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By using the M2-rank of an overpartition as well as a residual 
crank, we give another combinatorial refinement of the con-
gruences spt2(3n) ≡ spt2(3n +1) ≡ 0 (mod 3). Here spt2(n) is 
the total number of appearances of the smallest parts among 
the overpartitions of n where the smallest part is even and not 
overlined. Our proof depends on Bailey’s Lemma and the rank 
difference formulas of Lovejoy and Osburn for the M2-rank of 
an overpartition. This congruence was previously refined using 
the rank of an overpartition.
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1. Introduction and statement of results

We recall an overpartition of a positive integer n is a partition of n where the first 
occurrence of a part may (or may not) be overlined. For example, the overpartitions of 4
are 4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 2 + 1 + 1, 
1 + 1 + 1 + 1, and 1 + 1 + 1 + 1.

E-mail address: cjenningsshaffer@ufl.edu.
http://dx.doi.org/10.1016/j.jnt.2014.09.005
0022-314X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jnt.2014.09.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
mailto:cjenningsshaffer@ufl.edu
http://dx.doi.org/10.1016/j.jnt.2014.09.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2014.09.005&domain=pdf


C. Jennings-Shaffer / Journal of Number Theory 148 (2015) 196–203 197
We have a weighted count on overpartitions given by counting an overpartition by 
the number of times the smallest appears. We use the convention of not including the 
overpartitions where the smallest part is overlined. We let spt(n) denote the total number 
of occurrences of the smallest parts among the overpartitions of n without smallest part 
overlined. The function spt(n) was introduced by Bringmann, Lovejoy, and Osburn in [2]
after Andrews introduced the spt function for partitions in [1]. Two restrictions of spt(n)
are spt1(n) and spt2(n), where we restrict to overpartitions where the smallest part is 
odd and even respectively. We see spt(4) = 13, spt1(4) = 10, and spt2(4) = 3.

In [3] Garvan and the author gave combinatorial refinements of congruences satisfied 
by spt(n), spt1(n), and spt2(n). The idea is to introduce an extra variable into the 
generating function of each spt-function to get a crank type statistic. This statistic can 
then be shown in certain cases to equally split up the numbers spt(n), spt1(n), and 
spt2(n) based on the residue class of the statistic.

For spt2(n) we have the congruences

spt2(3n) ≡ 0 (mod 3), (1.1)

spt2(3n + 1) ≡ 0 (mod 3), (1.2)

spt2(5n + 3) ≡ 0 (mod 5). (1.3)

In this paper we give another proof of the modulo 3 congruences.
To start, by summing according to the smallest part, we find a generating function 

for spt2(n) to be given by

∞∑
n=1

spt2(n)qn =
∞∑

n=1

q2n(−q2n+1; q)∞
(1 − q2n)2(q2n+1; q)∞

.

Here we use the standard product notation,

(a; q)n =
n−1∏
j=0

(
1 − aqj

)
,

(a; q)∞ =
∞∏
j=0

(
1 − aqj

)
,

(a1, a2, . . . , ak; q)n = (a1; q)n(a2; q)n . . . (ak; q)n,

(a1, a2, . . . , ak; q)∞ = (a1; q)∞(a2; q)∞ . . . (ak; q)∞.

In [3] we considered the two variable generalization given by

S2(z, q) =
∞∑ q2n(−q2n+1; q)∞(q2n+1; q)∞

(zq2n; q)∞(z−1q2n; q)∞
.

n=1
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We note setting z = 1 gives the generating function for spt2(n). It turns out S2(z, q)
can be expressed in terms of the Dyson rank of an overpartition and a residual crank 
from [2]. In the same paper, we also used the M2-rank of a partition without repeated 
odd parts, but not the M2-rank of an overpartition. Difference formulas for all three of 
these ranks were determined by Lovejoy and Osburn in [6–8].

In [4] the author gave higher order generalizations of spt(n) and spt2(n) and noted 
that one could use the M2-rank and another residual crank from [2] to explain the modulo 
3 congruences for spt2(n). In this paper we instead use

S(z, q) =
∞∑

n=1

q2n(−q2n+1; q)∞(q2n+1; q)∞
(zq2n, z−1q2n; q2)∞(q2n+1; q2)2∞

=
∞∑

n=1

∞∑
m=−∞

NS(m,n)zmqn.

Again setting z = 1 gives the generating function for spt2(n). This is not the same series 
S(z, q) used in [3], however we do not want to overly complicate matters with additional 
notation.

For a positive integer t we let

NS(k, t, n) =
∑

m≡k (mod t)

NS(m,n).

We then have

spt2(n) =
∞∑

m=−∞
NS(m,n) =

t−1∑
k=0

NS(k, t, n).

Additionally we see if ζ3 is a primitive third root of unity, then

S(ζ3, q) =
∞∑

n=1

( 2∑
k=0

NS(k, 3, n)ζk3

)
qn.

The minimal polynomial for ζ3 is x2 + x + 1. If NS(0, 3, N) + NS(1, 3, N)ζ3 +
NS(2, 3, N)ζ2

3 = 0 then we must in fact have NS(0, 3, N) = NS(1, 3, N) = NS(2, 3, N). 
That is to say, if the coefficient of qN in S(ζ3, q) is zero, then spt2(N) = 3 ·NS(0, 3, N)
and so spt2(N) ≡ 0 (mod 3).

Our proof of spt2(3n) ≡ spt2(3n + 1) ≡ 0 is to find the 3-dissection of S(ζ3, q) with 
the q3n and q3n+1 terms being all zero. This is the same idea that was used in [3], we 
are just using S(z, q) rather than S2(z, q).

We cannot use S(ζ5, q) to prove spt2(5n + 3) ≡ 0 (mod 5). In particular we find the 
coefficient of q8 in S(ζ5, q) to be z3 + z2 + 3z + 5 + 3z−1 + z−2 + z−3. That is to say, 
NS(0, 5, 8) = 5, NS(1, 5, 8) = 3, NS(2, 5, 8) = 2, NS(3, 5, 8) = 2, and NS(4, 5, 8) = 3.

However spt2(5n + 3) ≡ 0 (mod 5) does follow by considering S2(ζ5, q). This can be 
compared with the rank of a partition explaining the congruences for p(5n + 4) and 
p(7n + 5) but not p(11n + 6), whereas the crank of a partition does explain all three.
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Theorem 1.1.

S(ζ3, q) = q2 (q18; q18)4∞
(q6; q6)∞(q9; q9)2∞

+ 2q5(−q9; q9)∞
(q9; q9)∞

∞∑
n=−∞

(−1)nq9n2+18n

1 − q18n+6 .

We prove this theorem by relating S(z, q) to a certain rank and crank and using 
dissections of these related functions. We recall the M2-rank of an overpartition π is 
given by

M2-rank =
⌈
l(π)
2

⌉
− #(π) + #(πo) − χ(π),

where l(π) is the largest part of π, #(π) is the number of parts of π, #(πo) is the number 
of non-overlined odd parts, and χ(π) = 1 if the largest part of π is odd and non-overlined 
and otherwise χ(π) = 0. We let N2(m, n) denote the number of overpartitions of n with 
M2-rank m. The M2-rank for overpartitions was introduced by Lovejoy in [5], in the 
same paper Lovejoy found the generating function for N2 is given by

∞∑
n=0

∞∑
m=−∞

N2(m,n)zmqn = (−q; q)∞
(q; q)∞

(
1 + 2

∞∑
n=1

(1 − z)(1 − z−1)(−1)nqn2+2n

(1 − zq2n)(1 − z−1q2n)

)
.

(1.4)

We also use a residual crank from [2]. We let

∞∑
n=0

∞∑
m=−∞

M2(m,n)zmqn = (−q; q)∞(q2; q2)∞
(q; q2)∞(zq2; q2)∞(z−1q2; q2)∞

. (1.5)

Theorem 1.2.

S(z, q) = 1
(1 − z)(1 − z−1)

∞∑
n=0

∞∑
m=−∞

(
N2(m,n) −M2(m,n)

)
zmqn.

Theorem 1.3.
∞∑

n=0

∞∑
m=−∞

N2(m,n)ζm3 qn

= (−q3; q3)∞(q9; q9)2∞
(q3; q3)∞(−q9; q9)2∞

+ 2q(q9; q9)∞(q18; q18)∞
(q3; q3)∞

+ 4q2(q18; q18)4∞
(q6; q6)∞(q9; q9)2∞

+ 6q5(−q9; q9)∞
(q9; q9)∞

∞∑
n=−∞

(−1)nq9n2+18n

1 − q9n+6 .

Theorem 1.3 follows from the rank difference formulas derived by Lovejoy and Osburn 
in [8].
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Theorem 1.4.

∞∑
n=0

∞∑
m=−∞

M2(m,n)ζm3 qn = (−q3; q3)∞(q9; q9)2∞
(q3; q3)∞(−q9; q9)2∞

+ 2q (q9; q9)∞(q18; q18)∞
(q3; q3)∞

+ q2 (q18; q18)4∞
(q6; q6)∞(q9; q9)2∞

.

We see Theorem 1.1 follows from Theorems 1.2, 1.3, and 1.4. We give the proofs 
of Theorems 1.2 and 1.4 in the next section. In Section 3 we give brief combinatorial 
interpretations of the coefficients NS(m, n), in particular they are non-negative.

2. The proofs

Proof of Theorem 1.2. We recall a pair of sequences (αn, βn) is a Bailey pair relative 
to (a, q) if

βn =
n∑

r=0

αr

(q; q)n−r(aq; q)n+r
.

A limiting case of Bailey’s Lemma gives for a Bailey pair (αn, βn) that

∞∑
n=0

(ρ1, ρ2; q)n
(

aq

ρ1ρ2

)n

βn = (aq/ρ1, aq/ρ2; q)∞
(aq, aq/ρ1ρ2; q)∞

∞∑
n=0

(ρ1, ρ2; q)n( aq
ρ1ρ2

)nαn

(aq/ρ1, aq/ρ2; q)n
.

As in [4] the Bailey pair connecting the M2-rank of an overpartition and the residual 
crank is

αn =
{

1 n = 0
(−1)n2qn2

n ≥ 1,
βn = (q; q2)2n

(q2; q2)2n
.

This is a Bailey pair with respect to (1, q2).
We note that

(q2; q2)∞
(z, z−1; q2)∞(q; q2)2∞

· (zq2, z−1q2; q2)∞
(q2; q2)2∞

= (−q; q)∞
(1 − z)(1 − z−1)(q; q)∞

.

With this Bailey pair we have

S(z, q) =
∞∑

n=1

q2n(−q2n+1; q)∞(q2n+1; q)∞
(zq2n, z−1q2n; q2)∞(q2n+1; q2)2∞

= (q2; q2)∞
(z, z−1; q2)∞(q; q2)2

∞∑
q2n(z, z−1; q2)

n
βn − (q2; q2)∞

(z, z−1; q2)∞(q; q2)2
∞ n=0 ∞
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= (−q; q)∞
(1 − z)(1 − z−1)(q; q)∞

∞∑
n=0

q2n(1 − z)(1 − z−1)αn

(1 − zq2n)(1 − z−1q2n) − (−q; q2)∞(q2; q2)∞
(q; q2)∞(z, z−1; q2)∞

= (−q; q)∞
(1 − z)(1 − z−1)(q; q)∞

(
1 + 2

∞∑
n=1

(1 − z)(1 − z−1)(−1)nqn2+2n

(1 − zq2n)(1 − z−1q2n)

)

− (−q; q2)∞(q2; q2)∞
(q; q2)∞(z, z−1; q2)∞

.

By Eqs. (1.4) and (1.5) we then have

S(z, q) = 1
(1 − z)(1 − z−1)

∞∑
n=0

∞∑
m=−∞

(
N2(m,n) −M2(m,n)

)
zmqn. �

Proof of Theorem 1.4. We begin by noting

(−q; q)∞(q2; q2)∞
(q; q2)∞(ζ3q2, ζ−1

3 q2; q2)∞
= (q2; q2)2∞

(q; q2)2∞(q6; q6)∞
.

By Gauss and the Jacobi Triple Product Identity we have

(q2; q2)∞
(q; q2)∞

=
∞∑

n=0
qn(n+1)/2 = 1

2

∞∑
n=−∞

qn(n+1)/2

= 1
2

2∑
k=0

∞∑
n=−∞

q(3n+k)(3n+k+1)/2

=
(
−q6,−q3, q9; q9)

∞ + q
(
−q9,−q9, q9; q9)

∞.

Using the above to expand (q2;q2)2∞
(q;q2)2∞

, dividing by (q6; q6)∞, and reducing the products 
finishes the proof. �
3. Combinatorial interpretations

By viewing the summands S(z, q) as the product of various types of partitions, we see 
NS(m, n) could be interpreted in terms of vector partitions. However, the (q2n+1; q)∞ in 
the numerator would require us to count the vector partitions with a weight of +1 or −1. 
This interpretation would hide the fact that each NS(m, n) is non-negative. We instead in-
terpret NS(m, n) in terms of partition pairs. This interpretation makes the non-negativity 
clear. Using the q-binomial theorem we have

∞∑
n=1

q2n(q4n+2; q2)∞
(zq2n, z−1q2n; q2)∞(q2n+1; q2)2∞

=
∞∑ q2n

(zq2n; q2)∞(q2n+1; q2)2∞

∞∑ (zq2n+2; q2)kz−kq2nk

(q2; q2)k
n=1 k=0
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=
∞∑

n=1

q2n

(zq2n; q2)∞(q2n+1; q2)2∞

+
∞∑

n=1

∞∑
k=1

z−kq2n+2nk

(1 − zq2n)(zq2n+2k+2; q2)∞(q2; q2)k(q2n+1; q2)2∞

=
∞∑

n=1

q2n

(zq2n; q2)∞(q2n+1; q2)2∞

+
∞∑

n=1

∞∑
k=1

q2n

(1 − zq2n)(q2n+2; q2)k(zq2n+2k+2; q2)∞(q2n+1; q2)∞

× z−kq2nk(q2; q2)n+k

(q2; q2)k(q2; q2)n(q2n+1; q2)∞
. (3.1)

For a partition π we let s(π) denote the smallest part of π (with the convention that 
the empty partition has smallest part ∞), #(π) the number of parts in π, #(πe) the 
number of even parts in π, and |π| the sum of the parts of π. We say a pair of partitions 
(π1, π2) is a partition pair of n if |π1| + |π2| = n. We let PP denote the set of partition 
pairs (π1, π2) such that π1 is non-empty, s(π1) is even, s(π1) ≤ s(π2), and the even parts 
of π2 are at most 2s(π1). For such a partition pair we let k(π1, π2) denote the number 
of even parts of π1 that are either the smallest part or are larger than s(π1) + 2#(π2

e). 
We note when π2 contains no even parts that k(π1, π2) reduces to #(π1

e). We define a 
crank on the elements of PP by

c
(
π1, π2) = k

(
π1, π2)− #

(
π2
e

)
− 1.

We claim NS(m, n) is also the number of partitions pairs of n from PP with 
c(π1, π2) = m.

For this we note the first series in (3.1) gives the cases when π2 has no even parts. 
The second series in (3.1) gives the cases when π2 has even parts, since q2nk(q2;q2)n+k

(q2;q2)k(q2;q2)n is 
the generating function for partitions into even parts with exactly k parts and each part 
between 2n and 4n (inclusive).

It may be possible to define a bijection from these partition pairs to marked overpar-
titions with smallest part even, and through that determine a crank defined on marked 
overpartitions, similar to what was done in [3]. However, we do not pursue that here.
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