai) /∈ π2

i .
(2.6.4) Res(lj (X),f (X)) /∈ π2

i .

Proof. (2.5.1) ⇒ (2.5.3) shows that each Pi has the form (πi, αjX + βj )D[X] =
(πi,X − ai)D[X]. Also, it follows from (2.3) that π1, . . . , πe are the associated prime ideals
of Res(f (X),f ′(X)).

(2.6.1) ⇔ (2.6.2), by (2.2.3).
(2.6.2) ⇔ (2.6.3). Since f (X) and f ′(X) are in C ⊆ Pi = (πi,X − ai)D[X], it follows that,

modulo πiD[X], their residue classes have ai as a root (where the overline denotes residue class
modulo πi ). Therefore there exists a polynomial q2(X) (of degree n− 2) in (D/πi)[X] such that

f (X) = (X − ai)
2q2(X) (2.6)(∗)

(by [6, Proposition 1.11, p. 179]). By the division algorithm in D[X], there exists a polynomial
q1(X) (of degree n − 1) in D[X] such that

f (X) = (X − ai)q1(X) + f (ai). (2.6)(∗∗)

By reducing the coefficients of this equation modulo πi , it follows from (2.6)(∗) that
f (ai) ∈ ((X − ai)(D/πi)[X]) ∩ (D/πi) = (0). So f (ai) ∈ πi and hence the residue class in
(D/πi)[X] of q1(X) is (X − ai)q2(X) (by (2.6)(∗)). Therefore q1(X) ∈ (πi,X − ai)D[X],
so (X − ai)q1(X) ∈ P 2

i . Therefore it follows from (2.6)(∗∗) that f (X) /∈ P 2
i if and only if

f (ai) /∈ P 2
i ∩ D = π2

i , hence (2.6.2) ⇔ (2.6.3).
(2.6.3) ⇔ (2.6.4). By (∗Res) (preceding this theorem), Res(X − ai, f (X)) = f (ai) and

Res(αjX+βj , f (X)) = αn
j f (

−βj

αj
). So we must show f (ai) ∈ π2

i if and only if αn
j f (

−βj

αj
) ∈ π2

i .
Since (πi, αjX + βj )D[X] = (πi,X − aj )D[X], αj /∈ πi . So we may write

1 = r + sjαj (for some r ∈ π2
i and sj ∈ D \ πiD), and since (π2

i ,X − ai)D[X] =
(π2

i , αjX + βj )D[X] = (π2
i , sjαjX + sjβj )D[X], we have ai ≡ −sjβj (mod π2

i ). Then

αn
j f (

−βj

αj
) = cn(−βj )

n + cn−1(−βj )
n−1αj + cn−2(−βj )

n−2α2
j + · · · + c0α

n
j ∈ π2

i ⇔ sn
j αn

j f

(
−βj

αj
) ∈ π2

i . But sn
j αn

j f (
−βj

αj
) ≡ cn(−sjβj )

n +cn−1(−sjβj )
n−1 +· · ·+c0 ≡ f (ai) mod π2

i . �
Remark 2.7. (2.7.1) It follows immediately from (2.2.2), (2.2.3), and (2.6) (and the fact that
C = (f (X),f ′(X))D[X]) that D[x] = D[X]/(f (X)D[X]) is a regular ring if and only if the
equivalent statements (2.6.1)–(2.6.4) hold for i = 1, . . . , e.
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(2.7.2) In (2.6), if Pi = (πi,X)D[X] (so we may assume that ai = 0), then c0 (the constant term
of f (X)) is in Pi (since f (X) ∈ Pi ), so c0 must be a nonunit in D (nonzero by hypothesis).
Therefore f (ai) = f (0) = c0, so it follows from (2.6.2) ⇔ (2.6.3) that f (X) /∈ P 2

i if and only if
c0 /∈ π2

i . It follows that if c0 is square-free in D (that is, c0 /∈ π2 for each nonzero prime ideal π

of D; in particular, every unit in D is square-free), then f (X) /∈ P 2
i (so D[x]pi

is a regular local
domain, by (2.6.1) ⇔ (2.6.2)).
(2.7.3) Assume that c0 is a unit in D. Then it follows from (2.7.2) that no Pi (i = 1, . . . , e)
can contain X. Since P1, . . . ,Pe are all the associated prime ideals of C, it follows that if
Xml1(X) · · · lh(X) ∈ C (with each lj (X) primitive in D[X] of degree one and m,h nonnega-
tive integers), then l1(X) · · · lh(X) ∈ C. In particular, the situation c0 is a unit in D and h = 0
(that is, Xm ∈ C for some nonnegative integer m) cannot occur.
(2.7.4) Assume that Xh ∈ C �= D[X] for some positive integer h and that c0 is a square-free
nonunit in D. Then it follows that ht(C) = 2, and C contains a product of primitive polynomials
of degree one (since Xh ∈ C), so it follows from (2.7.2) and (2.7.1) that D[x] is a regular ring.
(2.7.5) The hypothesis that C contains a product of primitive polynomials in (2.6) implies
that f (X) is a primitive polynomial, since a product of primitive polynomials is primitive
and cD(C) = cD(f (X)) + cD(f ′(X)) = cD(f (X)). Thus by (2.3), the hypothesis in (2.6) that
ht(C) = 2 is equivalent to Res(f (X),f ′(X)) is a nonzero nonunit of D.
(2.7.6) Since Res(f (X),f ′(X)) is a “polynomial” H(c0, c1, . . . , cn) in the coefficients of f (X),
if each coefficient but one, say cj , is fixed, then there will be only finitely many choices of cj

for which Res(f (X),f ′(X)) = 0, and thus for which ht(C) = 1. Further, if D has only finitely
many units, as in the case D = Z considered later, there will be only finitely many choices of cj

for which ht(C) �= 2.
(2.7.7) In (2.6), if f (X) is irreducible over the quotient field K of D, then f (X) and f ′(X) can
have no common factor of positive degree. Therefore it follows from the other hypothesis in (2.6)
and from (2.4) that either C = D[X] or ht(C) = 2.

Concerning the hypothesis “l1(X) · · · lk(X) ∈ C” in (2.6), it is shown in Sections 4 and 5 that,
for the Selmer trinomials f (X) ∈ {Xn − X − 1,Xn + X + 1} over Z, there is an irreducible
polynomial of degree one in the ideal C = (f (X),f ′(X))Z[X], and in this case there are quite
a few additional necessary and sufficient conditions for Z[X]/(f (X)Z[X]) to be a regular ring
(see (4.15) and (5.13)). In the next result we show that several of these conditions apply in the
more general case that there is a product l1(X) · · · lk(X) of primitive linear polynomials lj (X) in
C such that each associated prime ideal of C contains a unique factor lj (X). (This condition is
stronger than the condition in (2.6): For example, X3 + 2 satisfies the hypothesis of (2.6) over
D = Z[1/3], but not the hypothesis of (2.8).)

Theorem 2.8. With the notation of (2.6), assume that ht(C) = 2 and that there exists a product
l1(X) · · · lk(X) ∈ C of primitive polynomials lj (X) = αjX + βj of degree one such that each
of the associated prime ideals P1, . . . ,Pe, of C contains a unique factor lj (X) (j ∈ {1, . . . , k}).
Then for each i = 1, . . . , e, the following are equivalent:

(2.8.1) D[x]pi
is a regular local domain, where D[x] = D[X]/(f (X)D[X]) and pi =

Pi/(f (X)D[X]).
(2.8.2) C : πiD[X] � Pi .
(2.8.3) CD[X]Pi

= PiD[X]Pi
.

(2.8.4) f ′(x)D[x]pi
= piD[x]pi

, where D[x] = D[X]/(f (X)D[X]).
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(2.8.5) f (x′)D[x′]qi
= qiD[x′]qi

, where D[x′] = D[X]/(f ′(X)D[X]) and qi = Pi/

(f ′(X)D[X]).

Proof. Assume (2.8.1) holds. Now l1(X) · · · lk(X) ∈ C ⊆ Pi and lj (X) is the only lh(X) that
is in Pi (by hypothesis), so it follows that lj (X) ∈ C∗

i = CD[X]Pi
∩ D[X] ⊆ Pi . Therefore

lj (X),f (X) ∈ C∗
i , so ρi,j = Res(lj (X),f (X)) ∈ C∗

i ∩ D (by [6, p. 202]). Since C∗
i ∩ D ⊆

Pi ∩ D = πi , it follows that ρi,j ∈ πi . Also, ρi,j /∈ π2
i (by (2.6.1) ⇒ (2.6.4)), so it fol-

lows that ρi,jDπi
= πiDπi

, hence πiD[X]Pi
= ρi,jD[X]Pi

⊆ C∗
i D[X]Pi

= CD[X]Pi
. There-

fore (C : πiD[X])D[X]Pi
= CD[X]Pi

: πiD[X]Pi
= D[X]Pi

. Also, PiD[X]Pi
�= D[X]Pi

, so
C : πiD[X] � Pi , hence (2.8.1) ⇒ (2.8.2).

Assume (2.8.2) holds, so it follows that σi ∈ CD[X]Pi
, where σi is a generator of πiDπi

.
Also, l1(X) · · · lk(X) ∈ C and lj (X) is the unique lh(X) that is in Pi (by hypothesis), so it follows
that lj (X) ∈ CD[X]Pi

. Since Pi = (πi, lj (X))D[X] and σiD[X]Pi
= πiD[X]Pi

, it follows that
CD[X]Pi

= PiD[X]Pi
, hence (2.8.2) ⇒ (2.8.3).

Since C = (f (X),f ′(X))D[X] and D[x] = D[X]/(f (X)D[X]) (respectively, D[x′] =
D[X]/(f ′(X)D[X])), it follows that (2.8.3) ⇒ (2.8.4) (respectively, (2.8.3) ⇒ (2.8.5)).

Finally, if (2.8.4) holds, then the height one maximal ideal piD[x]pi
is principal, so (2.8.4) ⇒

(2.8.1). Similarly, (2.8.5) ⇒ (2.8.1). �
For (2.9), recall that an ideal I in a Noetherian ring R is said to be a radical ideal in case I is

a finite intersection of prime ideals.

Corollary 2.9. With the notation and hypothesis of (2.8), D[x] is a regular ring if and only if C

is a radical ideal.

Proof. Since P1, . . . ,Pe are all the associated prime ideals of C, this follows immediately from
the definition of “radical ideal” and (2.8.1) ⇔ (2.8.3) (and (2.7.1)). �
Remark 2.10. (2.10.1) It follows immediately from (2.8) (and (2.7.1)) that D[x] is a regu-
lar ring if and only if CDS[X] ⊇ (π1 · · ·πe, l1(X) · · · lk(X))DS[X], where S = D \ (π1 ∪ · · ·
∪ πe). Also, if CD[X]Pi

= PiD[X]Pi
, then since (f (X),f ′(X))D[X]Pi

= CD[X]Pi
=

PiD[X]Pi
= (πi, lj (X))D[X]Pi

, it follows (by considering these equalities modulo πiD[X]Pi
)

that (πi, f
′(X))D[X]Pi

= PiD[X]Pi
.

(2.10.2) Fix i ∈ {1, . . . , e} and resubscript the Pi so that P1, . . . ,Pb are the prime ideals in
{P1, . . . ,Pe} that lie over πi . Also, resubscript the lh(X) = αhX + βh so that lj (X) is the unique
lh(X) that is in Pj for j ∈ {1, . . . , b} (so these lj (X) are distinct and Pj = (πi, αjX +βj )D[X]).
Then, since (D/πi)[X] is a UFD, let f1(X), . . . , fd(X) be distinct monic irreducible polynomi-
als in (D/πi)[X] that are not an associate of lh(X) (h = 1, . . . , b) and let vi be a unit in D/πi

such that

f (X) = vi(α1X + β1)
n1 · · · (αbX + βb)

nb
(
f1(X)

)m1 · · · (fd(X)
)md

is a factorization of f (X) into irreducible factors. Then it can be shown (as in the proof of (4.9)
below) that n1 = · · · = nb = 2 and m1 = · · · = md = 1.



98 L.J. Ratliff et al. / Journal of Number Theory 121 (2006) 90–113
3. Conditions for D[X]/((bXn + cX + d)D[X]) to be regular

In this section we specialize (2.6) and (2.8) to the Selmer-like trinomials sn,b,c,d (X) = bXn +
cX + d and tn,b,c,d (X) = bXn + cXn−1 + d . (Of course, the s in sn,b,c,d (X) is in honor of
Selmer, and the t in tn,b,c,d (X) is because these trinomials are obtained from the corresponding
sn,b,c,d (X) by the transformation described in the last two paragraphs of the proof of (3.6).)

We begin by fixing the notation that will be used throughout this section. (It should be noted
that the assumption “C �= D[X]” in (3.1) is not a severe restriction for our purposes, since we
want conditions for D[x] to be a regular ring, and (2.2.1) shows that this holds if C = D[X].)

Notation 3.1. Let n � 2 be a positive integer, let b, c, d ∈ D \{0}, let sn,b,c,d (X) = bXn +cX+d

and tn,b,c,d (X) = bXn + cXn−1 + d , and let D[x] = D[X]/(sn,b,c,d (X)D[X]). Let l(X) =
c(n − 1)X + dn, so l(X) = Xs′

n,b,c,d (X) − nsn,b,c,d (X) ∈ C = (sn,b,c,d (X), s′
n,b,c,d (X))D[X].

Assume that C �= D[X], let P1, . . . ,Pe be the associated prime ideals of C, and for i = 1, . . . , e

let πi = Pi ∩ D (possibly πi = (0) for some i ∈ {1, . . . , e} or πi = πj for some i �= j ∈
{1, . . . , e}). Also, let ρn,b,c,d = Res(l(X), sn,b,c,d (X)), so ρn,b,c,d = (c(n − 1))nsn,b,c,d ( −dn

c(n−1)
)

(by (∗Res) (preceding (2.6))) = (c(n − 1))n[b( −dn
c(n−1)

)n + c −dn
c(n−1)

+ d], so

ρn,b,c,d = b(−dn)n − cd
[
c(n − 1)

]n−1
. (3.1.1)

Remark 3.2. In order to apply (2.6) (and (2.8)) to the trinomials sn,b,c,d (X) we need to ensure
that:

(i) C contains a product of primitive polynomials in D[X] of degree one; and,
(ii) ht(C) = 2.

When (3.2)(i) and (ii) hold, several necessary and sufficient conditions for D[x] to be a
regular ring are given in (3.6). First, however, in (3.3) we show that the hypotheses of (3.6)
“b /∈ c(n − 1)D, (c(n − 1), dn)D = D, and C �= D[X]” imply that (3.2)(i) and (ii) hold, and
in (3.5.1) we show that the second of these implies that ρn,b,c,dDπi

= Disc(sn,b,c,d (X))Dπi
for

i = 1, . . . , e.

Lemma 3.3. Assume that b /∈ c(n − 1)D and that (c(n − 1), dn)D = D. If C �= D[X], then
conditions (i) and (ii) of (3.2) hold.

Proof. The hypothesis (c(n − 1), dn)D = D shows that l(X) = c(n − 1)X + dn is primitive in
D[X] of degree one (since c(n − 1) �= 0), so (3.2)(i) holds (since l(X) ∈ C, by (3.1)).

For (3.2)(ii), by hypothesis C �= D[X], so ht(C) ∈ {1,2}. To see that ht(C) = 2, note that
it follows from b /∈ c(n − 1)D that sn,b,c,d (X) /∈ l(X)D[X]. Since l(X)D[X] is a prime ideal
in D[X] (it is well known and readily shown that a primitive polynomial of degree one over a
Noetherian domain R generates a prime ideal in R[X]), and since (l(X), sn,b,c,d (X))D[X] ⊆ C

(by (3.1)), it follows that ht(C) = 2. �
Lemma 3.4. Assume that (c(n − 1), dn)D = D. Then bcdn(n − 1) /∈ πi for i = 1, . . . , e.

Proof. Suppose that bcdn(n − 1) ∈ πi for some i = 1, . . . , e. It will be shown that this leads to
a contradiction by considering the five possible cases.
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Assume that b ∈ πi . Since l(X) = c(n − 1)X + dn ∈ C = (bXn + cX + d,

bnXn−1 + c)D[X] ⊆ Pi , it follows that cX + d (= (bXn + cX + d) − bXn) and c

(= (bnXn−1 + c) − bnXn−1) are in Pi , hence c, d ∈ Pi ∩ D. However, this contradicts the
hypothesis that c, d are coprime in D, so b /∈ πi for i = 1, . . . , e.

Assume that c ∈ πi . Then bnXn−1 (= (bnXn−1 + c) − c = s′
n,b,c(X) − c) ∈ Pi . By the pre-

ceding case it may be assumed that either n or X is in Pi . However, c,n are coprime in D, so
X ∈ Pi . But bXn + cX + d ∈ Pi , so it follows that c, d are in Pi ∩ D, in contradiction to the
hypothesis that c, d are coprime in D. Therefore c /∈ πi for i = 1, . . . , e.

Assume that d ∈ πi . Then c(n − 1)X (= (c(n − 1)X + dn) − dn = l(X) − dn) ∈ Pi . It fol-
lows from the preceding paragraph that c /∈ Pi , so either X or n − 1 ∈ Pi . If X ∈ Pi , then c

(= (bnXn−1 + c)− bnXn−1 = s′
n,b,c,d (X)− bnXn−1) ∈ Pi , so c, d ∈ Pi , and this contradicts the

hypothesis that c, d are coprime in D. Therefore it follows that n − 1 ∈ Pi , and this contradicts
the hypothesis that d,n − 1 are coprime in D. Therefore d /∈ πi for i = 1, . . . , e.

The cases n ∈ πi and n − 1 ∈ πi are similar. �
Lemma 3.5.

(3.5.1) ρn,b,c,dD = bd · Disc(sn,b,c,d (X))D = d · Res(sn,b,c,d (X), s′
n,b,c,d (X))D. Therefore,

if (c(n − 1), dn)D = D, then, for i = 1, . . . , e, ρn,b,c,dDπi
= Disc(sn,b,c,d )Dπi

=
Res(sn,b,c,d (X), s′

n,b,c,d (X))Dπi
.

(3.5.2) Let k(X) = nbX + c(n− 1) and let ψn,b,c,d = Res(k(X), tn,b,c,d (X)). Then ψn,b,c,dD =
bdn−2 · Disc(tn,b,c,d (X))D = dn−2 · Res(tn,b,c,d (X), t ′n,b,c,d (X))D. Therefore, if
(c(n − 1), dn)D = D, then, for i = 1, . . . , e, ψn,b,c,dDπi

= Disc(tn,b,c,d )Dπi
=

Res(tn,b,c,d (X), t ′n,b,c,d (X))Dπi
.

Proof. For (3.5.1), from the identity (−1)n(n−1)/2b · Disc(sn,b,c,d (X)) = Res(sn,b,c,d (X),

s′
n,b,c,d (X)) [6, p. 204], and the identity Res(f, rf + sg) = Res(f, s) · Res(f, g), which is imme-

diate from [6, Eq. (2), p. 203], we have

ρn,b,c,d = Res
(
l(X), sn,b,c,d (X)

) = (−1)n Res
(
sn,b,c,d (X), l(X)

)
= (−1)n Res

(
sn,b,c,d (X),Xs′

n,b,c,d (X) − nsn,b,c,d (X)
)

= (−1)n Res
(
sn,b,c,d (X),X

) · Res
(
sn,b,c,d (X), s′

n,b,c,d (X)
)

= ±d · b · Disc
(
sn,b,c,d (X)

)
.

It follows that ρn,b,c,dD = bd · Disc(sn,b,c,d (X))D = d · Res(sn,b,c,d (X), s′
n,b,c,d (X))D. There-

fore if b /∈ c(n − 1)D and (c(n − 1), dn)D = D, then it follows from (3.4) that, for i = 1, . . . , e,
ρn,b,c,dDπi

= Disc(sn,b,c,d )Dπi
= Res(sn,b,c,d (X), s′

n,b,c,d (X))Dπi
.

The proof of (3.5.2) is similar. �
Theorem 3.6. Assume that b /∈ c(n − 1)D, (c(n − 1), dn)D = D, and C �= D[X]. Then D[x] is
a regular ring if and only if C is a radical ideal if and only if the following equivalent conditions
hold for each Pi (i ∈ {1, . . . , e}):

(3.6.1) D[x]pi
is a regular local domain, where pi = Pi/(sn,b,c,d (X)D[X]).

(3.6.2) sn,b,c,d (X) /∈ P 2.
i
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(3.6.3) sn,b,c,d (ai) /∈ π2
i D, where ai ∈ D is such that (πi,X − ai)D[X] = (πi, c(n − 1)X +

dn)D[X].
(3.6.4) ρn,b,c,d /∈ π2

i , where ρn,b,c,d is given by (3.1.1).
(3.6.5) C : πiD[X] � Pi .
(3.6.6) CD[X]Pi

= PiD[X]Pi
.

(3.6.7) s′
n,b,c,d (x)D[x]pi

= piD[x]pi
.

(3.6.8) sn,b,c,d (x′)D[x′]qi
= qiD[x′]qi

, where D[x′] = D[X]/(s′
n,b,c,d (X)D[X]) and qi =

Pi/(s
′
n,b,c,d (X)D[X]).

(3.6.9) Disc(sn,b,c,d (X)) /∈ π2
i .

(3.6.10) Res(sn,b,c,d (X), s′
n,b,c,d (X)) /∈ π2

i .

Further, these conditions hold for each i if and only if Res(sn,b,c,d (X), s′
n,b,c,d (X)) is square-

free in D.
Moreover, if D[x] is a regular ring and if b is square-free in D, then D[X]/(tn,d,c,b(X)D[X])

is also a regular ring.

Proof. By (3.3), (3.2)(i) and (ii) hold; that is, the hypotheses of (2.6) hold for f (X) = sn,b,c,d (X)

(under the conditions (on n,b, c, d) in this theorem). Also, D[x] is a regular ring if and only if
C is a radical ideal, by (2.9). Further, each Pi must contain l(X), by (3.1), so it follows from
(2.6) that (3.6.1)–(3.6.4) are equivalent for each Pi (i ∈ {1, . . . , e}). Moreover, (3.1) shows that
l(X) ∈ C (and it has already been noted that l(X) is primitive), so the hypothesis of (2.8) holds,
hence it follows from (2.8) that (3.6.5)–(3.6.8) are each equivalent to (3.6.1). And (3.6.4) ⇔
(3.6.9) ⇔ (3.6.10), by (3.5.1).

For the “Further” statement in the theorem, since the πi are the associated prime ideals of
Res(sn,b,c,d (X), s′

n,b,c,d (X)) (by (2.3)) and do not contain b (by (3.4)), it follows from (3.5.1)
that Res(sn,b,c,d (X), s′

n,b,c,d (X)) is square-free in D if and only if (3.6.4) holds.
Now assume that D[x] is a regular ring and that b is square-free in D. Let Y = 1/X and for

an arbitrary polynomial h(X) = cmXm + · · · + c0 ∈ D[X] let h∗(Y ) = c0Y
m + · · · + cm. Then

D[X,Y ] = D[X,1/X] = D[Y,1/Y ] is a localization of D[X] and of D[Y ], and h∗(Y ) ∈ D[Y ].
In particular, s∗

n,b,c,d (Y ) = dYn + cY n−1 + b = tn,d,c,b(Y ) and l∗(Y ) = dnY + c(n − 1).

Also, t ′n,d,c,b(Y ) = dnYn−1 + c(n − 1)Y n−2 = Yn−2l∗(Y ). Further, there exists a one-to-
one correspondence between the prime ideals P in D[X] that do not contain X and the
prime ideals P ∗ in D[Y ] that do not contain Y given by P ∗ = PD[X,1/X] ∩ D[Y ] and
P = P ∗D[Y,1/Y ] ∩ D[X]. Moreover, for each such P and corresponding P ∗ there exists a
one-to-one correspondence between the P -primary ideals q in D[X] and the P ∗-primary ideals
q∗ in D[Y ] given by q∗ = qD[X,1/X] ∩ D[Y ] and q = q∗D[Y,1/Y ] ∩ D[X]. (It therefore
follows that sn,b,c,d (X)D[X,1/X] = Ynsn,b,c,d (X)D[X,1/X] = Xntn,d,c,b(Y )D[Y,1/Y ] =
tn,d,c,b(Y )D[Y,1/Y ], so since sn,b,c,d (X) /∈ P 2

i for i = 1, . . . , e (by the first part of this the-
orem and the assumption that D[x] is a regular ring), it follows that tn,d,c,b(Y ) /∈ (P ∗

i )2 for
i = 1, . . . , e (X /∈ Pi , since sn,b,c,d (X), s′

n,b,c,d (X) ∈ C ⊆ Pi and their constant terms c, d are
coprime in D).)

Finally, let Q be a prime ideal in D[Y ] that contains C′ = (tn,d,c,b(Y ), t ′n,d,c,b(Y ))D[Y ]. Then

Yn−2l∗(Y ) = t ′n,d,c,b(Y ) ∈ Q, and l∗(Y ) is primitive in D[Y ] (by the same argument to show that
l(X) is primitive in D[X]), so (3.2)(i) holds for C′. Therefore, to complete the proof of this
theorem it must be shown that ht(Q) = 2 (so (3.2)(ii) holds for C′) and that tn,d,c,b(Y ) /∈ Q2.
For this, by what was shown at the end of the preceding paragraph it may be assumed that
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Q /∈ {P ∗
1 , . . . ,P ∗

e }. Therefore Y ∈ Q, so b ∈ Q ∩ D (so ht(Q) = 2), and since b is square-free
in D it follows from (2.7.2) that tn,d,c,b(Y ) /∈ Q2. Therefore, D[Y ]/(tn,d,c,b(Y )D[Y ]) is a reg-
ular ring by (2.7.1), so the last statement in this theorem follows by changing notation from Y

to X. �
Corollary 3.7. With the notation of (3.6), if b is a unit, then D[x] is a regular ring if and only if
Disc(sn,b,c,d (X)) is square-free in D.

Proof. This follows immediately from the “Further” part of (3.6) together with (3.5.1). �
Remark 3.8. There exists a one-to-one correspondence between the associated prime ideals p

of Res(sn,b,c,d (X), s′
n,b,c,d (X))Z) and the associated prime ideals P of C (given by p = P ∩ Z).

(This follows, since P1, . . . ,Pe are all the associated prime ideals of C (by hypothesis), and
π1, . . . , πe are all the associated prime ideals of Res(sn,b,c,d (X), s′

n,b,c,d (X))Z (by (2.3).)
Also, it follows from (3.6.1) ⇔ (3.6.10) and (2.9) that Res(sn,b,c,d (X), s′

n,b,c,d (X))Z =
Rad(Res(sn,b,c,d (X), s′

n,b,c,d (X))Z) if and only if C = Rad(C). And, of course, Res(sn,b,c,d (X),

s′
n,b,c,d (X))Z = Rad(Res(sn,b,c,d (X), s′

n,b,c,d (X))Z) if and only if Res(sn,b,c,d (X), s′
n,b,c,d (X))

is square-free.

4. Conditions for ZZZ[X]/((Xn − X − 1)ZZZ[X]) to be a Dedekind domain

In this section we specialize (2.6) and (3.6) to the Selmer trinomials sn,1,−1,−1(X) =
Xn − X − 1 over the Dedekind domain D = Z of rational integers. For this, we first fix the
notation, then show (in (4.4)) that Z[X]/((Xn − X − 1)Z[X]) is a Dedekind domain if and only
if nn − (1 − n)n−1 is square free. Then in (4.6) we give several specific cases of (3.6) for these
trinomials. We then examine how the primes dividing Disc(Xn − X − 1) = ±(nn − (1 − n)n−1)

split in Z[X]/((Xn − X − 1)Z[X]) and use this to prove (in (4.15)) quite a few additional nec-
essary and sufficient conditions for the factor domains modulo these trinomials to be Dedekind
domains. (Analogous results for the Selmer trinomials sn,1,1,1(X) = Xn +X + 1 are given in the
next section.)

Notation 4.1. Let n � 2 be a positive integer, let sn(X) = sn,1,−1,−1(X) (so sn(X) = Xn−X−1),
let ln(X) = (n − 1)X + n, let C = (sn(X), s′

n(X))Z[X], let P1, . . . ,Pe be the associated prime
ideals of C, for i = 1, . . . , e, let πiD = Pi ∩ D, and let ρn = Res(ln(X), sn(X)), so

ρn = nn − (1 − n)n−1 = nn + (−1)n(n − 1)n−1. (4.1.1)

Remark 4.2. (4.2.1) As noted in (3.1), ln(X) = Xs′
n(X) − nsn(X) ∈ C (so (3.2)(i) holds for C).

Also, for i = 1, . . . , e, Pi = (πi, ln(X))Z[X] (by (2.6)) and πi is relatively prime to n − 1
and to n, by (3.4) (with b = 1 and c = d = −1). Further, ht(C) = 2, by (4.3) below, so
πi �= 0 for i = 1, . . . , e. Moreover, it follows from (3.1.1) (with b = 1 and c = d = −1) that
Res(ln(X), sn(X)) = nn − (1 − n)n−1.

(4.2.2) The hypothesis b /∈ c(n − 1)D of (3.3), (3.6), and (3.7) does not hold for s2(X) =
X2 − X − 1. However, it is readily checked that ht(C) = 2 for C = (s2(X), s′

2(X))Z[X] =
(X2 − X − 1,2X − 1)Z[X]. Since b /∈ c(n − 1)D was only used in Section 3 (specifically,
in (3.3)) to show that ht(C) = 2 (where C = (bXn + cX + d,nbXn−1 + c)D[X]), it follows that
the conclusions of (3.3), (3.6), and (3.7) hold for s2(X).
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Proposition 4.3. With C as in (4.1), ht(C) = 2.

Proof. By (3.6), it suffices to show that C �= Z[X]. By (3.5.1) we have Res(sn(X), s′
n(X)) =

±ρn = ±Disc(sn(X)), and it is clear that ρn � 2 for n � 2. Thus (2.3) shows that ht(C) = 2. �
For the first of the main results in this section, (4.4), recall that it is said that a prime integer π

in Z ramifies in an extension domain A of Z in case π ∈ p2 for some height one prime ideal p

in A.

Theorem 4.4. For each integer n � 2, the following are equivalent:

(4.4.1) Z[xn] = Z[X]/((Xn − X − 1)Z[X]) is a Dedekind domain.
(4.4.2) Z[yn] = Z[X]/((Xn + Xn−1 − 1)Z[X]) is a Dedekind domain.
(4.4.3) Disc(sn(X)) is square-free.
(4.4.4) ρn = nn − (1 − n)n−1 is square-free in Z.

If these hold, then a prime π ∈ Z ramifies in Z[xn] if and only if it ramifies in Z[yn].

Proof. (4.4.4) ⇔ (4.4.3), by (3.5.1).
Since the rings Z[xn] and Z[yn] are domains (by [14]), and have altitude one, they are

Dedekind if and only if they are regular. Therefore (4.4.3) ⇔ (4.4.1), by the “Further” part
of (3.6) and (3.5.1) (since b = 1 and d = −1).

(4.4.1) ⇒ (4.4.2), by the last two paragraphs of the proof of (3.6). (Those two paragraphs
apply, since b = 1 is square-free in D = Z and since (Xn − X − 1)∗ = −Yn − Yn−1 + 1, so by
replacing Y with X we get −(−Xn − Xn−1 + 1) = Xn + Xn−1 − 1.)

Now let tn(X) = Xn + Xn−1 − 1, so t ′n(X) = Xn−2(nX + (n − 1)). Let C′ = (tn(X), t ′n(X))

Z[X] (so C′ corresponds to C). Then it follows from (2.7.3) that nX + (n − 1) ∈ C′, and it
follows as in the derivation of (4.1.1) that Res(nX +n− 1, tn(X)) = −ρn (with ρn as in (4.1.1)).
The final statement of this theorem follows from this and [13, Theorem 1, p. 74].

Finally, since Res(nX + n − 1, tn(X)) = −ρn (by the preceding paragraph), to show that
(4.4.2) ⇒ (4.4.4), it suffices (by (2.6.1) ⇒ (2.6.4) and (2.7.1)) to show that π1, . . . , πe

are prime factors of ρn and, in fact, are all of the prime factors of ρn. For this, (2.3)
shows that π1D, . . . , πeD are all the associated prime ideals of Res(sn(X), s′

n(X))Z, and
Res(sn(X), s′

n(X))Z = Disc(sn(X))Z = ρnZ, by (3.5.1), so π1, . . . , πe are all the prime factors
of ρn. �

For ease of future reference, we give the following alternate form of Theorem 4.4.

Theorem 4.5. Let n � 2 be an integer and let α, β ∈ C be roots of sn(X) = Xn − X − 1 and
Xn + Xn−1 − 1, respectively. Then the following are equivalent:

(4.5.1) {1, α, . . . , αn−1} is a Z-basis for the integers ZQ(α) of Q(α).
(4.5.2) {1, β, . . . , βn−1} is a Z-basis for the integers ZQ(β) of Q(β).
(4.5.3) Disc(sn(X)) is square-free.
(4.5.4) ρn = nn − (1 − n)n−1 is square-free in Z.

If these hold, then a prime π ∈ Z ramifies in Z[α] if and only if it ramifies in Z[β].
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It follows from (4.2) (and (4.3)) that (3.2)(i) and (ii) hold for C, so we can apply (3.6) to the
trinomials sn(X).

Proposition 4.6. Z[xn] = Z[X]/(sn(X)Z[X]) is a Dedekind domain for n = 2,3, . . . ,50. Fur-
ther 59 is the smallest prime π such that π2 divides some ρn, and 257 is the smallest n such
that 592 divides ρn. So each n such that Z[xn] = Z[X]/(sn(X)Z[X]) is not a Dedekind domain
is divisible by π2 for some prime π � 59.

Proof. Mathematica shows that ρn = nn − (1 − n)n−1 (= Res((n − 1)X + n,Xn − X − 1)) is
square-free in Z for n = 2, . . . ,50. By [14, Theorem 1], Z[xn] is an integral domain. It is clearly
integral over Z, and is integrally closed, either by (3.6), or [13, Theorem 1, p. 76] (and the fact
that ρn = ±Disc(Xn − X − 1), by (3.5.1)). Thus Z[xn] is a Dedekind domain.

The “Further” statement of (4.6) follows from Mathematica using the following algorithm,
and the following lemma. �
Program 4.7. stmp = OpenAppend["Output"]

c = 0;
d = 0;
For[p = 2, p < 60, p++,

If[PrimeQ[p],
j = 2;
While[j < (p3 −p2),

a = Mod[jj ,p2];
b = Mod[(1 − j)(j−1), p2];
k = Mod[a − b,p2];
If[k == 0,

WriteString[stmp,"p=",p," j=",j," minus "];
c = 1];

h = Mod[a + b,p2];
m = Mod[j,3];
If[(h == 0) && ((m == 0) || (m == 1)),

WriteString[stmp,"p=",p," j=",j," plus "];
d = 1];

If[c+d == 2, j =p3 −p2];
If[Mod[j,1000] == 0,

Print[p," ",j]];
j++]]]

Print["done"]

By using a variation of (4.7) (searching for a prime integer p with p2 dividing ρn,
50 < n < 257 and 60 < p < 2 000 000), Mathematica shows that 130 is the smallest n < 257
with a repeated prime factor p < 2 000 000 (and ρ130 is divisible by 832). (Of course, there could
be n ∈ {51, . . . ,129} such that ρn has a square prime factor greater than 2 000 000.)

Lemma 4.8. For all integers n � 2 and prime integers π > 2, ρn ≡ ρn+i(π3−π2) (mod π2) for all
positive integers i.
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Proof. There are π2 − π units in Z/(π2Z), so xπ2−π = 1 for all units x in Z/(π2Z). So if
a ∈ (π2 − π)Z, then xa = 1 for all units x in Z/(π2Z). Fix positive integers n,π, i such that
n � 2 and π is an odd prime with n(n − 1) /∈ πZ, and let d = π3 − π2. Then modulo π2,
we have ρn+id = (n + id)n+id − (1 − n − id)n+id−1 ≡ nn+id − (1 − n)n+id−1 ≡ nnnid −
(1 − n)n−1(1 − n)id ≡ nn − (1 − n)n−1 = ρn. �

We now examine how the primes dividing Disc(Xn − X − 1) = ±(nn − (1 − n)n−1) split
in Z[X]/((Xn − X − 1)Z[X]) and use this to prove (in (4.15)) quite a few additional neces-
sary and sufficient conditions for the factor domains modulo these trinomials to be Dedekind
domains. In the case n = 3, more detailed results are given in [3] on how primes in Z split in
Z[X]/(s3(X)Z[X]), and more such results are given in the cases n = 2,3,4,5 in [15].

Remark 4.9. In the principal ideal domain (Z/(πiZ))[X] = Z[X]/(πiZ[X]) let fi,j (X) be dis-
tinct monic irreducible polynomials such that no fi,j (X) is an associate of ln(X) = n − 1X + n

and such that Xn − X − 1 = vi(fi,1(X))gi,1 · · · (fi,ki
(X))gi,ki (n − 1X + n)hi is a factorization of

Xn − X − 1 into irreducible factors (where vi is the unit (n − 1)−hi ∈ Z/(πiZ)). Then hi = 2
and gi,j = 1 for i = 1, . . . , e and j = 1, . . . , ki .

Proof. To see that hi = 2, note first that hi � 2, by the proof of (2.6.2) (see (2.6)(∗)). Also,
s′
n(X) = nXn−1 − 1 and s′′

n(X) = n(n − 1)Xn−2, so since n(n − 1) and πi are relatively prime
(by (4.2)), s′

n(X) and s′′
n(X) cannot have a common root. Therefore it follows from [6, Proposi-

tion 1, p. 131] that, modulo πiZ[X], n − 1X + n cannot be a factor of multiplicity greater than
two of Xn − X − 1, hence hi = 2.

To see that each gi,j = 1, suppose the contrary holds, so gi,j > 1 for some i ∈ {1, . . . , e}
and j ∈ {1, . . . , ki}. Therefore by taking the derivative of Xn − X − 1 = vi(fi,1(X))gi,1 · · ·
(fi,ki

(X))gi,ki (n − 1X + n)2, it follows that (Xn − X − 1, nXn−1 − 1)(Z/(πiZ))[X] ⊆ p =
fi,j (X)(Z/(πiZ))[X] (n �= 0, by (4.2)). Therefore the pre-image P in Z[X] of p contains
(πi,C)Z[X], hence P = Pi (= (πi, ln(X))Z[X]), and this contradicts the fact that fi,j (X) and
ln(X) = n − 1X + n are nonassociate irreducible polynomials in Z[X]/(πiZ[X]). It follows that
each gi,j = 1. �
Notation 4.10. With the notation of (4.9), for i = 1, . . . , e and for j = 1, . . . , ki , let fi,j (X) be
distinct monic irreducible polynomials in the UFD Z[X] such that fi,j (X) + πiZ[X] = fi,j (X),
let Qi,j = (πi, fi,j (X))Z[X], let pi = Pi/(sn(X)Z[X]), and let qi,j = Qi,j /(sn(X)Z[X]).

Remark 4.11. Each Qi,j is a maximal ideal such that ln(X) /∈ Qi,j , sn(X) ∈ Qi,j , and
Qi,jZ[X]Qi,j

= (πi, sn(X))Z[X]Qi,j
, so qi,jZ[xn]qi,j

= πiZ[xn]qi,j
.

Proof. Qi,j is a maximal ideal and ln(X) /∈ Qi,j , since Qi,j /(πiZ[X]) = fi,j (X)(Z/(πiZ))[X]
is a maximal ideal and ln(X) /∈ fi,j (X)(Z/(πiZ))[X]. Also, it follows from (4.9) that
(n − 1)2sn(X) − (ln(X))2fi,1(X) · · ·fi,ki

(X) ∈ πiZ[X] (and n − 1 and πi are relatively prime),
so it follows that sn(X) ∈ Qi,j and that Qi,jZ[X]Qi,j

= (πi, fi,j (X))Z[X]Qi,j
= (πi, sn(X))

Z[X]Qi,j
. Therefore, modulo sn(X)Z[X]Qi,j

is follows that qi,jZ[xn]qi,j
= πiZ[xn]qi,j

. �
The equalities involving s′

n(X) and sn(X) in (4.12) will be useful in the remainder of this
section.
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Remark 4.12. (4.12.1) There exists q(X) ∈ Z[X] \ (P1 ∪ · · · ∪ Pe) such that (1 − n)n−1s′
n(X) =

ln(X)q(X) + ρn.
(4.12.2) Let g∗(X) = (1 − n)n−3Xn−2 + 2n(1 − n)n−4Xn−3 + · · · +

ini−1(1 −n)n−i−2Xn−i−1 + · · ·+ (n− 2)nn−3X −nn−2. Then: g∗(X) ∈ Z[X] \ (P1 ∪ · · · ∪Pe);
Qi,jZ[X]Qi,j

= (πi, g
∗(X))Z[X]Qi,j

for i = 1, . . . , e and j = 1, . . . , ki ; and (1 − n)n−1sn(X) =
(ln(X))2g∗(X) + ρn(X + 1).

Proof. For (4.12.1), there exists q1(X) ∈ Z[ n
1−n

][X] such that

s′
n(X) =

(
X − n

1 − n

)
q1(X) + s′

n

(
n

1 − n

)
, (4.12)(∗)

and it is readily seen that s′
n(

n
1−n

) = ρn

(1−n)n−1 . By multiplying both sides of (4.12)(∗) by

(1 − n)n−1 we get (1 − n)n−1s′
n(X) = ln(X)q(X) + ρn for some q(X) ∈ Z[X].

To see that q(X) /∈ P1 ∪ · · · ∪ Pe, suppose the contrary holds and fix Pi such that q(X) ∈ Pi .
Now Pi = (πi, ln(X))Z[X], by (4.2), so Pi/(πiZ[X]) is generated by ln(X) = (n − 1)X + n.
Since s′

n(X), q(X) ∈ Pi , it follows that their residue classes modulo πiZ[X] are each a multiple
of ln(X). Also, since πi is a factor of ρn, it follows from (1 − n)n−1s′

n(X) = ln(X)q(X) + ρn

that ln(X)q(X)(Z/(πiZ))[X] = s′
n(X)(Z/(πiZ))[X], hence (ln(X))2 is a factor of the residue

class of s′
n(X), and this contradicts what was shown in the first paragraph of the proof of (4.9).

Therefore the supposition is false, so q(X) /∈ Pi for i = 1, . . . , e.
For (4.12.2), by long division in Z[ n

1−n
][X] it follows that

sn(X) =
(

X − n

1 − n

)2

q2(X) + r(X) (4.12)(∗∗)

for some q2(X) ∈ Z[ n
1−n

][X], and it is readily seen that r(X) = ρn(X+1)

(1−n)n−1 . By multiplying both

sides of (4.12)(∗∗) by (1 − n)n−1 we get (1 − n)n−1sn(X) = (ln(X))2g∗(X) + ρn(X + 1).
To see that g∗(X) /∈ P1 ∪ · · · ∪ Pe, fix i ∈ {1, . . . , e}, and note that πi is a factor of ρn, so by

reducing the coefficients of (1 − n)n−1sn(X) = (ln(X))2g∗(X) + ρn(X + 1) modulo πiZ we get

(1 − n)n−1sn(X) = (
ln(X)

)2
g∗(X). (4.12)(∗∗∗)

Since (1 − n)n−1 is a unit in Z/(πiZ) (by (4.2)), since Pi/(πiZ[X]) is generated by ln(X), and
since sn(X) is not divisible by (ln(X))3 (by (4.9)), it follows that g∗(X) /∈ Pi .

Finally, (4.12)(∗∗∗) shows that sn(X) = ui(ln(X))2g∗(X), where ui = (1 − n)1−n. There-
fore, since πi and 1 − n are relatively prime in Z (by (4.2)), it follows that (πi, sn(X))Z[X] =
(πi, (ln(X))2g∗(X))Z[X]. Therefore it follows from (4.11) (twice) that

Qi,jZ[X]Qi,j
= (

πi, sn(X)
)
Z[X]Qi,j = (

πi,
(
ln(X)

)2
g∗(X)

)
Z[X]Qi,j = (

πi, g
∗(X)

)
Z[X]Qi,j

for i = 1, . . . , e and j = 1, . . . , ki . �
The next result considers the ideals generated by pairs of the elements in {sn(X), s′

n(X),

ln(X),ρn}.
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Proposition 4.13.

(4.13.1) C = (sn(X), s′
n(X))Z[X] = (ln(X), sn(X))Z[X] = (ln(X), s′

n(X))Z[X] = (ρn,

ln(X))Z[X]. Also, CZ[X]Pi
= (ρn, s

′
n(X))Z[X]Pi

for i = 1, . . . , e.
(4.13.2) (ρn, (ln(X))2)Z[X] = ((ln(X))2, sn(X))Z[X]. Also, (ρn, sn(X))Z[X]Pi

= (ρn,

(ln(X))2)Z[X]Pi
= ((ln(X))2, sn(X))Z[X]Pi

for i = 1, . . . , e.

Proof. (NOTE: in the following proof we use several times the readily checked result: If I is an
ideal in a ring R and if b ∈ R is such that (b, I )R = R, then J : bR = J for all ideals J in R that
contain I and that do not contain b.)

For (4.13.1), by (4.1), C = (sn(X), s′
n(X))Z[X], and it was noted in (4.2) that

Xs′
n(X) − nsn(X) = ln(X). (4.13)(∗)

It follows from (4.13)(∗) that (ln(X), sn(X))Z[X] ⊆ C and that (ln(X), sn(X))Z[X] : XZ[X]
contains s′

n(X). Also, (X, s′
n(X))Z[X] = Z[X], so it follows from the NOTE that

(ln(X), sn(X))Z[X] : XZ[X] = (ln(X), sn(X))Z[X]. So (sn(X), s′
n(X))Z[X] ⊆ (ln(X), sn(X))

Z[X], hence (sn(X), s′
n(X))Z[X] = (ln(X), sn(X))Z[X].

It also follows from (4.13)(∗) that (ln(X), s′
n(X))Z[X] ⊆ C and that (ln(X), s′

n(X))Z[X]:
nZ[X] contains sn(X). Also, (n, s′

n(X))Z[X] = Z[X], so it follows from the NOTE that
(ln(X), s′

n(X))Z[X] : nZ[X] = (ln(X), s′
n(X))Z[X], so (sn(X), s′

n(X))Z[X] ⊆ (ln(X), s′
n(X))

Z[X], hence (sn(X), s′
n(X))Z[X] = (ln(X), s′

n(X))Z[X].
Also, by (4.12.1), (1 − n)n−1s′

n(X) = ln(X)q(X) + ρn, for some q(X) ∈ Z[X], so:

(a) ρn ∈ (ln(X), s′
n(X))Z[X] (= C);

(b) s′
n(X) ∈ (ρn, ln(X))Z[X] : (1 − n)n−1Z[X]; and,

(c) ln(X) ∈ (ρn, s
′
n(X))Z[X] : q(X)Z[X].

Now note that in (b), (ρn, ln(X))Z[X] : (1 − n)n−1Z[X] = (ρn, ln(X))Z[X] (by the NOTE,
since (1 − n, ln(X))Z[X] = Z[X]). It follows from this and (a) that (ρn, ln(X))Z[X] = C.

It follows from what has already been shown that (ρn, s
′
n(X))Z[X] ⊆ C, so (ρn, s

′
n(X))

Z[X]Pi
⊆ CZ[X]Pi

for i = 1, . . . , e. For the opposite inclusion, note that q(X) /∈ Pi for
i = 1, . . . , e, by (4.12.1), so it follows from (c) that ln(X) ∈ (ρn, s

′
n(X))Z[X]Pi

, hence
CZ[X]Pi

= (ln(X), s′
n(X))Z[X]Pi

⊆ (ρn, s
′
n(X))Z[X]Pi

, as desired.
For (4.13.2), it follows from (4.12.2) that (1 − n)n−1sn(X) = (ln(X))2g∗(X) + ρn(X + 1),

where g∗(X) is as in (4.12.2), so:

(a) ρn ∈ ((ln(X))2, sn(X))Z[X] : (X + 1)Z[X];
(b) sn(X) ∈ (ρn, (ln(X))2)Z[X] : (1 − n)n−1Z[X]; and,
(c) (ln(X))2 ∈ (ρn, sn(X))Z[X] : g∗(X)Z[X].

Now (sn(X),X + 1)Z[X] = Z[X] = (ρn,1 − n)Z[X], so it follows from the NOTE (and (a)
and (b)) that ((ln(X))2, sn(X))Z[X] = (ρn, (ln(X))2)Z[X].

Finally, it follows from (4.12.2) that g∗(X) /∈ PiZ[X]Pi
for i = 1, . . . , e. Therefore it fol-

lows from (c) that (ln(X))2 ∈ (ρn, sn(X))Z[X]Pi
for i = 1, . . . , e, so it follows from what

was shown in the preceding paragraph that (ρn, sn(X))Z[X]Pi
= (ρn, (ln(X))2)Z[X]Pi

=
((ln(X))2, sn(X))Z[X]Pi

. �
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Corollary 4.14. ρnLi = (ln(xn))
2Li , where Li = Z[xn]pi

(with pi = Pi/(sn(X)Z[X])) for
i = 1, . . . , e.

Proof. This follows immediately from (4.13.2). �
For the final result in this section, recall that an ideal I is a reduction of an ideal J in case

I ⊆ J and IJ n = Jn+1 for some nonnegative integer n. (In (4.15.9)–(4.15.11) it is readily seen
that Z[ n

1−n
] = Z[ 1

n−1 ].)

Theorem 4.15. Let Z[x′
n] = Z[X]/(s′

n(X)Z[X]) and let Z[xn] = Z[X]/(sn(X)Z[X]). Then the
following statements are equivalent:

(4.15.1) Z[xn] is a Dedekind domain.
(4.15.2) ρnZ is a radical ideal.
(4.15.3) C is a radical ideal in Z[X].
(4.15.4) ln(xn)Z[xn] is a radical ideal.
(4.15.5) s′

n(xn)Z[xn] is a radical ideal.
(4.15.6) ln(x

′
n)Z[x′

n] is a radical ideal.
(4.15.7) sn(x

′
n)Z[x′

n] is a radical ideal.
(4.15.8) ρnZ[x′

n]qi
= qiZ[x′

n]qi
for i = 1, . . . , e, where qi = Pi/(s

′
n(X)Z[X]).

(4.15.9) sn(
n

1−n
)Z[ n

1−n
] is a radical ideal.

(4.15.10) s′
n(

n
1−n

)Z[ n
1−n

] is a radical ideal.
(4.15.11) ρnZ[ n

1−n
] is a radical ideal.

(4.15.12) ln(X)(Z/(ρnZ))[X] is a radical ideal.
(4.15.13) s′

n(X)(Z[X]/(ρnZ[X]))mi
= mi(Z[X]/(ρnZ[X]))mi

for i = 1, . . . , e, where mi =
Pi/(ρnZ[X]).

(4.15.14) (ln(X))2g∗(X) /∈ (π2
i , πi ln(X), sn(X))Z[X] for i = 1, . . . , e, where g∗(X) is as in

(4.12.2).
(4.15.15) (ln(X))2g(X) /∈ (π2

i , πi ln(X), sn(X))Z[X] for i = 1, . . . , e and for all g(X) ∈ Z[X] \
Pi .

(4.15.16) πiZ[xn]pi
is not a reduction of piZ[xn]pi

for i = 1, . . . , e (where pi = Pi/

(sn(X)Z[X])).

Proof. Since ρnZ �= Z, it follows from the definitions that ρnZ is a radical ideal if and only if ρn

is a square-free element in Z. Therefore (4.15.1) ⇔ (4.15.2), by (4.4.1) ⇔ (4.4.4).
(4.15.1) ⇔ (4.15.3), by (2.9).
The equivalence of (4.15.3)–(4.15.13) follows from (4.13.1).
(4.15.1) ⇒ (4.15.16). It follows from (2.6.1) ⇒ (2.6.4) that if (4.15.1) holds, then πiZπiZ =

ρnZπiZ for i = 1, . . . , e, so (πi, sn(X))Z[X]Pi
= (ρn, sn(X))Z[X]Pi

, hence πiLi = ρnLi for
i = 1, . . . , e, where Li = Z[xn]pi

(with pi = Pi/(sn(X)Z[X])). Also, ρnLi = (ln(xn))
2Li , by

(4.13.2), so πi ∈ p2
i Li (since πi, ln(xn) generate pi ). It follows that, for i = 1, . . . , e, πiZ[xn]pi

cannot be a reduction of piZ[xi]pi
, hence (4.15.1) ⇒ (4.15.16).

Assume that (4.15.16) holds, and suppose that (ln(X))2g(X) ∈ (π2
i , πi ln(X), sn(X))Z[X] for

some i = 1, . . . , e and for some g(X) ∈ Z[X] \ Pi . Then (ln(xn))
2g(xn) ∈ (π2

i , πi ln(xn))Z[xn].
Let Li = Z[xn]pi

. Then since πi, ln(xn) generate pi and g(xn) /∈ piLi , it follows that (ln(xn))
2 ∈

πi(πi, ln(xn))Li , so πi(πi, ln(xn))Li = p2
i Li , hence πiLi is a reduction of piLi , and this con-

tradicts (4.15.16). Therefore the supposition is false, so (4.15.16) ⇒ (4.15.15).
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It is clear that (4.15.15) ⇒ (4.15.14).
Finally, assume that (4.15.14) holds. Now it follows from (4.9) (and (4.11)) that

sn(X) − vifi,1(X) · · ·fi,ki
(X)((n − 1)X + n)2 ∈ πiZ[X] (for i = 1, . . . , e), where vi ∈ Z

is such that vi + πiZ = vi . Also, for j ∈ {1, . . . , ki}, the polynomials fi,j (X) are units in
Z[X]Pi

, as is vi , so it follows that ((n − 1)xn + n)2 ∈ πiLi , where Li = Z[xn]pi
. Therefore

(ln(xn))
2 ∈ πiLi ∩ p2

i Li = πi(p
2
i Li : πiLi), so

(
ln(xn)

)2 ∈ πi

(
p2

i Li : πiLi

)
. (4.15)(∗)

Now either: (a) πi(p
2
i Li : πiLi) = πiLi (and this holds if and only if πi ∈ p2

i Li ); or,
(b) πi(p

2
i Li : πiLi) = πipiLi (and this holds if and only if πi /∈ p2

i Li ). Also, if (b) holds
for some i ∈ {1, . . . , e}, then since ln(xn),πi generate piLi , it follows from (4.15)(∗) that
p2

i Li = πipiLi , so (ln(xn))
2 ∈ p2

i = p2
i Li ∩ Z[xn] = πipiLi ∩ Z[xn]. However, πipiLi ∩ Z[xn]

is the pi -primary component of πipi , so πipiLi ∩Z[xn] = πipi : g∗(xn)Z[xn] (since g∗(xn) /∈ pi

(for i = 1, . . . , e) and g∗(xn) is in every other primary component of πipi (by (4.12.2), since
these other primary components are, in fact, the prime ideals qi,j , by (4.11)). It follows that
(ln(X))2g∗(X) ∈ (π2

i , πi ln(X), sn(X))Z[X] for some i = 1, . . . , e, and this contradicts the hy-
pothesis. Therefore (a) holds for i = 1, . . . , e; that is, πi ∈ p2

i Li . Therefore, since πi, ln(xn)

generate piLi , it follows that ln(xn) generates piLi , so Li is a regular local domain for
i = 1, . . . , e. It follows from (3.6.1) that Z[xn] is a regular ring, so Z[X] is a Dedekind domain,
hence (4.15.14) ⇒ (4.15.1). �
5. Conditions for ZZZ[X]/((Xn + X + 1)ZZZ[X]) to be a Dedekind domain

The results in the first part of this section are analogs of the results in Section 4, and their
proofs are similar, so they are generally omitted. The results in the last part of this section show
that Z[X]/(Xn + X + 1)Z[X]) is never a regular ring when n > 2 and n ≡ 2 (mod 3).

As usual, we begin by fixing the notation.

Notation 5.1. Let n � 2 be a positive integer, let un(X) = sn,1,1,1(X) (so un(X) = Xn + X + 1),
let ln(X) = (n − 1)X + n, let C = (un(X),u′

n(X))Z[X], let P1, . . . ,Pe be the associated prime
ideals of C, for i = 1, . . . , e, let πiD = Pi ∩ D, and let ρn = Res(ln(X),un(X)), so

ρn = (−n)n − (n − 1)n−1 = (−1)n
[
nn + (1 − n)n−1]. 5.1.1

Remark 5.2. (5.2.2) Observe that ln(X) = nun(X)−Xu′
n(X) ∈ C (so (3.2)(i) holds for C). Also,

for i = 1, . . . , e, Pi = (πi, ln(X))Z[X] (by (2.6)) and πi is relatively prime to n − 1 and to n,
by (3.4) (with b = c = d = 1). Further, ht(C) = 2, by (5.3) below, so πi �= 0 for i = 1, . . . , e.
Moreover, it follows from (3.1.1) (with b = c = d = 1) that Res(ln(X),un(X)) = (−n)n −
(n − 1)n−1 = (−1)n[nn + (1 − n)n−1].

(5.2.2) The hypothesis b /∈ c(n − 1)D of (3.3), (3.6), and (3.7) does not hold for u2(X) =
X2 + X + 1. However, it is readily checked that ht(C) = 2 for C = (u2(X),u′

2(X))Z[X] =
(X2 + X + 1,2X + 1)Z[X]. Since b /∈ c(n − 1)D was only used in Section 3 (specifically,
in (3.3)) to show that ht(C) = 2 (where C = (bXn + cX + d,nbXn−1 + c)D[X]), it follows that
the conclusions of (3.3), (3.6), and (3.7) hold for u2(X).

Proposition 5.3. With C as in (5.1), ht(C) = 2.
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For the next few results (up through (5.13)) we give (for each fixed integer n � 2) several nec-
essary and sufficient conditions for Z[xn] to be a Dedekind domain. These results are analogous
to the results in Section 4, and their proofs are similar to the corresponding results in Section 4,
so we omit the proofs. (In (5.4), which is the un(X) analog of (4.4), we use “regular ring” in
place of “Dedekind domain,” since Z[X]/(u3k+2(X)Z[X]) is never an integral domain (by [14])
(so it cannot be a Dedekind domain). However, it could still be a regular ring (but we show in
(5.17) that, in fact, it never is). After showing this, we revisit this theorem in (5.20), and then
give the un(X) power integral basis form of (5.20) (and of (5.4)) in (5.21).)

Theorem 5.4. For each integer n � 2, the following are equivalent:

(5.4.1) Z[xn] = Z[X]/((Xn + X + 1)Z[X]) is regular.
(5.4.2) Z[yn] = Z[X]/((Xn + Xn−1 + 1)Z[X]) is regular.
(5.4.3) Disc(un(X)) is square-free in Z.
(5.4.4) ρn = (−1)n[nn + (1 − n)n−1] is square-free in Z.

If these hold, then a prime π ∈ Z ramifies in Z[xn] if and only if it ramifies in Z[yn].

It follows from (5.2) (and (5.3)) that (3.2)(i) and (ii) hold for C, so we can apply (3.6) to the
trinomials un(X).

Proposition 5.5. Z[xn] = Z[X]/(un(X)Z[X]) is a Dedekind domain for n = 2 and for n =
3,4, . . . ,49 and n �≡ 2 (mod 3). Further 59 is the smallest prime π such that π2 divides some
ρn (with n �≡ 2 (mod 3)), and 339 is the smallest n such that 592 divides ρn. So each n such that
n �≡ 2 (mod 3) and Z[xn] = Z[X]/(un(X)Z[X]) is not a Dedekind domain is divisible by π2 for
some prime π � 59.

The program in (4.7) was used to show the “Further” part of (5.5). By using a variation of that
program (searching for a square prime factor of ρn with 50 < n < 339 and n �≡ 2 (mod 3) and
60 < p < 2 000 000), Mathematica shows that 339 is the smallest n < 340 with a repeated prime
factor p < 2 000 000.

Lemma 5.6. For all integers n � 2 and prime integers π > 2, ρn ≡ ρn+i(π3−π2) (mod π2) for all
positive integers i.

Remark 5.7. In the principal ideal domain (Z/(πiZ))[X] = Z[X]/(πiZ[X]) let fi,j (X) be dis-
tinct monic irreducible polynomials such that no fi,j (X) is an associate of ln(X) = n − 1X + n

and such that Xn + X + 1 = vi(fi,1(X))gi,1 · · · (fi,ki
(X))gi,ki (n − 1X + n)hi is a factorization of

Xn + X + 1 into irreducible factors (where vi is the unit (n − 1)−hi ∈ Z/(πiZ)). Then hi = 2
and gi,j = 1 for i = 1, . . . , e and j = 1, . . . , ki .

Notation 5.8. With the notation of (5.7), for i = 1, . . . , e and for j = 1, . . . , ki , let fi,j (X) be
distinct monic irreducible polynomials in the UFD Z[X] such that fi,j (X) + πiZ[X] = fi,j (X),
let Qi,j = (πi, fi,j (X))Z[X], let pi = Pi/(un(X)Z[X]), and let Qi,j /(un(X)Z[X]) = qi,j .

Remark 5.9. Each Qi,j is a maximal ideal such that ln(X) /∈ Qi,j , un(X) ∈ Qi,j , and
Qi,jZ[X]Qi,j

= (πi, un(X))Z[X]Qi,j
, so qi,jZ[xn]qi,j

= πiZ[xn]qi,j
.
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Remark 5.10. (5.10.1) There exists q(X) ∈ Z[X] \ (P1 ∪ · · · ∪Pe) such that (1 − n)n−1u′
n(X) =

ln(X)q(X) + ρn.
(5.10.2) Let g∗(X) = (1 − n)n−3Xn−2 + 2n(1 − n)n−4Xn−3 + · · · + ini−1(1 − n)n−i−2

Xn−i−1 + · · · + (n − 2)nn−3X − nn−2. Then: g∗(X) ∈ Z[X] − (P1 ∪ · · · ∪ Pe); Qi,jZ[X]Qi,j
=

(πi, g
∗(X))Z[X]Qi,j

for i = 1, . . . , e and j = 1, . . . , ki ; and (1−n)n−1un(X) = (ln(X))2g∗(X)+
(−1)nρn(X + 1).

Proposition 5.11.

(5.11.1) C = (un(X),u′
n(X))Z[X] = (ln(X),un(X))Z[X] = (ln(X), u′

n(X))Z[X] = (ρn,

ln(X))Z[X]. Also, CZ[X]Pi
= (ρn,u

′
n(X))Z[X]Pi

for i = 1, . . . , e.
(5.11.2) (ρn, (ln(X))2)Z[X] = ((ln(X))2, un(X))Z[X]. Also, (ρn,un(X))Z[X]Pi

= (ρn,

(ln(X))2)Z[X]Pi
= ((ln(X))2, un(X))Z[X]Pi

for i = 1, . . . , e.

Corollary 5.12. ρnLi = (ln(xn))
2Li , where Li = Z[xn]pi

(with pi = Pi/(un(X)Z[X])) for i =
1, . . . , e.

Theorem 5.13. Let Z[x′
n] = Z[X]/(u′

n(X)Z[X]) and let Z[xn] = Z[X]/(un(X)Z[X]). Then the
following statements are equivalent:

(5.13.1) Z[xn] is a Dedekind domain.
(5.13.2) ρnZ is a radical ideal.
(5.13.3) C is a radical ideal in Z[X].
(5.13.4) ln(xn)Z[xn] is a radical ideal.
(5.13.5) u′

n(xn)Z[xn] is a radical ideal.
(5.13.6) ln(x

′
n)Z[x′

n] is a radical ideal.
(5.13.7) un(x

′
n)Z[x′

n] is a radical ideal.
(5.13.8) ρnZ[x′

n]qi
= qiZ[x′

n]qi
for i = 1, . . . , e, where qi = Pi/(u

′
n(X)Z[X]).

(5.13.9) un(
n

1−n
)Z[ n

1−n
] is a radical ideal.

(5.13.10) u′
n(

n
1−n

)Z[ n
1−n

] is a radical ideal.
(5.13.11) ρnZ[ n

1−n
] is a radical ideal.

(5.13.12) ln(X)(Z/(ρnZ))[X] is a radical ideal.
(5.13.13) u′

n(X)(Z[X]/(ρnZ[X]))mi
= mi(Z[X]/(ρnZ[X]))mi

for i = 1, . . . , e, where mi =
Pi/(ρnZ[X]).

(5.13.14) (ln(X))2g∗(X) /∈ (π2
i , πi ln(X),un(X))Z[X] for i = 1, . . . , e, where g∗(X) is as in

(5.10.2).
(5.13.15) (ln(X))2g(X) /∈ (π2

i , πi ln(X),un(X))Z[X] for i = 1, . . . , e and for all g(X) ∈
Z[X] \ Pi .

(5.13.16) πiZ[xn]pi
is not a reduction of piZ[xn]pi

for i = 1, . . . , e (where Pi/(un(X)

Z[X]) = pi ).

In the remainder of this section we show that Z[X]/(un(X)Z[X]) is not a regular ring when
n > 2 and n ≡ 2 (mod 3). For this, we begin by defining the polynomial that is the co-factor of
u2(X) for u3k+2(X) (see (5.15.2)).
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Definition 5.14. For each positive integer n let h3n(X) = X3n −X3n−1 +X3n−3 −X3n−4 +· · ·+
X3 − X2 + 1.

Remark 5.15. (5.15.1) It should be noted that h3n(X) can be defined recursively by: h3(X) =
X3 − X2 + 1 and for n > 1, h3n(X) = X3h3(n−1)(X) − X2 + 1.

(5.15.2) Selmer proved in [14] that, for all positive integers k, u3k+2(X) = u2(X)h3k(X) and
that u2(X),h3k(X) are irreducible in Z[X].

Lemma 5.16. With the above notation, we have

Res
(
u2(X),h3n(X)

) = (n + 1)2 + n2 + n(n + 1) = 3n2 + 3n + 1.

Proof. Let ζ, ζ 2 be the roots of the cyclotomic polynomial u2(X) = X2 + X + 1 = Φ3(X)

(so ζ 3 = 1). We first prove, by induction on n, the identities

h3n(ζ ) = n + 1 − nζ 2 and h3n

(
ζ 2) = n + 1 − nζ.

For n = 1, we have h3(ζ ) = ζ 3 −ζ 2 +1 = 2−ζ 2 and h3(ζ
2) = ζ 6 −ζ 4 +1 = 2−ζ . Assuming

the result for n = k−1, we have by (5.15.1), h3k(ζ ) = ζ 3h3(k−1)(ζ )−ζ 2 +1 = [k− (k−1)ζ 2]−
ζ 2 + 1 = (k + 1) − kζ 2 and h3k(ζ

2) = ζ 3h3(k−1)(ζ
2) − ζ 4 + 1 = [k − (k − 1)ζ ] − ζ + 1 =

(k + 1) − kζ .
Using the above identities and [6, Eq. (2), p. 203], we get that Res(u2(X),h3n(X)) =

h3n(ζ )h3n(ζ
2) = (n + 1 − nζ 2)(n + 1 − nζ ) = (n + 1)2 + n2 + n(n + 1) = 3n2 + 3n + 1. �

Theorem 5.17. For all n ∈ N, Z[x3n+2] = Z[X]/(u3n+2(X)Z[X]) is not a regular ring.

Proof. By (5.16), Res(u2(X),h3n(X)) = 3n2 + 3n + 1. Thus, if π is a prime integer dividing
3n2 + 3n + 1, then by (2.3), u2(X) and h3n(X) are contained in a height 2 prime ideal P =
(π,g(X))Z[X] of Z[X]. Let p = P + u3n+2Z[X] in Z[X]/(u3n+2(X)Z[X]) = Z[x3n+2]. Then
Z[x3n+2]p is not an integral domain (since both the associated prime ideals of zero in Z[x3n+2]
(namely, u2(x3n+2)Z[x3n+2] and h3n(x3n+2)Z[x3n+2]) are contained in p), and thus Z[x3n+2] is
not a regular ring. �
Corollary 5.18. The integer nn + (1 − n)n−1 is not square-free for any integer n > 2 with
n ≡ 2 (mod 3).

Proof. Since by (5.17), Z[X]/(u3n+2(X)Z[X]) is not a regular ring for such integers n,
nn + (1 − n)n−1 is not square-free for such n by (5.4). �
Remark 5.19. A natural question now is to find a square > 1 dividing nn + (1 − n)n−1 for
n = 3k + 2. Observe that if f , g ∈ R[X] (any ring R), then

Res
(
fg, (fg)′

) = Res(fg,f ′g + fg′) = Res(f,f ′g + fg′)Res(g, f ′g + fg′)

= Res(f,f ′g)Res(g, fg′) = ±Res(f,f ′)Res(f, g)2 Res(g, g′).

Taking f = u2(X) and g = h3k(X), and n = 3k + 2, we have by (5.15.2) that, for all pos-
itive integers k, u3k+2(X) = u2(X)h3k(X). Also, by (5.16) we have Res(u2(X),h3k(X)) =
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3k2 + 3k + 1. Therefore (Res(u2(X),h3k(X)))2 = (3k2 + 3k + 1)2 divides Disc(u3k+2(X)) =
±Res(u3k+2(X),u3k+2(X)′) = nn + (1 − n)n−1 = (3k + 2)3k+2 + (−3k − 1)3k+1.

Corollary 5.20. For each integer n � 2, the following are equivalent:

(5.20.1) Z[xn] = Z[X]/((Xn + X + 1)Z[X]) is a Dedekind domain.
(5.20.2) Z[yn] = Z[X]/((Xn + Xn−1 + 1)Z[X]) is a Dedekind domain.
(5.20.3) Disc(un(X)) is square-free in Z.
(5.20.4) ρn = (−1)n[nn + (1 − n)n−1] is square-free in Z.

If these hold, then: A prime π ∈ Z ramifies in Z[xn] if and only if it ramifies in Z[yn]; and, either
n = 2 or n �≡ 2 (mod 3).

Proof. If n = 2 or if n �≡ 2 (mod 3), then Z[xn] and Z[yn] are domains by [14], and thus for
these n, Z[xn] (respectively Z[yn]) is Dedekind if and only if it is regular. If n �= 2 and n ≡
2 (mod 3), then Z[xn] and Z[yn] are not domains by [14], and thus for these n, Z[xn] and Z[yn]
are not Dedekind. The result thus follows from (5.18) and (5.4). �

The next result is the power integral basis form of Corollary 5.20.

Corollary 5.21. Let n � 2 be an integer and let α, β ∈ C be roots of un(X) = Xn + X + 1 and
Xn + Xn−1 + 1, respectively. Then the following are equivalent:

(5.21.1) {1, α, . . . , αn−1} is a Z-basis for the integers ZQ(α) of Q(α).
(5.21.2) {1, β, . . . , βn−1} is a Z-basis for the integers ZQ(β) of Q(β).
(5.21.3) Disc(un(X)) is square-free.
(5.21.4) ρn = (−1)n[nn + (1 − n)n−1] is square-free in Z.

If these hold, then: A prime π ∈ Z ramifies in Z[α] if and only if it ramifies in Z[β]; and,
either n = 2 or n �≡ 2 (mod 3).

Remark 5.22. It can be shown (much as in the proof of (5.17)) that, for all positive integers k

and for each prime factor π of 3k2 +3k +1, the prime ideal P = (π, (3k +1)X + (3k +2))Z[X]
contains both u2(X) and h3k(X), so p = P/(u3k+2(X)Z[X]) splits in the integral closure
Z[x3k+2]′ = Z[x2] ⊕ (Z[y3k])′ of Z[x3k+2], where y3k = X + h3k(X)Z[X].
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