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Let C be a smooth projective curve defined over the finite 
field Fq (q is odd) and let K = Fq(C) be its function 
field. Removing one closed point Caf = C − {∞} results 
in an integral domain O{∞} = Fq[Caf] of K, over which 
we consider a non-degenerate bilinear and symmetric form 
f with orthogonal group OV . We show that the set Cl∞(OV )
of O{∞}-isomorphism classes in the genus of f of rank 
n > 2 is bijective as a pointed set to the abelian groups 
H2

ét(O{∞}, μ2) ∼= Pic (Caf)/2, i.e. it is an invariant of Caf. 
We then deduce that any such f of rank n > 2 admits the 
local-global Hasse principal if and only if |Pic (Caf)| is odd. 
For rank 2 this principle holds if the integral closure of O{∞}
in the splitting field of OV ⊗O{∞} K is a UFD.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let C be a smooth, projective, geometrically connected curve defined over the finite 
field Fq with q odd, and let K = Fq(C) be its function field. For any prime p of K, let vp
be the induced discrete valuation on K. We remove one closed point ∞ from C, resulting 
in an affine curve Caf, and consider the following ring of {∞}-integers of K:
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O{∞} = Fq[Caf] := {a ∈ K | vp(a) ≥ 0 ∀p �= ∞}.

Throughout the paper, an integral form on V ∼= On
{∞} refers to a bilinear and symmetric 

map f : V ×V → O{∞}. It will be called unimodular if it is non-degenerate at any closed 
point of Caf, which is equivalent in this case to det(f) ∈ F×

q . Two integral forms f and 
g on V are O{∞}-isomorphic if there exists Q ∈ GL(V ) such that f(u, v) = g(Qu, Qv)
for all u, v ∈ V .

The standard approach to classifying bilinear forms over a global field such as K

basically relies on the Hasse–Minkowski principle which states that this classification, 
expressed by the first Galois cohomology set H1(K, OV ) where OV stands for the 
orthogonal group of f , is equivalent to that obtained locally everywhere, namely, by ∏

p
H1(K̂p, (OV )p) where K̂p is the complete localization of K at a prime p and (OV )p

is the geometric fiber of OV there. However, if one considers the classification of integral 
forms, then this local-global principle fails, leading to the notion of a genus of a form. In 
this paper, we aim to describe geometrically the violation of this principle. We express 
the classification of integral unimodular forms from the same genus via H1

ét(O{∞}, SOV )
(Proposition 4.2), where SOV is the special orthogonal group scheme of f defined over 
SpecO{∞}, and then show that this set is bijective as a pointed set for ranks n > 2 to 
the abelian group H2

ét(O{∞}, μ2), i.e. it is an invariant of Caf (Proposition 4.4). Further-
more, by proving that the Brauer group of the affine curve Caf is trivial (Lemma 3.3), 
we conclude that H2

ét(O{∞}, μ2) 
∼= Pic (Caf)/2 (Corollary 3.4).

This description leads us to assert the validity of the Hasse principle for unimodular 
integral forms of rank n > 2 if and only if |Pic (Caf)| is odd. For n = 2, the Hasse principle 
holds if the integral closure of O{∞} in the splitting field of the generic fiber of OV is a 
UFD (Theorem 4.5). This result can be considered as a generalization of Theorem 3.1 in 
[Ger1] in which the elementary case of O{∞} = Fq[t] is treated (Example 4.6). Its proof 
was initially based on the reduction by Harder, of the unimodular theory over Fq[t], to 
the theory of spaces over Fq (see [Ger2, Theorem 7.13]).

2. Classification over rings of integers

The geometrically connected projective curve C remains geometrically connected after 
removing the closed point ∞, resulting in Caf. In order to classify integral forms, we shall 
refer to the fundamental group π1(Caf, a) of Caf w.r.t. some geometric base point a, 
as defined by Grothendieck in [SGA1, V, §4 and §7]. Up to isomorphism, this group 
(as a topological group) does not depend on the choice of the base point (see [Mil, 
Ch. I, Remark 5.1]). Therefore, where one is only concerned with the group-theoretic 
structure of π1(Caf, a), we may omit the base-point and write just π1(Caf).

For any prime p of K, let Op be the discrete valuation ring of K w.r.t. to vp and 
let Kp be its fraction field. Let K̂p be the completion of Kp and let Ôp be its ring 
of integers. Let kp = Ôp/p be the corresponding (finite) residue field. Let K̂ur

p be 
the maximal unramified extension of K̂p and let Ôsh

p be its ring of integers. Given a 
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smooth group scheme Gp defined over Spec Ôp, the set H1
ét(Ôp, Gp) is bijective to the 

Galois cohomology set H1(Ôp, Gp), while the Galois group taken under consideration 
is Gal(Ôsh

p /Ôp) = Gal(kp/kp) where kp stands for the algebraic closure of kp. For a 
smooth group scheme G defined over O{∞}, by writing H1

ét(O{∞}, G) ∼= H1
flat(O{∞}, G)

we shall refer to the action of the aforementioned (total) fundamental group π1(Caf) (see 
[SGA4, VIII Corollaire 2.3] for the étale, flat and Galois cohomology sets bijections in 
the smooth case).

3. Integral schemes and étale cohomology

Let G be an affine, flat and smooth group scheme defined over SpecO{∞} with generic 
fiber G. For any prime p of K, the localization (O{∞})p is a base change of Op. Thus 
the bijection Spec (O{∞})p → SpecOp is faithfully flat (see [Liu, Theorem 3.16]) and so 
G, extended to be defined over Spec Ôp and denoted by Gp, is also smooth. Under these 
settings, we shall refer to the adelic group G(A) and to its subgroup over the ring of 
{∞}-integral adèles A∞ := K̂∞ ×

∏
p�=∞ Ôp.

Definition 1. The class set of G is the set of double cosets Cl∞(G) := G(A∞)\ G(A)/G(K). 
It is finite (cf. [Con1, Thm. 1.3.1]). Its cardinality, denoted by h∞(G), is called the class 
number of G.

Theorem 3.1. (Ye. Nisnevich, [Nis, Theorem I.3.5].) There is an exact sequence of pointed 
sets:

1 → Cl∞(G) → H1
ét(O{∞}, G) → H1(K,G) ×

∏
p�=∞

H1(Ôp, Gp).

Lemma 3.2. Suppose G (being affine, flat and smooth defined over SpecO{∞}) is 
connected, and that G is almost simple, simply connected and K̂∞-isotropic. Then 
H1

ét(O{∞}, G) = 0.

Proof. At any prime p, as Ôp is Henselian, we have Hi(Ôp, Gp) ∼= Hi(kp, Gp) for i ≥ 0
where Gp := Gp ⊗Spec Ôp

kp (see Remark 3.11(a) in [Mil, Ch. III, §3]). The right set for 
i = 1 is trivial by Lang’s Theorem (see [Ser, Ch. VI, Prop. 5]). Furthermore, H1(K, G)
is trivial in the simply connected case due to Harder’s result (see [Hard, Satz A]), and so 
Nisnevich’s sequence from Theorem 3.1 obtained for G, shows that Cl∞(G) is bijective to 
H1

ét(O{∞}, G). But as G is almost simple, simply connected and K̂∞-isotropic, it admits 
the strong approximation property w.r.t. S = {∞} (see [Pra, Theorem A]), which means 
that Cl∞(G) is trivial, and the assertion follows. �
Lemma 3.3. Br(O{∞}) = 1.

Proof. As Caf is smooth, H2
ét(O{∞}, Gm) = Br(O{∞}) classifying Azumaya O{∞}-alge-

bras (see [Mil, §2]). Let [D] be a class of central simple algebras in Br(K). At any prime p, 
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[D] is associated by the residue map rp with an extension of kp, representing thus a class 
in H1(kp, Q/Z) = Hom(kp, Q/Z) (the Galois action is trivial). The latter term is isomor-
phic to Q/Z, as the absolute Galois group of any finite field kp is isomorphic to Ẑ. The 
ramification map a := ⊕prp yields then the exact sequence from Class Field Theory (see 
Theorem 6.5.1 in [GS]):

1 → Br(K) a=⊕prp−−−−−→
⊕
p

Q/Z

∑
p

Corp−−−−−−→ Q/Z → 1 (3.1)

in which the corestriction map Corp for any p is an isomorphism induced by the Hasse-
invariant Br(K̂p) ∼= Q/Z (cf. [GS, Proposition 6.3.9]). On the other hand, as all residue 
fields of K are finite thus perfect, and Caf is a one-dimensional regular scheme over Fq, 
it admits due to Grothendieck the following exact sequence (see [Gro, Proposition 2.1]
and [Mil, Example 2.22, case (a)]):

1 → Br(Fq[Caf] = O{∞}) → Br(Fq(Caf) = K) ⊕p�=∞rp−−−−−−→
⊕
p�=∞

Q/Z, (3.2)

which means that Br(O{∞}) is the subgroup of Br(K) of classes that vanish under rp
at any p �= ∞. Thus omitting these rp, p �= ∞ in sequence (3.1), results in Br(O{∞}) =
ker[Q/Z 

Cor∞−−−−→ Q/Z] = 1. �
Corollary 3.4. There is an isomorphism of abelian groups: Pic (Caf)/2 ∼= H2

ét(O{∞}, μ2).

Proof. Étale cohomology applied on the Kummer’s exact sequence defined over 
SpecO{∞}:

1 → μ2 → Gm → Gm → 1

gives rise to the following long exact sequence:

Pic (Caf) φ:[L] �→[2L]−−−−−−−→ Pic (Caf) → H2
ét(O{∞}, μ2) → Br(O{∞})

(3.3)= 1

in which Pic (Caf)/2 = coker(φ) ∼= H2
ét(O{∞}, μ2). �

Definition 2. Let S be a scheme and G an S-group. G is an S-torus of rank r if it is 
locally isomorphic in the fpqc-topology to Gr

m (cf. [SGA3, Exp. IX, Def. 1.3]).

Lemma 3.5. Let h : S′ → S be a finite surjective morphism of integral schemes, where S
is Noetherian, normal and one dimensional. Then N := R

(1)
S′/S(Gm) is an S-torus iff h

is étale.
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Proof. Under the Lemma’s hypothesis on h, it is locally free (cf. [Sza, Lemma 5.2.4]). 
Hence the induced Weil restriction functor R := RS′/S(Gm) exists (cf. [BLR, §7.6 The-
orem 4]), and so N , being equal to ker[R det−→ Gm] (see Ex. ¶9(c), p. 148 [Bou]), is well 
defined.

S′ is integral thus connected. So given that h is étale over the normal scheme S, it 
admits a Galois closure S′′ → S that factors through it (see [Sza, Proposition 5.3.9]
and [BS, Theorem 4’]). Thus the associated fundamental group Γ admits a subgroup 
Γ0 := Aut(S′′|S′) ⊂ Γ consisting of automorphisms of S′′ that fix S′, such that: S′ ⊗S

S′′ ∼= (S′′)|Γ/Γ0| (see [Sza, Proposition 5.3.8]). Therefore: R⊗S S′′ ∼= G
|Γ/Γ0|
m,S′′ and so:

N ⊗S S′′ ∼= ker
[
G

|Γ/Γ0|
m,S′′

det−→ Gm,S′′

]
∼= G

|Γ/Γ0|−1
m,S′′ ,

i.e. N is an S-torus.
Conversely, if h ramifies at some prime, then N is not reductive there (see [Vos, §10.5]). 

So given that h is locally free thus flat, it must be étale as well. �
4. The Hasse principle and the class group of the orthogonal group

Let X be the scheme of invertible symmetric n × n-matrices with entries in O{∞}. 
It is a SpecO{∞}-scheme, and its points correspond to (non-degenerate) n-dimensional 
integral forms, on which GLn defined over SpecO{∞} acts by

∀g ∈ GLn, F ∈ X : g ∗ F = gtFg.

Let f be an integral unimodular form represented by F ∈ X . Then the orthogonal group
OV associated to (V, f) is the stabilizer of F . Since this action is defined over O{∞}, it 
is an affine scheme defined over SpecO{∞}. Its generic fiber is OV := OV ⊗Spec O{∞} K. 
As 2 is a unit in O{∞}, the special orthogonal group SOV is ker[det : OV → μ2], where 
μ2 := SpecO{∞}[x]/(x2 − 1) (see Definition 1.6 and Corollary 2.5 in [Con2]). For the 
same reason (2 is a unit in O{∞}), OV is smooth regardless of the parity of n, and SOV

is a smooth closed subgroup with connected fibers [Con2, Theorem 1.7]. If n is even, 
then OV is a semidirect product of SOV and μ2 (see Corollary 2.5 and Remark 2.6 in 
[Con2]), and it is a direct product of these if n is odd (cf. [Con2, Proposition 3.4]).

Definition 3. Two integral forms share the same genus if they are isomorphic over K and 
over Ôp for all primes p. We denote by gen(f) the set of all integral forms of the same 
genus as f .

Definition 4. Given an integral form f , let c(f) denote the number of O{∞}-isomorphism 
classes in gen(f). We say that the Hasse principle holds for f if c(f) = 1.
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Platonov and Rapinchuk have shown in [PR, Prop. 8.4] – in the number field case 
– that c(f) equals the class number of its orthogonal group. In the following, we shall 
sketch briefly their proof, this time in the function field case:

We consider the above O{∞}-scheme GLn (in which OV is embedded), its subgroup 
SLn and their extensions defined over Ôp at any prime p (see Section 3) while referring to 
their adelic groups. Any element of OV (A) can be put in SLn(A) by multiplying by a suit-
able element of GLn(A∞). Since the K-group SLn is split, simple and simply connected, 
it admits the strong approximation property whence SLn(A) = SLn(A∞)SLn(K) (cf.
[Pra, Theorem A]). It follows that OV (A) ⊆ GLn(A∞)GLn(K). Now according to the 
Stabilizer Formula [PR, Theorem 8.2], c(f) is equal to the number of double cosets 
OV (A∞) · x · OV (K) in the principal coset GLn(A∞)GLn(K) which is h∞(OV ).

Corollary 4.1. c(f) = h∞(OV ).

Proposition 4.2. There is a bijection of finite pointed sets: Cl∞(OV ) ∼= H1
ét(O{∞}, SOV ).

Proof. Being affine, flat and smooth, OV admits by the Nisnevich’s Theorem 3.1 the 
exact sequence of pointed sets:

1 → Cl∞(OV ) → H1
ét(O{∞},OV ) → H1(K,OV ) ×

∏
p�=∞

H1(Ôp, (OV )p). (4.1)

Let W (∗) denote the Witt ring for the ring ∗. By Witt’s Theorem, two forms are isomor-
phic if and only if they belong to the same Witt class and have the same rank (see [MH, 
Cor. 3.3]), whence H1

ét(Ôp, (OV )p) injects into W (Ôp) and H1(K̂p, (OV )p) into W (K̂p). 
Since K̂p is complete, W (Ôp) = W (kp) injects into W (K̂p) and we obtain the following 
commutative diagram:

H1
ét(Ôp, (OV )p) H1(K̂p, (OV )p)

W (Ôp) W (K̂p)

which shows that H1(Ôp, (OV )p) embeds into H1(K̂p, (OV )p) for any p. Then due to 
Corollary 3.6 in [Nis], sequence (4.1) simplifies to:

1 → Cl∞(OV ) → H1
ét(O{∞},OV ) → H1(K,OV ). (4.2)

As Caf is assumed to be smooth, SpecO{∞} = SpecFq[Caf] is a normal scheme, i.e. it is 
integrally closed locally everywhere. In this case any finite étale covering of Caf arises by 
the normalization of SpecO{∞} in some separable unramified extension of K (see [Len, 
Theorem 6.13]). Thus any non-trivial 1-cocycle in H1

ét(O{∞}, μ2) remains non-trivial 
after tensoring with K, i.e. H1

ét(O{∞}, μ ) is embedded in its generic fiber. Hence, μ
2 2
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being a direct or semidirect summand in OV (see at the beginning of this section), can 
be canceled in sequence (4.2), leading to:

Cl∞(OV ) ∼= ker[H1
ét(O{∞},SOV ) → H1(K,SOV )].

The situation for SOV is simpler: having (smooth) connected fibers, H1
ét(Ôp, (SOV )p)

vanishes for all primes p (by Lang’s Lemma), thus not only admitting again due to 
Corollary 3.6 in [Nis] the exact sequence:

1 → Cl∞(SOV ) → H1
ét(O{∞},SOV ) ϕ−→ H1(K,SOV ), (4.3)

which shows that Cl∞(OV ) = Cl∞(SOV ), but can be simplified even more to (cf. [Nis, 
I.3.5.2] and [Gon1, Theorem 3.4]):

1 → Cl∞(SOV ) → H1
ét(O{∞},SOV ) → X1

{∞}(K,SOV ) → 1

in which the right term is the first Tate–Shafarevich group w.r.t. {∞}, namely:

X1
{∞}(K,SOV ) := ker

⎡
⎣H1(K,SOV ) →

∏
p�=∞

H1(K̂p, (SOV )p)

⎤
⎦ .

The pointed set H1(K, SOV ) properly (i.e. by det = 1 isomorphisms) classifies K-forms 
isomorphic to f over some finite Galois extensions of K, therefore sharing all the 
same rank and discriminant. So according to the Hasse–Minkowsky principle (cf. [Lam, 
VI.3.1]), these forms are classified via their Hasse-invariant locally everywhere. But as the 
base point f is unimodular, representatives of any class in H1(K, SOV ) are O{∞}-regular, 
thus their Hasse-invariants locally everywhere belong to Br(O{∞}), being trivial by 
Lemma 3.3. This means that Cl∞(SOV ) surjects on H1

ét(O{∞}, SOV ). On the other 
hand, Cl∞(SOV ) is bijective to the first Nisnevich’s cohomology set H1

Nis(O{∞}, SOV )
(cf. [Nis, I. Theorem 2.8] and [Mor, 4.1]), classifying SOV -torsors in the Nisnevich’s 
topology. But Nisnevich’s covers are étale, so it is a subset of H1

ét(O{∞}, SOV ), and the 
assertion follows. �

In particular, Proposition 4.2 plus Corollary 4.1 yield:

Corollary 4.3. The Hasse principle holds for an integral unimodular form iff
H1

ét(O{∞}, SOV ) = 0.

For rank n > 2, we consider the following construction (see in [Bas, §2]):
Let C(f) be the Clifford algebra associated to f . It is a Z2-graded algebra. The linear 

map v �→ −v on V extends to an algebra automorphism α : C(f) → C(f) (acting as the 
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identity on the even part and negation on the odd part). The Clifford group associated 
to (V, f) is

CL(f) := {u ∈ C(f)× : α(u)vu−1 ∈ V ∀v ∈ V }.

The identity map on V (viewed as its inclusion in the opposite algebra of C(f)) extends 
to an anti-automorphism of C(f) which we denote by t. The composition α ◦ t mapping 
v �→ v̄ gives rise to the norm N : CL(f) → O×

{∞} = F×
q : v �→ vv̄ (for v ∈ V it is 

just N(v) = −v2 = −f(v, v)). We define PinV (O{∞}) := ker(N). This group admits an 
underlying group scheme over SpecO{∞} which we denote by PinV . The homomorphism 
π : PinV → OV sending v to the isometry stabilizing it, is a double covering, yielding 
the following short exact sequence of O{∞}-group schemes:

1 → μ2 → Spin
V

π→ SOV → 1 (4.4)

where Spin
V

:= π−1(SOV ) ⊂ PinV .

Proposition 4.4. Let (V, f) be an integral unimodular space of rank n > 2. Then Cl∞(OV )
is bijective as a pointed set to H2

ét(O{∞}, μ2) (being isomorphic to Pic (Caf)/2).

Proof. The schemes in sequence (4.4) are smooth, whence étale cohomology yields the 
exact sequence of pointed sets:

H1
ét(O{∞},Spin

V
) → H1

ét(O{∞},SOV ) δ→ H2
ét(O{∞}, μ2) (4.5)

in which since O{∞} is of Douai type – see Definition 5.2 and Example 5.4(iii) in [Gon2]
– and as SOV = Spinad

V
while: Z(Spin

V
) = μ2, δ is surjective. Furthermore, Spin

V

is affine, smooth and connected, and its generic fiber is simple, simply connected. As 
det(f) ∈ F×

q , the generic fiber of (V, f) admits a regular model over Ô∞ (see [OMe, 
92:1]). Its reduction at ∞ remains regular of dimension n ≥ 3 over the finite field 
k∞ thus isotropic ([OMe, 62:1b]). Then its lift back to Ô∞ is again isotropic due 
to Hensel’s Lemma (see [EKM, III. Lemma 19.4]), as well as SpinV over K̂∞. Thus 
H1

ét(O{∞}, Spin
V

) is trivial by Lemma 3.2, which means due to the exactness that 
ker(δ) = {0}. This does not imply yet that δ is injective, since SOV is non-commutative 
for n > 2, whence H1

ét(O{∞}, SOV ) has no reason to be a group. In order to deduce the in-
jectivity of δ, we consider the following diagram induced by some non-trivial SOV -torsor 
P , as described in [Gir, Cha. IV, Proposition 4.3.4]:

H1
ét(O{∞},SOV ) δ

∼= θP

H2
ét(O{∞}, μ2)

r∼=

H1
ét(O{∞},

P SOV ) δ′

H2
ét(O{∞}, μ2)
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in which the map δ′ is the one obtained by applying étale cohomology on the short exact 
sequence (4.4) while replacing SOV by the twisted group scheme PSOV = SO(PV ), θP
is the induced twisting bijection, and r is the translation by −δ(P ). According to [Gir, 
Cha. IV, Proposition 4.3.4(i), (ii)] this diagram is commutative and there is a bijection:

{
x ∈ H1

ét(O{∞},SOV ) : δ(x) = δ(P )
} ∼= ker(δ).

But as shown above, in our case ker(δ) is trivial, implying that δ is injective and even-
tually is a bijection. Due to Proposition 4.2, Cl∞(OV ) is bijective as a pointed set to 
H1

ét(O{∞}, SOV ), and therefore is bijective as a pointed set to H2
ét(O{∞}, μ2) as well. 

The rest is Corollary 3.4. �
Theorem 4.5. Let f be a unimodular form of rank n defined over Fq[Caf].

The Hasse principle holds for f :
for n = 2 if the integral closure of Fq[Caf] in the splitting field of SOV is a UFD, 

and:
for n > 2 if and only if |Pic (Caf)| is odd.

Proof. For rank 2, SOV is a one dimensional norm O{∞}-torus. This derives from being 
one dimensional and smooth, and from the connectivity of the fibers (see at the beginning 
of this section). According to Lemma 3.5, such one dimensional norm O{∞}-tori arise 
from quadratic étale extensions, hence are being classified by H1

ét(O{∞}, Z/2Z). If O{∞}
is a UFD, the Kummer sequence defined over SpecO{∞} implies that (2 ∈ O×

{∞}, hence 
the scheme Z/2Z is isomorphic to μ2 over SpecO{∞}):

H1
ét(O{∞},Z/2Z) ∼= O×

{∞}/(O
×
{∞})

2 = F×
q /(F×

q )2 ∼= H1
ét(Fq,Z/2Z).

This means that given that O{∞} is a UFD, any quadratic extension of it, producing 
a one dimensional norm O{∞}-torus, arises from a quadratic extension of Fq (recall 
that char(K) �= 2, hence the quadratic Artin–Schreier extensions are not to be consid-
ered here). Now if SOV splits over O{∞}, then H1

ét(O{∞}, SOV ) = H1
ét(O{∞}, Gm) =

Pic (Caf) = 0 as O{∞} is a UFD. Otherwise, it fits into an exact sequence of O{∞}-tori:

1 → SOV → R := RO′
{∞}/O{∞}(Gm) → Gm → 1 (4.6)

in which O′
{∞} is assumed to be a UFD. As SOV := SOV ⊗Spec O{∞} Fq is connected, by 

Lang’s Lemma H1(Fq, SOV ) ∼= F×
q /Nr(F×

q2) = 1. But F×
q2 ⊆ O′ ×

{∞} = R(O{∞}), which 
means that R(O{∞}) → F×

q is surjective. Moreover, by Shapiro’s Lemma H1
ét(O{∞}, R) ∼=

H1
ét(O′

{∞}, Gm,O′
{∞}

) = Pic (O′
{∞}) being trivial by the assumption. Thus applying étale 

cohomology on sequence (4.6) implies that H1
ét(O{∞}, SOV ) vanishes as well, and the 

assertion follows from Corollary 4.3.
For higher ranks, this is just Proposition 4.4 plus Corollary 3.4. �
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Example 4.6. Let C be of genus zero having a Fq-rational point which we assign as 
∞. Then O{∞} = Fq[Caf] is a UFD, as well as any scalar extension of it (see [Sam, 
Theorem 5.1]), whose generic fiber may be the splitting field if n = 2 of SOV (see in 
the proof of Theorem 4.5). Therefore the Hasse principle holds for any unimodular form 
defined over it of any rank. So Theorem 4.5 is a generalization of Theorem 3.1 in [Ger1]
in which the elementary case of O{∞} = Fq[t] is treated.

Remark 4.7. The unimodularity condition is essential (though not necessary) for the 
validity of the Hasse principle even if O{∞} is a UFD. It is necessary for the Clifford 
algebra construction if n > 2, but is also required for rank 2.

For example, let C be the projective line over Fq and ∞ = (1/x). Then O{∞} = Fq[x]
is a UFD. Let f and g be the O{∞}-forms represented by F = diag((1 − x2)2, 1) and 
G = diag((1 − x)2, (1 + x)2), respectively. Let

Q =
(

1
1+x 0
0 1 + x

)
∈ GL2(Ôp) ∀p �= (1 + x)

and

P =
(

0 1
1−x

1 − x 0

)
∈ GL2(Ôp) ∀p �= (1 − x).

Then QtFQ = P tFP = G. This shows that f and g belong to the same genus. But they 
are not, however, isomorphic over O{∞}, since mapping the eigenvalue (1 − x2)2 in F to 
(1 −x)2 or (1 +x)2 in G can be done only by dividing by a non-constant element, which 
is not allowed in O{∞} = Fq[x].

Example 4.8. Let C be an elliptic Fq-curve and suppose ∞ is Fq-rational (such one 
must exist). The restriction of C to Caf gives rise to an exact sequence (see [Hart, 
Cha. II, Prop. 6.5(c)]):

0 → Z → Pic (C) → Pic (Caf) → 0

in which the first map 1 �→ 1 · {∞} is injective because the degree of a curve’s divisor 
is well defined. As we assumed ∞ is Fq-rational, this sequence splits as abelian groups. 
The degree map on Pic (C) yields another exact sequence which again splits as abelian 
groups:

0 → Pic 0(C) → Pic (C) → Z → 0.

We get an isomorphism of summands Pic 0(C) ∼= Pic (Caf). Together with another 
isomorphism of abelian groups: C(Fq) ∼= Pic 0(C); P �→ [P ] − [∞] we may deduce that:

C(Fq) ∼= Pic (Caf). (4.7)
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Hence according to Theorem 4.5, any unimodular form f of rank ≥ 3 defined over 
SpecO{∞} admits the Hasse principle if and only if there is no element of order 2
in C(Fq). For example, suppose q > 3 and ∞ = (0 : 1 : 0) ∈ C(Fq) is removed, so the 
remaining (non-singular) affine curve Caf is given in affine coordinates by the Weierstrass 
form

y2 = x3 + ax + b for some a, b ∈ Fq.

Then f admits the Hasse principle if and only if Caf does not have any Fq-point on the 
x-axis.

Corollary 4.9. Let C be an elliptic Fq-curve and suppose ∞ ∈ C(Fq). Then for any 
integral unimodular form f of any rank n > 2 one has c(f) = |C(Fq)/2|.

Lemma 4.10. Let C be an elliptic Fq-curve. Suppose that −1 ∈ (F×
q )2 and ∞ ∈ C(Fq). 

Then c(12) = |C(Fq)|.

Proof. The orthogonal group scheme over SpecO{∞} of 12 is O2. Consider the exact 
sequence of smooth O{∞}-schemes (recall that char(K) is odd):

1 → SO2 → O2 → μ2 → 1.

As −1 ∈ (F×
q )2, the one dimensional torus SO2 is split, and so H1

ét(O{∞}, SO2) =
Pic (Caf). Then due to isomorphism (4.7), C(Fq) ∼= H1

ét(O{∞}, SO2), classifying accord-
ing to Proposition 4.2 the integral forms in gen(12). According to Hilbert 90 Theorem, 
this set is also equal to ker[H1

ét(O{∞}, SO2) → H1(K, SO2)], so the geometric inter-
pretation of this result is that non-trivial principal SO2-bundles, which are in this case 
non-trivial line bundles of Caf, become trivial while tensoring with K. This causes the 
failure of the Hasse principle. �
Remark 4.11. Lemma 4.10 with isomorphism (4.7) show that the UFD condition for O{∞}
is essential for the validity of the Hasse principle in case of rank 2, even for unimodular 
forms as 12. Moreover, even if O{∞} is a UFD, it is still essential to assume for n = 2
that the integer closure of O{∞} in the splitting field of SOV is a UFD as well.

For example, the elliptic curve C := {ZY 2 = X3 − XZ2 − Z3} defined over F3 (in 
which −1 is not a square) has a single F3-rational point (0 : 1 : 0). Suppose we choose it 
to be ∞. Then Caf = {y2 = x3 − x − 1} and O{∞} = F3(Caf) is a UFD (by (4.7)). But 
the extension O′

{∞} by i =
√
−1, being the integer closure of O{∞} in the splitting field 

of SO2, gives rise to more rational points of C like (−1 : i : 1). Thus as Pic (O{∞}) = 0, 
étale cohomology applied on sequence (4.6) implies the bijection of the non-trivial sets: 
H1

ét(O{∞}, SO2) ∼= Pic (O′
{∞}) (see in the proof of Theorem 4.5), which shows according 

to Corollary 4.3 that the Hasse principle fails for the O{∞}-form 12.
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Example 4.12. Let C = {Y 2Z = X3 + XZ2} defined over F5. Then:

C(F5) = {(0 : 0 : 1), (1 : 0 : 2), (1 : 0 : 3), (0 : 1 : 0)} ∼= Z/4Z.

Removing ∞ = (0 : 1 : 0), we get the affine elliptic curve:

Caf = {y2 = x3 + x} with: O{∞} = F5[x, y]/(y2 − x3 − x).

According to Lemma 4.10, we have four O{∞}-isomorphism classes in gen(12). The key 
obstruction here for finding explicit integral forms from the same genus of 12 which are 
not O{∞}-isomorphic to it, is using the fact that O{∞} is not a UFD in such a way that 
there exist distinct isomorphisms to 12, defined over integer rings at distinct places.

Explicitly, the affine supports of the points in C(F5) are:

{(0, 0), (1/2, 0) = (3, 0), (1/3, 0) = (2, 0),∞}.

Each one of the first three points corresponds to an intersection between (y) and another 
prime:

(0, 0) ↔ (y) ∩ (x), (3, 0) ↔ (y) ∩ (x− 3), (2, 0) ↔ (y) ∩ (x− 2)

while ∞ is associated to the all affine curve Caf. For any t ∈ {1, x, x + 2, x − 2}, the 
matrix

P(t) =
(

1 + 3t 2 − t

3 + t 1 + 3t

)

with det(P(t)) = 2t is invertible in Caf−{t} (in all Caf if t = 1), giving rise to the integral 
form represented by

Gt = P t
(t)P(t) =

(
2t 0
0 2t

)
.

On the other hand, using the relation (which is due to the fact that −1 ∈ (F×
5 )2):

y2 = x(x + 2)(x− 2)

one may define the matrices:

Q(x) = y

(x− 2)(x + 2)

(
x− 1 x + 1

−(x + 1) x− 1

)
, Q(x−2) = y

x(x + 2)

(
x− 1 x + 3
x + 3 −(x− 1)

)
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Q(x+2) = y

x(x− 2)

(
x + 1 x + 2
x + 2 −(x + 1)

)

satisfying each Qt
(t)Q(t) = Gt as well, and being invertible at the remaining place (t).

We get four non-equivalent 1-cocycles, since 
√

det(Gt1)/ det(Gt2) = t1/t2 is not in-
vertible over O{∞} for any t1 �= t2. The generic fibers of these cocycles are trivial, 
since both P(t) and Q(t) are well defined over K for any t, and the transition maps 
Qt

(t)Q(t) · (P t
(t)P(t))−1 are trivial. The four corresponding non-isomorphic integral forms 

in gen(12) are those represented by {Gt}.
For n > 2, however, any unimodular form f defined over this domain Fq[Caf] will 

admit according to Corollary 4.9 only |C(Fq)/2| = 2 classes in the genus of f .
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