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We consider the question of which quadratic fields have elliptic 
curves with everywhere good reduction. By revisiting work of 
Setzer, we expand on congruence conditions that determine 
the real and imaginary quadratic fields with elliptic curves 
of everywhere good reduction and rational j-invariant. Using 
this, we determine the density of such real and imaginary 
quadratic fields. If R(X) denotes the number of real quadratic 
fields K = Q[

√
m] such that |ΔK | < X and for which there 

exists an elliptic curve E/K with rational j-invariant that 
has everywhere good reduction, then R(X) � X√

log(X) . We 
also obtain a similar result for imaginary quadratic fields. To 
obtain these estimates we explicitly construct quadratic fields 
over which we can construct elliptic curves with everywhere 
good reduction. The estimates then follow from elementary 
multiplicative number theory. In addition, we obtain infinite 
families of real and imaginary quadratic fields such that there 
are no elliptic curves with everywhere good reduction over 
these fields.
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1. Introduction

It is a well-known result that over Q there are no elliptic curves E with everywhere 
good reduction. However, the same is not true over general number fields. For example, 
let K = Q(

√
29) and a = 5+

√
29

2 . Then the elliptic curve

E : y2 + xy + a2y = x3

has unit discriminant, and hence has everywhere good reduction over K.
This leads to the natural question: Over which number fields do there exist elliptic 

curves with everywhere good reduction? This question has often been approached by 
studying E/K with everywhere good reduction which satisfy additional properties, such 
as those which have a K-rational torsion point, admit a global minimal model, or have 
rational j-invariant. We say that an elliptic curve E/K has EGR(K) if it has everywhere 
good reduction over K, and that an elliptic curve E/K has EGRQ(K) if it additionally 
has Q-rational j-invariant. Similarly, we say a quadratic field has EGR if there exists 
an EGR(K) elliptic curve and a quadratic field has EGRQ if there exists an EGRQ(K)
elliptic curve.

For many real and imaginary quadratic fields K of small discriminant, explicit exam-
ples of elliptic curves E/K with everywhere good reduction can be found in the literature, 
such as [8] and [6]. There are also many known examples of such fields for which there 
do not exist any elliptic curves E/K with everywhere good reduction; see [8,11,7] for 
example.

For example, Kida [8] showed that if K satisfies certain hypotheses, every E/K with 
EGR has a K-rational point of order two. This condition led to a series of non-existence 
results for particular real quadratic fields with small discriminant. In [14], Setzer classi-
fied elliptic curves with EGRQ over real quadratic number fields. Kida extended Setzer’s 
approach by giving a more general method suitable for computing elliptic curves with 
EGR over certain real quadratic fields with rational or singular j-invariants in [9]. Co-
malada [1] showed that there exists E/K with EGR, a global minimal model, and a 
K-rational point of order two if and only if one of his sets of Diophantine equations has 
a solution. Ishii supplemented this theorem by studying k-rational 2 division points in 
[6] to demonstrate specific real quadratic fields without EGR elliptic curves. Later Kida 
and Kagawa in [11] generalized Ishii’s result to obtain non-existence results for Q(

√
17), 

Q(
√

73) and Q(
√

97). Yu Zhao determined criteria for real quadratic fields to have ellip-
tic curves with EGR and a non-trivial 3-division point. In [16], he provides a table for 
all such fields with discriminant less than 10,000.

For imaginary quadratic fields, Stroeker [15] showed that no E/K with EGR admits 
a global minimal model. In [13], Setzer showed that there exist elliptic curves with EGR
and a K-rational point of order two if and only if K = Q(

√
−m) with m satisfying 

certain congruence conditions. Comalada and Nart provided criteria to determine when 
elliptic curves have EGR in [2]. Kida combined this result with a method of computing 
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Table 1
Real quadratic fields Q(

√
m) with 

and without EGR.

EGR no EGR
6 2
7 3

14 5
22 10
26 11
29 13
33 15
37 17
38 19
41 21

23
30
31
34
35
39
42
43
46
47

the Mordell–Weil group in [10] to prove there are no elliptic curves with EGR over the 
fields Q(

√
−35), Q(

√
−37), Q(

√
−51) and Q(

√
−91). There are no elliptic curves with 

EGRQ(K) for −37 < m < −1. However, there are elliptic curves with small discriminant 
and EGRQ(K) for real quadratic fields K.

Table 1 shows what is known for K = Q(
√
m) with square-free positive integers 

m ≤ 47. We stop at 47 because to the best of our knowledge, the m = 51 case is still 
unknown.

A combination of the above results gives many methods to prove that a particular 
quadratic number field has an EGR elliptic curve. Cremona and Lingham [3] described 
an algorithm for finding all elliptic curves over any number field K with good reduction 
outside a given set of primes. However, this procedure relies on finding integral points 
on certain elliptic curves over K, which can limit its practical implementation. As a 
consequence of Setzer’s result regarding the classification of elliptic curves over both real 
and imaginary quadratic number fields with rational j-invariant, it is known that there 
infinitely many quadratic fields which have an EGR elliptic curve. However, there is no 
conjectured density result for the proportion of quadratic fields over which there exist 
elliptic curves E with everywhere good reduction.

Let R(X) be the number of real quadratic number fields K with discriminant at most 
X and an EGRQ(K) elliptic curve. By revisiting the results of Setzer, we prove the 
following.

Theorem 1.1. With R(X) as above, we have that

R(X) � X√ .

log(X)
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If I(X) is the number of imaginary quadratic number fields K with |ΔK | < X and 
an EGRQ(K) elliptic curve, we also obtain the result below.

Theorem 1.2. With I(X) as above, we have that

I(X) � X√
log(X)

.

To prove Theorem 1.1, we first show that all real quadratic fields of the form described 
below in Theorem 1.3 have EGRQ, and then count these fields.

Theorem 1.3. Let m = 2q, where q = q1 · · · qn ≡ 3 (mod 8) with qj ≡ 1, 3 (mod 8)
distinct primes. Then the real quadratic field K = Q(

√
m) has EGRQ.

Remark 1. If m is as described in Theorem 1.3, there exists E/K with EGRQ and 
j(E) = 203 as shown by Setzer in 2.1.

Similarly, to prove Theorem 1.2, we show all imaginary quadratic fields found below 
in Theorem 1.4 have EGRQ.

Theorem 1.4. Let m = 37q, where q = −q1 · · · qn ≡ 1 (mod 8) with qj distinct primes 
such that 

( qj
37
)

= 1. Then the imaginary quadratic field K = Q(
√
m) has EGRQ.

Remark 2. If m is as described in Theorem 1.4, there exists E/K with EGRQ and 
j(E) = 163 as shown by Setzer in 2.1.

We can achieve results like Theorems 1.3 and 1.4 for integers other than 2 and 37; 
these two cases are all is required to prove Theorems 1.1 and 1.2.

To obtain a density result for m = qD, where D is fixed and q varies, we define certain 
‘good’ D. We say D is good if it is the square free part of A3 − 1728, where A satisfies 
certain congruence conditions modulo powers of 2 and 3. Both D = 2 and D = 37 are 
examples of ‘good’ values of D. These congruence conditions will be described explicitly 
in Section 2. If D is good, then K = Q(

√
Dq) has EGRQ whenever D and q satisfy 

certain explicit conditions, see Section 2. For any square-free D, define

εD =
{

1 D ≡ 1 (mod 4)
−1 otherwise

When sign(D) = −εD, we get real quadratic fields Q(
√
qD), and when sign(D) = εD, 

we get imaginary quadratic fields.
Using this, we show that RD(X), the number of q ≤ X such that Q(

√
Dq) is a real 

EGRQ quadratic number field, satisfies the following lower bound:
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Theorem 1.5. Let D be good with r distinct prime factors and RD(X), the number of 
EGRQ real quadratic number fields Q(

√
Dq) with q ≤ X. Assume that sign(D) = −εD. 

Then

RD(X) � X

log1−1/2r

X
.

We obtain a similar result to show that ID(X), the number of EGRQ imaginary 
quadratic number fields Q(

√
Dq) satisfies the following lower bound.

Theorem 1.6. Let D be good with r distinct prime factors and ID(X), the number of 
EGRQ imaginary quadratic number fields Q(

√
Dq) with q ≤ X. Assume that sign(D) =

εD. Then

ID(X) � X

log1−1/2r

X
.

Remark 3. While we have only looked at curves with rational j-invariant, Noam Elkies’ 
computations [4] suggest that very few E/K with EGR have j(E) /∈ Q and unit dis-
criminant. Therefore, the theorem below, which to the best of our knowledge has not 
previously appeared in the literature, suggests that most fields of the form K = Q(

√±p)
for primes p ≡ 3 (mod 8) are not EGR. This is consistent with Elkies’ data.

Using this approach we were also able to determine nonexistence of EGRQ quadratic 
fields.

Theorem 1.7. Let p ≡ 3 (mod 8) be prime.

(1) Let K = Q(√p). Then there are no E/K with EGRQ.
(2) Let K = Q(

√−p). Then there are no E/K with EGRQ.

Remark 4. In [7], Kagawa showed that if p is a prime number such that p ≡ 3(4)
and p �= 3, 11, then there are no elliptic curves with EGR over K = Q(

√
3p) whose 

discriminant is a cube in K. Since all EGR(K) curves have cubic discriminant as shown 
in Setzer [14], this gives a result similar to Theorem 1.7.

In Section 2, we describe conditions arising from Setzer to define when we have EGRQ

quadratic fields. In Section 3, we use these conditions to find a lower bound based on an 
example of Serre. In Section 4, we will give examples of EGRQ real quadratic fields and 
EGRQ imaginary quadratic fields.
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2. Constructing EGRQQQ quadratic fields

In [14], given a rational j-invariant, Setzer determines whether there exist an elliptic 
curve and number field over which this curve has everywhere good reduction. Following 
his notation, we make the following definitions. Let R be the following set:

R = {A ∈ Z : 2|A ⇒ 16|A or 16|A− 4, and 3|A ⇒ 27|A− 12}.

Note that by the Chinese Remainder Theorem, R is then the union of the following 
congruence classes:

• 1, 5 (mod 6);
• 4, 16, 20, 32 (mod 48);
• 39 (mod 54);
• 228, 336 (mod 432).

We say that D is good if it is in the following set:

{D : Dt2 = A3 − 1728, D square-free, A ∈ R, t ∈ Z}.

For example, the good D with |D| < 100 are exactly

−91,−67,−43,−26,−19,−11,−7, 2, 7, 37, 65, 79.

Remark 5. We note that ±1 are not good, as the elliptic curves Y 2 = X3 − 1728, −Y 2 =
X3 − 1728 have no integral points with Y �= 0.

By Setzer [14], the only candidates for elliptic curves E with EGRQ(K) over a 
quadratic field K have j(E) = A3 with A ∈ R.

Theorem 2.1. (See [14].) Let K = Q(
√
m) be a quadratic field with m square-free. Then 

there exists an elliptic curve E/K with EGRQ if and only if the following conditions are 
satisfied for some good D | ΔK .

(1) εDD is a rational norm from K.
(2) If D ≡ ±3 (mod 8), then m ≡ 1 (mod 4).
(3) If D is even then m ≡ 4 + D (mod 16).

To prove the theorem, Setzer shows that given a pair (m, D) satisfying the conditions 
of the theorem, there exists u ∈ K× such that

Eu,A : y2 = x3 − 3A(A3 − 1728)u2x− 2(A3 − 1728)2u3

has j-invariant A3 and EGRQ over K.
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Remark 6. We correct a mistake in condition (2) of this theorem as written in [14].
We note that if u ≡ v (mod 4OK) and m ≡ 2, 3 (mod 4), then we must have 

that N(u) ≡ N(v) (mod 8). However, if m ≡ 1 (mod 4), we only know that N(u) ≡
N(v) (mod 4). Moreover, we can pick w ∈ 4OK such that N(u +w) ≡ N(u) +4 (mod 8).

Condition (2) as written in Setzer’s paper states that if D ≡ ±3 (mod 8), then m ≡
5 (mod 8). D ≡ ±3 (mod 8) implies that a certain element u ∈ OK has N(u) ≡ 5 (mod 8). 
But for the curve to have good reduction at primes dividing 2, it is necessary that u
is congruent to a square modulo 4OK . For m ≡ 2, 3 (mod 4) this is not possible, as 
no squares can have norm equivalent to 5 modulo 8. However, if m ≡ 1 (mod 4), the 
condition that N(u) ≡ 5 (mod 8) is not an obstacle, as u is congruent modulo 4OK

to elements of norm 1 modulo 8. Setzer mistakenly assumes that this can only happen 
when m ≡ 5 (mod 8).

In proving that fields do and do not have elliptic curves with EGRQ, the following 
equivalent version of Setzer’s theorem will be useful.

Theorem 2.2. Fix D good, and m = qD square-free. K = Q(
√
m) has EGRQ if and only 

if the following conditions are satisfied:

(a) (−εDq/pi) = 1 for all odd primes pi dividing D;
(b) (εDD/qj) = 1 for all odd primes qj dividing q;
(c) m > 0 if εDD < 0;
(d) If D ≡ ±3 (mod 8) then q ≡ D (mod 4);
(e) If D is even then q ≡ D + 1 (mod 8).

Proof. We need to show that the conditions in Theorem 2.1 are equivalent to those in 
Theorem 2.2.

Assume that K = Q(
√
m) where m is square-free.

Clearly if m = qD, D divides ΔK . We need to show that if D | ΔK then D | m. This 
is trivial for m ≡ 1 (mod 4), as then ΔK = m. If m ≡ 3 (mod 4), then D cannot be even 
because of condition (3) of Theorem 2.1, so D | m. If m ≡ 2 (mod 4), then D must be 
square-free, so D | m.

Now, εDD is a rational norm from K if and only if there exists a rational solution 
to εDD = a2 − b2Dq. Since D | a, the above is equivalent to the existence of a rational 
solution to εD = D(a′)2 − b2q, which is equivalent to the existence of a nontrivial integer 
solution to εDx2 − Dy2 + qz2 = 0. By Legendre’s Theorem [5], this equation has a 
nontrivial integral solution if and only if the following hold:

(i) εD, −D, and q do not all have the same sign, which is equivalent to condition (c).
(ii) εDD is a square modulo |q|, which is equivalent to condition (b).
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(iii) −εDq is a square modulo |D|, which is equivalent to condition (a).
(iv) −Dq is a square modulo |εD|, which is always the case.

Lastly, conditions (d) and (e) are directly equivalent to (2) and (3). �
To prove Theorem 1.1, the lower bound for RD(X) and Theorem 1.2, the lower bound 

for ID(X), we require Theorem 1.3 (which considers the case D = 2) and Theorem 1.4
(which considers the case D = 37). Below, we prove both those theorems using the result 
above.

Proof of Theorem 1.3. Let A = 20 ∈ R. This shows that D = 2 is good. For m = 2q
with q = q1 · · · qn ≡ 3 (mod 8) and qj ≡ 1, 3 (mod 8) distinct primes, all of the conditions 
in Theorem 2.2 are satisfied, and so K = Q(

√
m) has EGRQ. �

Proof of Theorem 1.4. Let A = 16 ∈ R. This that shows that D = 37 is good. For 
m = 37q with q = −q1 · · · qn ≡ 1 (mod 8) and qj distinct primes such that 

( qj
37
)

= 1, all 
of the conditions in Theorem 2.2 are satisfied, and so K = Q(

√
m) has EGRQ. �

We also can use Theorem 2.2 to prove nonexistence results about EGRQ quadratic 
fields.

Proof of Theorem 1.7. Let p ≡ 3 (mod 8) be prime.
To show that there are no E/Q(√p) with EGRQ, we must show that neither of the 

pairs (D, q) = (p, 1), (−p, −1) satisfy the conditions of Theorem 2.2. We note that since 
p = D ≡ ±3 (mod 8), condition (d) implies that q ≡ 5D ≡ ±1 (mod 8), which is a 
contradiction.

Similarly, to show that there are no EGRQ(Q(
√−p), we have to show that neither of 

the pairs (D, q) = (p, −1), (−p, 1) satisfy the conditions of the theorem. We note that in 

both cases, condition (a) implies that 
(

−1
p

)
= 1, which is a contradiction. �

3. Finding lower bounds

To prove the lower bounds, we use an example of Serre [12] as a reference. Let K/Q

be a Galois extension and C ⊂ Gal(K/Q) be a conjugacy class. Let π(K/Q, C) denote 
the set of primes p that are unramified in K/Q with Frobenius conjugacy class C.

Definition 1. We call a set of primes a Chebotarev set if there are finitely many finite 
Galois extensions Ki/Q and conjugacy classes Ci ⊂ Gal(Ki/Q) such that up to finite 
sets, P = ∪iπ(Ki/Q, Ci).

Definition 2. We define a set E ⊂ N>0 to be multiplicative if for all pairs n1, n2 relatively 
prime, we have that n1n2 ∈ E if and only if n1 ∈ E or n2 ∈ E.
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Given a multiplicative set E, let P (E) be the set of primes p in E. Let Ē := N>0 −E, 
and Ē(X) := {m ∈ Ē, m ≤ X}.

Theorem 3.1. (See [12].) Suppose that E is multiplicative and P (E) is a Chebotarev set 
with density 0 < α < 1. Then

Ē(X) ∼ cX/ logα X

for some c > 0.

We will use the theorem above to prove Theorem 1.5 and Theorem 1.6. As shown in 
Section 2, the special cases with D = 2, 37 will then imply Theorems 1.1 and 1.2.

Proof of Theorem 1.5 and Theorem 1.6. Let D be good. Let D′ be the odd part of D, 
and δ = εDεD′D/D′. Note that if D is odd, then δ = 1.

Also define

ĒD := {qa1
1 · · · qan

n : qj is prime, aj ≥ 0,
(
qj
p

)
=1 for all odd primes p |D,

(
δ

qj

)
= 1}.

The compliment ED = N − ĒD is then multiplicative and P (ED) has Chebotarev 
density α = 1 − 1/2r, where r is the number of prime factors of D. Therefore, by 
Theorem 3.1, we have

ĒD(X) ∼ cX/ logα X.

Now, we have to relate ĒD(X) to RD(X) and ID(X). We do this by showing that if 
±q ∈ Ē(X) is squarefree and satisfies congruence conditions coming from (d) and (e) of 
Theorem 2.2, then m = qD has EGRQ.

Let CD be the set of q ∈ Z that satisfy the congruence conditions (d) and (e) of 
Theorem 2.2, so that

CD =

⎧⎪⎨
⎪⎩

{q ∈ Z : q ≡ D (mod 4)} if D ≡ ±3 (mod 8)
{q ∈ Z : q ≡ D + 1 (mod 8)} if D ≡ 0 (mod 2)
{q ∈ Z} otherwise

We define

RE
D(X) := {Dq : sgn(D)q ∈ ĒD(X/D), q squarefree, q ∈ CD}

IED(X) := {Dq : −sgn(D)q ∈ ĒD(X/D), q squarefree, q ∈ CD}

Lemma 3.2. For good D, RE
D(X) ⊂ RD(X) if εD = −sgn(D) and IED(X) ⊂ ID(X) if 

εD = sgn(D).
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Proof. We need to check (a) and (b) of Theorem 2.2. They follow from the properties of 
the Jacobi symbol. Let D be good. If either εD = −sgn(D) with 0 < qD or εD = sgn(D)
with 0 > qD, we have that 0 < −εDq =

∏
qj , so(

−εDq

p

)
=

∏(
qj
p

)
= 1.

Note that then we always have that εD′D′ ≡ 1 (mod 4) and εDD = δD′εD′ . So
(
εDD

qj

)
=

(
δ

qj

)(
εD′D′

qj

)
=

(
qj

|εD′D′|

)
=

∏
p|D odd

(
qj
p

)
= 1 �

Since a positive proportion of ±q ∈ ED(X/D) satisfies the extra conditions of being 
squarefree and in CD, we have that

RE
D(X), IED(X) � X

logα X
,

and hence the same is true of the bigger sets RD(X), ID(X). �
Proof of Theorem 1.1. The theorem follows immediately from Theorem 1.5 and The-
orem 1.3. Theorem 1.3 shows D = 2 is good with r = 1 distinct factors and the real 
quadratic field K = Q(

√
qD) has EGRQ. If R(X) is the number of these fields, Theo-

rem 1.5 shows

R(X) � X√
log(X)

. �
Proof of Theorem 1.2. The theorem follows immediately from Theorem 1.6 and The-
orem 1.4. Theorem 1.4 shows D = 37 is good with r = 1 distinct factors and the 
imaginary quadratic field K = Q(

√
qD) has EGRQ. If I(X) is the number of these fields, 

Theorem 1.6 shows

I(X) � X√
log(X)

. �

4. Examples

In this section, we explain how to find elliptic curves with EGRQ when the conditions 
of Theorem 2.2 are satisfied, and give examples of elliptic curves with EGRQ. The results 
in this section are based on Setzer’s construction in 2.1.

We start with a quadratic field K = Q(
√
m) and a factorization m = Dq with D good 

which satisfies the conditions of Theorem 2.2. We want to find u such that

Eu,A : y2 = x3 − 3A(A3 − 1728)u2x− 2(A3 − 1728)2u3
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has EGRQ(K). Let α ∈ K have norm εDD, and pick n odd such that β := nα =
a + b

√
m ∈ OK . Let A ∈ R be such that D is the square-free part of A3 − 1728. Define 

d1, d2 such that 32(A3 − 1728) = Dd2
1d

4
2 with d1 square-free. If m ≡ 1, 2 (mod 4), then 

one of u = ±βd1 works. If m ≡ 3 (mod 4), then either u = ±βd1 both work or u = ±βd1ρ

both work, where ρ = 1
2(m + 1) +

√
m.

The table below has some examples.

A D d1 q α u

20 2 42 3 2 +
√

6 −d1α = −84 − 42
√

6
−15 −7 1 −11 35 + 4

√
77 −d1α = −35 − 4

√
77

−32 −11 42 −15 77 + 6
√

165 d1α = 3234 + 252
√

165
−32 −11 42 −3 11 + 2

√
33 −d1α = −462 − 84

√
33

39 79 1 5 79 + 4
√

395 ±d1αρ = ±(17 222 + 871
√

395)
16 37 6 −7 37 + 6

√
−259 ±d1α = ±(222 + 36

√
−259)
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